
SCIENCE CHINA
Information Sciences

1

. LETTER .2

Improving Actionable Warning Identification via the3

Refined Warning-inducing Context Representation4

Xiuting GE, Chunrong FANG*, Xuanye LI,

Quanjun ZHANG, Jia LIU*, Zhihong ZHAO & Zhenyu CHEN
5

The State Key Laboratory for Novel Software Technology, Nanjing University 210093, China6

7

Citation8

1 Appendix A9

In Appendix A, the new warning slicing criterion WarningSC is designed to replace the original slicing criterion in Joana.10

WarningSC = (warningStm, warningVar, warningS) (1)

In Equation (1), warningStm is statements with the corresponding warning line numbers. warningVar is variables in11

warningStm. warningS, the class/method containing warningStm, is the end point of program slicing in Joana. In detail,12

as for a warning that locates in the method, our approach sets this method as warningS. As for a warning that does not13

locate any method, our approach sets the class containing this warning as warningS.14

2 Appendix B15

In Appendix B, the detailed process of our proposed adjustment algorithm is shown in Algorithm 1. Our approach takes16

SC (i.e., the source code in the class/method containing a warning) and LineNums (i.e., the source code line numbers17

obtained by Joana) as inputs. It is noted that as for a warning that locates in the method, SC is the source code in18

the method containing a warning. As for a warning that does not locate any method, SC is the source code in the class19

containing a warning. The output is Res (i.e., the refined warning-inducing context). Our approach first copies SC to Res20

and extracts all Nodes by using JavaParser1) to hierarchical traversal Res (lines 1-2). As for node ∈ Nodes, our approach21

performs the following processing for node. Specifically, if node is the root node and the CatchClause node, our approach22

terminates to traverse node. Otherwise, our approach directly proceeds to the next traversal (lines 4-6). Although our23

approach sets the program slicing scope to SC in Section ??, LineNums could still bring statements outside SC due to the24

interprocedural analysis of Joana. As such, our approach removes statements irrelevant to SC in LineNums (lines 7-16).25

In particular, our approach individually handles the SwitchEntry and CatchClause nodes. When Lines only contains the26

SwitchEntry node, our approach judges whether three conditions (i.e., (1) the parent node of node exists, (2) the parent27

node of node is SwitchEntry, and (3) node is the first child node in all children nodes of the parent node of node) are28

satisfied. If satisfied, the flag of node is set as TRUE (lines 17-20). If node is not a BlockStmt node (e.g., Parameter) of29

CatchClause, our approach retains node along with CatchClause. To avoid accidental deletion, our approach recursively30

searches the parent node of node (lines 21-29). Specifically, our approach copies node to temp. If three conditions (i.e., (1)31

temp is Parameter, (2) the parent node of temp exists, and (3) the parent node of temp is CatchClause) are satisfied, the32

flag of temp is set as TRUE, and our approach breaks out of the loop. After that, our approach removes node that are33

marked FALSE (lines 30-32). Finally, our approach returns Res, which is the refined warning-inducing context.34

*Corresponding author (email: fangchunrong@nju.edu.cn, liujia@nju.edu.cn)

1) https://javaparser.org/



Sci China Inf Sci 2

Algorithm 1 The adjustment algorithm for the warning-inducing context completion

Input: SC (the source code in the class/method containing a warning); LineNums (the source code line numbers obtained by

Joana);

Output: Res (the refined warning-inducting context).

1: Res = SC ;

2: Nodes = getHierarchyTraversal(Res) via JavaParser;

3: for each node ∈ Nodes do

4: if isExisted(getParentNode(node)) and node == CatchClause then

5: return;

6: end if

7: startLine = getStartLine(SC );

8: endLine = getEndLine(SC );

9: flag = FALSE;

10: # Remove the statements outside SC

11: for line in LineNums do

12: if line ⩾ startLine and line ⩽ endLine then

13: flag = TRUE;

14: break;

15: end if

16: end for

17: # Handle the SwitchEntry node

18: if isExisted(getParentNode(node)) and getParentNode(node) == SwitchEntry and is-

FirstChildNode(getParentNode(node)) then

19: flag = TRUE;

20: end if

21: # Handle the CatchClause node

22: temp = node;

23: while isExisted(getParentNode(temp) do

24: temp = getParentNode(temp);

25: if temp == Parameter and isExisted(getParentNode(temp) and getParentNode(temp) == CatchClause then

26: flag = TRUE;

27: break;

28: end if

29: end while

30: if !flag then

31: node.remove();

32: end if

33: end for

34: return Res


	Appendix A
	Appendix B

