
SCIENCE CHINA
Information Sciences

May 2024, Vol. 67, Iss. 5, 152303:1–152303:15

https://doi.org/10.1007/s11432-023-3899-1

c© Science China Press 2024 info.scichina.com link.springer.com

. RESEARCH PAPER .

A credible traffic prediction method based on
self-supervised causal discovery

Dan WANG, Yingjie LIU & Bin SONG*

State Key Laboratory of Integrated Services Networks, Xidian University, Xi’an 710071, China

Received 17 April 2023/Revised 2 August 2023/Accepted 17 November 2023/Published online 26 April 2024

Abstract Next-generation wireless network aims to support low-latency, high-speed data transmission

services by incorporating artificial intelligence (AI) technologies. To fulfill this promise, AI-based network

traffic prediction is essential for pre-allocating resources, such as bandwidth and computing power. This can

help reduce network congestion and improve the quality of service (QoS) for users. Most studies achieve

future traffic prediction by exploiting deep learning and reinforcement learning, to mine spatio-temporal

correlated variables. Nevertheless, the prediction results obtained only by the spatio-temporal correlated

variables cannot reflect real traffic changes. This phenomenon prevents the true prediction variables from

being inferred, making the prediction algorithm perform poorly. Inspired by causal science, we propose a novel

network traffic prediction method based on self-supervised spatio-temporal causal discovery (SSTCD). We

first introduce the Granger causal discovery algorithm to build a causal graph among prediction variables and

obtain spatio-temporal causality in the observed data, which reflects the real reasons affecting traffic changes.

Next, a graph neural network (GNN) is adopted to incorporate causality for traffic prediction. Furthermore,

we propose a self-supervised method to implement causal discovery to to address the challenge of lacking

ground-truth causal graphs in the observed data. Experimental results demonstrate the effectiveness of the

SSTCD method.

Keywords wireless network traffic prediction, causal discovery, self-supervised

1 Introduction

With the increasing popularity of smart applications and services, such as virtual reality (VR)/augmented
reality (AR) [1], cloud games and panoramic videos [2], existing communication network carries explosive
amounts of data [3], and massive computation demand [4]. According to Statista’s report, global mobile
devices are expected to grow from 15 billion in 2021 to 18.22 billion in 2025 [5]. This phenomenon
will bring sudden traffic congestion and intolerable service delay problems to the network degrading the
overall network performance. To avoid these problems, applying artificial intelligence (AI) technology
to the sixth-generation wireless communication network for traffic prediction has been studied, which
helps the network adopt the resource pre-allocation strategy to enhance the quality of service (QoS)
to the users [6]. According to the studies in [7–10], most traffic prediction methods can be achieved
by mining the spatio-temporal correlation between the prediction variables and the target variable of
network traffic [11], which assume that the target variable is correlated with all prediction variables.
However, these existing methods do not identify decisive prediction variables and no direct causality is
between prediction variables and the target variable. In fact, much causal information exists in network
traffic, such as regional characteristics. Specifically, the network traffic of the target area may related
to the network traffic of the adjacent area, but not to the more distant area [12]. Therefore, if such
causal information is used, the decisive variable can be captured, improving the accuracy and credibility
of predictions.

Recent advances in causal inference theory [13] make it possible to mine causal information for traffic
prediction. According to [14], causal inference is generally divided into two parts. The first part is the
causal discovery which discovers causalities among variables based on observational data. The second
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part is the causal effect that implements treatments to observe whether the change in the outcome is
significantly based on the assumption of causality. The above two methods can be used to mine causalities
among variables. Inspired by causal thinking, we consider adopting causal inference to capture the
causalities between prediction variables and target variables in traffic prediction, thereby enhancing the
accuracy and credibility of predictions.

Nevertheless, it is a great challenge to exploit causality among variables for traffic prediction. On the
one hand, it is difficult to explore causality among variables through observed traffic data. Since the
ground-truth causal graph during the prediction process is difficult to obtain, the causality among the
variables is difficult to capture. On the other hand, incorporating causality among the variables to obtain
accurate prediction results imposes challenges on the algorithm. To address these challenges, we propose
a wireless traffic prediction method based on self-supervised causal discovery. Specifically, the method
contains two steps: causal discovery and causal prediction. We address the lack of ground-truth causal
graphs in the observed data by implementing Granger causal discovery [15] in a self-supervised manner
to obtain the spatio-temporal causality between prediction variables and target variables. Furthermore,
we use a graph neural network (GNN)-based variational autoencoder to incorporate the spatio-temporal
causality into traffic prediction.

In the proposed work, we divide the entire prediction area into cells, and the historical data of each
cell are used as prediction variables. We construct a causal graph using the encoder, which contains
the spatio-temporal causality among the prediction variables. Combining the obtained spatio-temporal
causality, we predict future traffic using the decoder. In our work, a self-supervised method is designed to
conduct causal discovery for solving the non-existent ground-truth causal graph problem in the observed
data. This method can improve the accuracy of causal discovery by minimizing the prediction error,
further improving prediction accuracy.

Specifically, the main contributions of this paper can be summarized as follows:
• We are the first to propose a wireless traffic prediction method based on Granger causal discovery to

explore spatio-temporal causality between prediction variables and target variables. Then, the prediction
model can eliminate the effects of non-causal variables, thereby improving traffic prediction accuracy and
credibility.

• We then design a self-supervised approach to achieve causal discovery. It improves the prediction
performance of causal discovery in traffic. This is done by improving the accuracy of the causal traffic
prediction task, which allows us to maximize the accuracy of causal discovery without ground-truth causal
graphs.

• We validate the effectiveness of the algorithm by testing it on real data and comparing it with the
current state-of-the-art methods. The experimental results demonstrate the effectiveness of the proposed
method.

The rest of this paper is organized as follows. Section 2 introduces related works on wireless traffic
prediction and causal inference. Section 3 presents the traffic prediction model based on causal discovery.
Then, we present and analyze the experimental results in Section 4. Finally, Section 5 concludes the
paper.

2 Related work

We investigate existing work on both wireless traffic prediction and causal inference in this section.

2.1 Wireless traffic prediction

With the surge in traffic brought about by the popularization of VR/AR, panoramic video and other
applications, wireless traffic prediction has attracted much attention in recent years. These applications
need to implement more data transmission and lower latency requirements than previous applications.
This phenomenon usually brings sudden network congestion and unsatisfied user QoS problems. Hence,
it is important to research accurate traffic modeling and prediction capabilities to avoid these problems.
Wireless traffic prediction is a time series prediction that includes traditional and deep learning methods.

According to the investigation, autoregressive integrated moving average (ARIMA) [16] is a classic
traffic prediction method. It predicted future time series from the perspective of the probability theory
and incorporated multiple time series models, including autoregression, moving average, and autoregres-
sive moving average (ARMA). It can achieve better prediction results in wireless traffic with different
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characteristics. However, due to the computational complexity, it was only applied to predictions of a
single variable. Meanwhile, researchers have also demonstrated that it can only predict regular vari-
ables in wireless traffic. Therefore, Ref. [17] proposed a multivariate prediction method, i.e., the vector
autoregressive model (VAR). VAR predicted the future time series values of multiple variables at once.
However, since it cannot handle nonlinear relationships among variables, it performed poorly in real
traffic prediction.

On the other hand, there are various prediction methods based on deep learning that enable training a
good predictive model through a large amount of historical traffic data. In [18], long-short term memory
networks (LSTM) were introduced to capture temporal dependencies among different variables through
memory mechanisms. To consider dynamic space interactions between regions, Ref. [19] proposed to
combine the relative-flow gating mechanism (RGM) and convolutional neural network (CNN) to learn
dynamic space dependency. In addition, the author in [20] used multiple convolution kernels to perform
convolution operations on time series to achieve feature extraction. Ref. [21] proposed a traffic prediction
method based on transfer learning for urban cellular traffic. It divided the city into different groups
and used the similarity among groups to reuse knowledge. A dual attention-based federated learning
method [22] was proposed to train a high-quality predictive model with multiple edge clients. Specifically,
a quasi-global model was shared among clients, thus addressing the statistical heterogeneity of federated
learning.

The existing studies above are based on data correlation to predict future traffic data. All possible
relevant variables are used in the model to improve prediction accuracy. However, some of them do not
have direct causality with the target variable, leading to low accuracy and unreliable prediction results.
Therefore, to solve the above problem, we consider employing a causal discovery algorithm to mine the
causality among the prediction variables, thereby improving the prediction accuracy and credibility.

2.2 Causal inference

As an important technology in AI, the deep learning algorithm is trained by a large amount of multi-
angle data and a deep learning model with high performance can be obtained. However, there are still
some problems. Due to the lack of credibility of the deep learning network, the model cannot distinguish
decisive prediction variables, and the model cannot be applied to important occasions. More recently,
causal science, described by Judea Pearl, the father of Bayesian networks, has been used in deep learning
to address the transfer and credibility problems of deep learning [23, 24]. It is a powerful statistical
analysis tool that includes causal discovery and causal effect.

As an important part of causal inference, causal discovery has the ability to discover causal relationships
among variables that can be applied to prediction problems. In [25], the authors proposed a causal discov-
ery algorithm that utilized an attention mechanism to understand the predictor variables of focus by CNNs
when making predictions and intervene in that variable to discover relationships among variables. Addi-
tionally, when the pre-sampling method lost the shared information among the samples, the authors found
a causal relationship among the predictors according to the dynamics among the shared samples [26].
In [27], to reduce the computational cost and calculate only the causal relationships among the variables
of interest, the authors introduced a local causal discovery algorithm to learn the parents and the children
of the target variable according to the backward frame. This method can obtain variable relationships by
finding the invariant V structure. In addition, for nonlinear relationships, the authors in [28] proposed
a causal discovery algorithm based on nonlinear independent component analysis (ICA), which can infer
the causal direction through a series of independence tests.

However, all of the above studies perform causal discovery on datasets with clear ground-truth causal-
ities, and there is no known ground-truth causal graph in real traffic data. We cannot obtain a ground-
truth causal graph for traffic prediction. To tackle this issue, we propose a self-supervised way to perform
causal discovery to achieve causal traffic prediction.

3 Traffic prediction model based on causal discovery: SSTCD

This section introduces the proposed network traffic prediction model based on causal discovery. The
model is composed of two parts: causal discovery and causal prediction. Here, causal discovery is imple-
mented in a self-supervised manner, and causal prediction leverages GNN to achieve. The overall model
is illustrated in Figure 1.
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Figure 1 (Color online) Traffic prediction model based on self-supervised causal discovery. The left side of the figure contains

multiple 3×3 squares, where each element represents a cell. The blue squares represent the current traffic, and the orange squares

represent the historical traffic. The number of cells in the figure is an example, and the cell size used in the experiment is 100×100.

The red nodes and edges in the encoder and decoder represent aggregated edges and nodes.

3.1 Background: Granger causality

Granger causality is a method that infers the causality between observed variables from the observed
time series data. The central idea of Granger causality is that cause and effect have a sequence in the
time dimension: if the past elements of time series X can improve the prediction results of time series Y
in the future, then X “Granger causes” Y .

3.2 Problem formulation

In this work, we consider the problem of urban network traffic prediction. Given an urban region D, we
divide it into N ×N cells. Each cell has its own network traffic data. We define the network traffic data
of the region as X = {x1,x2, . . . ,xN2}. Each element in X represents the network traffic data in one
cell, formulated as xi = {xi,t, xi,t−1, . . . , xi,t−m, . . . , xi,1}, xi,t denotes the current network traffic and the
other elements denote the historical network traffic. This paper focuses on the one-step ahead network
traffic prediction problem of cell i and improves the prediction performance by modeling in time and
space. The network traffic prediction problem is described as predicting future network traffic based on
the current and historical network traffic data of cell i and its adjacent cells Ni. Here, the predicted future
network traffic of cell i is defined as x̂i,t+1. The network traffic prediction problem can be formulated as

x̂i,t+1 = F(xi,xNi
; θ), (1)

where F(·) denotes the prediction model, xNi
is the network traffic data of all cells adjacent to cell i, and

θ denotes the learnable parameters in the prediction model. To reduce the error between the predicted
and the real future network traffic, the objective function is defined as follows:

argmin
θ

{

Ni
∑

i=1

T
∑

t=1

L (F(xi,xNi
; θ), xi,t+1)

}

, (2)

where L is the loss function and xi,t+1 is the real future network traffic.

3.3 Proposed method: SSTCD

This subsection proposes a network traffic prediction model, SSTCD (self-supervised spatio-temporal
causal discovery), as shown in Figure 1. Suppose network traffic in regions is correlated in time and space.
The prediction performance improves by modeling spatio-temporal information in network traffic [29].
However, predicting network traffic based on correlations causes the input variables without direct causal-
ity to negatively affect the prediction results in current prediction methods. To solve this problem, this
paper designs a spatio-temporal network traffic prediction model based on the causal discovery that can
predict future network traffic by mining the causality between the temporal and spatial network traffic.

Granger causality is one of the most common methods to mine causal relationships among variables
through observational data. We first use Granger causality to infer the spatio-temporal causal relationship
among the network traffic of different cells. Since the network traffic changes are complex and nonlinear
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relationships in reality, we adopt the nonlinear Granger causality method to obtain the causal variables
that affect the prediction results. Then, we predict the future traffic based on the causal variables. The
nonlinearity Granger causality is defined as follows [30].

Definition 1. For the predicted cell i, its corresponding network traffic is defined as a variable xi.
Similarly, the network traffic variable of its adjacent cells is xNi

. It is assumed that there are N adjacent
cells, denoted by xNi

= {xi1 ,xi2 , . . . ,xiN}, where i 6∈ Ni. xi and xNi
across time-steps T = {1, . . . , t−1}.

Given a nonlinear autoregressive function F , the predicted network traffic is

x̂i,t+1 = F(xi,xNi
) + εt+1

i , (3)

where εt+1
i is independent noise. If F depends on xi and xNi

, the network traffic variables of adjacent
cells are Granger causes the network traffic variable of cell i.

Our method consists of two parts: causal discovery and causal prediction, which are achieved through
a variational autoencoder (VAE). Incorporating the definition of the Granger causality, we formulate the
two parts as follows:

x̂i,t+1 = F(xi,xNi
,G) + εt+1

i , (4)

where G is the inferred causal graph. The two parts of our method are illustrated in (4). Here, the causal
graph is inferred through a GNN, and the future network traffic can be predicted through a function with
parameters. Therefore, Eq. (4) can be reformulated as

x̂i,t+1 = Fθ(xi,xNi
,Fφ) + εt+1

i , (5)

where Fφ and Fθ are modeled as the encoder and decoder of VAE, respectively.
Next, we will elaborate on the causal discovery and causal prediction in our method.

3.4 Causal discovery

To build a causal graph among variables, the encoder must infer the type of relationships among the
variables. In our paper, we infer the spatio-temporal causality among prediction variables and target
variables through the observed data. In the observed data, we use recent traffic data to predict future
traffic data due to historical traffic data with a large time span having little impact on future traffic data.
Here, historical traffic data of different lengths are obtained by setting the size of the sliding window.

To tackle the problem of groundtruth causal graphs being non-existent in the observed data, we use
GNN to infer the relationship among variables on a fully connected graph. We set each variable as a
node, and an edge connects each node. Given the input variables xi, xNi

of the encoder Fφ, the message
pass process can be expressed as

h
1
i = femb(xi), (6)

h
1
i,j = f1

e (h
1
i ,h

1
j ), (7)

h
2
i = f1

v





∑

i6=j

h
1
i,j



 , (8)

h
2
i,j = f2

e (h
2
i ,h

2
j ), (9)

qφ(dij | xi,xj) = softmax(h2
i,j), (10)

where φ represents the parameters of the neural network, hl
i is the embedding of node in layer l, hl

i,j is
an embedding of the edge and j ∈ Ni. We use fully-connected networks (multi-layer perceptrons, MLPs)
as the functions f(· · · ) (i.e., femb, f

1
e , f

1
v , and f2

e ). The edge type dij is sampled from qφ(dij | xi,xj). In
our work, there are two edge types: “no edge”-type dij,0 and “directed edge”-type dij,1. More specifically,
dij,1 = 1 represents a directed edge between variables xi and xj and the causal direction is from xi to
xj . In addition, dij,0 = 1 means no direct causality exists between variables xi and xj.

Lemma 1 ([26]). If all variables are observable and there are no instantaneous connections between
variables, Granger causality is equivalent to causality in the underlying directed acyclic graph (DAG).

In the constructed causal graph, the variables are all observable. Also, we consider that all variables
have a sequence in the time dimension, indicating that there are no instantaneous connections between
variables. Therefore, according to the above lemma, the inferred causal direction is equivalent to the
causal relations.
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Algorithm 1 Traffic prediction based on a self-supervised causal discovery algorithm

Input: Random initialization parameters φ, θ of the encoder and decoder; the current and historical traffic of cells xi,xNi
.

Output: Optimal traffic prediction model.

1: for j ← 1, . . . , J do

2: Input xi,xNi
into the encoder network;

3: Calculate the embedding vector h
1
i according to (6);

4: Aggregate edges and nodes of GNN according to (7)–(9);

5: Construct a causal graph between variables according to (10);

6: Input current traffic xt
i and causal graph into decoder;

7: Edge aggregation and node aggregation according to (11) and (12);

8: Output the predicted traffic value x̂i,t+1;

9: Calculate loss function L according to (15);

10: Update φ← φ−∇φL(φ);

11: Update θ ← θ −∇θL(θ);

12: end for

3.5 Causal prediction

After we get the causal graph between variables, we use a decoder to combine the causal graph to predict
future network traffic. It takes the network traffic at time t and the causality dij among the variables
as input. The message is passed according to the causal direction of the constructed causal graph. We
denote the message pass process as

h
t′
i,j =

∑

k

dij,kf
′
e(x

t
i, x

t
j), (11)

x̂i,t+1 = xi,t + f ′v





∑

i6=j

h
t′
i,j



 , (12)

where k is the edge type. Note that our model predicts the difference between the network traffic at
times t and t+ 1.

3.6 Loss function

To accurately construct the causal graph among variables and predict future traffic, we construct loss
functions in causal discovery and causal prediction of the model, respectively. We use KL divergence as
the loss function for causal discovery and Gaussian negative log-likelihood (NLL) as the loss function for
causal prediction. The total loss function is

L = LNLL(x̂i,t+1, xi,t+1)− KL [qφ(d | xi,xj)‖pθ(d)] . (13)

The above equation is the evidence lower bound (ELBO) of the VAE. Note that pθ(d) denotes the prior
information of the ground truth causal graph. Nevertheless, there is no groundtruth causality in the
observed traffic data in reality. Therefore, we use a reparameterizable approximation to estimate the KL
term. In the KL term, pθ(d) is uniformly distributed prior to encouraging sparser graphs if there is “no
edge”-type of edge between prediction variables. The KL term can be estimated as the sum of entropy
plus a constant, which is denoted by

∑

H (qφ(d | xi,xj)) + ǫ, (14)

where ǫ is a constant. Then, Eq. (13) is rewritten as

L = LNLL(x̂i,t+1, xi,t+1)−
∑

H (qφ(d | xi,xj))− ǫ. (15)

It can be seen from the equation that no terms with ground truth causality are included. We improve
the accuracy of causal discovery by causal prediction tasks instead of groundtruth causal graphs, which
is a self-supervised manner. Meantime, improving causal discovery accuracy will also enhance causal
prediction performance.

In detail, the traffic prediction based on a self-supervised causal discovery algorithm is illustrated in
Algorithm 1. In this algorithm, the model iterates J times in one epoch.
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4 Experiments

In this section, we evaluate the effectiveness of the proposed SSTCD method through extensive experi-
ments. Specifically, the superior predictive performance of our method is demonstrated by a comparison
with state-of-the-art methods. Moreover, we compared the baseline methods and evaluated the influence
of different parameters on the experimental results.

4.1 Dataset and evaluation metrics

The datasets used in this paper are recorded by Telecom Italia [31], which contain “Call” detail records
(CDR) for the city of Milan and the province of Trentino. The city of Milan is divided into 10000 cells,
while the province of Trentito is divided into 11466 cells. They cover traffic monitoring logs of devices
from different sources collected from 11/01/2013 to 01/01/2014. This paper uses these two datasets to
simulate traffic changes in different regions. Each piece of data in the datasets is the traffic data of each
cell, and their time interval is 10 min. The datasets have three types of services: “SMS”, “Call”, and
“Internet”.

To evaluate prediction performance, we employ two metrics commonly used to evaluate prediction
performance: root mean square error (RMSE) and mean absolute error (MAE). RMSE and MAE are
used to measure the difference between the predicted values and the groundtruth. Here, the RMSE

and MAE can be formulated as
√∑

i
(x̂i,t+1−xi,t+1)

2

∑
i

and
∑

i
|x̂i,t+1−xi,t+1|∑

i

, where x̂i,t+1 and xi,t+1 are the

predicted and groundtruth future traffic for cell i on time t+ 1, respectively.

4.2 Baseline methods

In this paper, we compare the proposed method with the seven baseline methods to verify the effectiveness
of the algorithm, as follows:

(a) Linear regression (LR) [32]. LR is the simplest model to predict future network traffic with a
linear relationship.

(b) Support vector regression (SVR) [33]. SVR is an important application branch of support
vector machine (SVM). It predicts future traffic through nonlinear dependencies in time.

(c) LSTM [34]. LSTM is a temporal recurrent neural network that is suitable for processing and
predicting time series.

(d) Spatial-temporal cross-domain neural network (STCNet) [21]. STCNet utilizes spatio-
temporal modeling and transfer learning to predict traffic among different types of cellular networks.

(e) Adaptive multi-receptive field spatial-temporal graph convolutional networks (AMF-
STGCN) [35]. AMF-STGCN models spatio-temporal dependencies in mobile networks and applies
attention to capture various receptive fields of heterogeneous base stations.

(f) Multi-view spatial-temporal graph network (MVSTGN) [36]. MVSTGN integrates atten-
tion and convolution mechanisms into traffic pattern analysis for mining spatio-temporal information of
network traffic.

(g) Our method without causal discovery (Ours-CD). To highlight the critical role of causality
in traffic prediction, we conduct an ablation experiment.

4.3 Algorithm predictive performance

We randomly select 16 adjacent cells in the datasets for traffic prediction. To facilitate comparison with
other works, we randomly select cells in the region (40, 60). Here, sliding windows are used for training,
validation, and test dataset construction. We set the sliding window size to 3. We set both the encoder
and the decoder to have 16 hidden neurons. In addition, our model is trained for 500 epochs. Following
the datasets partitioning results of [21], we use the traffic data from the first seven weeks for training and
validation and the data from the last week for testing.

Table 1 [21,32–36] shows the prediction performance of the different methods. It can be seen from the
table that our method outperforms the baseline methods on the Milan and Trentino datasets in RMSE
and MAE. Compared to MVSTGN, our method achieves an average performance improvement of 30.4%
and 19.1% in RMSE and MAE, respectively. The reasons why our model works better are as follows.

• LR achieves the worst performance among all methods because the real traffic changes are very
complex, and predicting future traffic with a simple linear model is not feasible. However, the proposed
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Table 1 The prediction performance of different methods is measured using RMSE and MAE

Milan Trentino

Method RMSE MAE RMSE MAE

SMS Call Internet SMS Call Internet SMS Call Internet SMS Call Internet

LR [32] 93.5556 50.8538 233.8462 34.7213 26.0667 154.3343 37.4835 12.1744 31.1899 13.6867 6.6347 23.3793

SVR [33] 72.0058 45.9312 214.6154 29.3615 22.0680 129.3548 28.8495 10.9959 28.6250 11.5739 5.6169 19.5952

LSTM [34] 68.8889 44.5381 235.7692 39.8537 22.0013 141.0236 20.3863 6.9821 22.7604 10.5001 4.9783 20.9484

STCNet [21] 54.1664 33.3415 172.3077 28.6564 15.8556 98.1035 21.7020 7.9819 22.9820 11.2960 4.0357 14.8612

AMF-STGCN [35] 49.5324 32.0237 169.5224 27.7017 15.2928 98.0234 19.8454 7.6665 22.6105 10.9197 3.8924 14.8490

MVSTGN [36] 49.0515 30.9443 165.0445 24.9796 14.6816 88.6983 19.6527 7.4081 22.0133 9.8466 3.7369 13.4364

Ours-CD 66.6155 40.5864 210.8694 33.4869 15.6451 113.1154 26.6898 9.7164 28.1253 13.2001 3.9821 17.1352

Ours 39.2290 21.3864 98.6580 19.5993 13.3644 64.9545 15.7173 5.1199 13.1588 7.7258 3.4016 9.8396
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Figure 2 (Color online) Training and validation loss of our method on the Milan dataset. Training and validation RMSE loss

of our method on (a) “SMS”, (b) “Call”, and (c) “Internet”. Training and validation MAE loss of our method on (d) “SMS”,

(e) “Call”, and (f) “Internet”.

SSTCD adopts the nonlinear Granger causal discovery method to mine the nonlinear causality in traffic.
Then, applying the decoder based on the graph network achieves a nonlinear prediction of future traffic.

• SVR and LSTM are nonlinear models that can handle nonlinear dependencies in time. However, since
they only consider temporal dependencies and do not consider spatial dependencies simultaneously, the
prediction results obtained are not the best. The proposed SSTCD can simultaneously mine the spatial
causality and temporal causality of traffic through causal discovery. Further, the method improves traffic
prediction performance by designing direct causality with multiple perspectives.

• Although STCNet, AMF-STGCN, and MVSTGN consider the spatio-temporal dependence of the
traffic, their prediction performances are still poor performance to our method. The reason is that
STCNet, AMF-STGCN, and MVSTGN utilize all correlated variables to predict the target variables
rather than the causal variables. The non-causal variables change the distribution of predicted results,
thereby decreasing the performance of traffic prediction. In contrast, SSTCD makes traffic predictions
by finding causal relationships, thus preventing the interference of non-causal variables.

• To verify the impact of causal discovery on the overall predictive performance of the model, we
perform experiments by removing the causal discovery step in the proposed method. That is, we assume
that all variables are correlated (as in other studies). As can be seen from the results in the table, the
prediction accuracy of Ours-CD is smaller than STCNet and much smaller than the proposed method,
demonstrating that not all variable correlations positively affect prediction performance. In addition, due
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Figure 3 (Color online) Training and validation loss of our method on the Trentino dataset. Training and validation RMSE loss

of our method on (a) “SMS”, (b) “Call”, and (c) “Internet”. Training and validation MAE loss of our method on (d) “SMS”,

(e) “Call”, and (f) “Internet”.

to the transfer learning used in STCNet, which reduces the bias in the data, its prediction accuracy is
higher than Ours-CD.

Figures 2 and 3 show the RMSE and MAE curves of our proposed method on different datasets,
respectively. In each figure, the red curve represents the validation set loss, and the blue curve represents
the training set loss. The training set loss for each figure first decreases and then stabilizes. This shows
that our model continuously learns the network parameters throughout training and eventually stabilizes.
The validation set loss for each figure is very close to the training set loss curve, indicating that the overall
structure of the model is not problematic and that there is no overfitting. This shows that our prediction
results are credible.

The prediction performance and cumulative distribution function (CDF) of the absolute error of our
method on the different datasets are shown in Figures 4 and 5. It can be seen intuitively from the figures
that the performance of the proposed method is better than MVSTGN. As seen from the CDF results of
the Milan dataset, 95% of the “SMS”, “Call” and “Internet” prediction errors are less than 23, 35, and
32, respectively. In the Trentino dataset, 94% of the “SMS”, “Call” and “Internet” prediction errors are
less than 12.331, 8.993, and 9.067, respectively. The errors are mostly concentrated on the left side of
the x-axis. It is shown that our method has high prediction accuracy on the two datasets.

4.4 Causal graphs visualization

To visually show the influence of causality on the prediction results, we give the causal graphs generated
during the training process in Figure 6. We plot the causality of 3 × 3 cells for the last epoch during
training. It can be seen that Figure 6(c) has the most complicated causality, and Figure 6(a) has the
simplest causality, which means “SMS” and “Call” were the main communication services at the time.
In addition, based on the results shown in the figure, we can see that not all variables have a causality
with each other. Therefore, if the correlation of all variables is considered, it will inevitably lead to wrong
prediction results.

4.5 Influence of parameters

To evaluate the predictive performance of our method under different parameters, we conduct a series of
experiments on cell, batch, and learning rate, and record the corresponding results.

Here, to verify the effect of different cell sizes on the prediction performance of the proposed method,
we set the cell size to 9, 16, 25, and 36 on the two datasets, respectively. Note that the larger the number
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Figure 4 (Color online) Prediction results of our method on the Milan dataset. Prediction results of our method on (a) “SMS”,

(d) “Call”, and (g) “Internet”. Prediction results of MVSTGN on (b) “SMS”, (e) “Call”, and (h) “Internet”. The CDF of our

method on (c) “SMS”, (f) “Call”, and (i) “Internet”.

of cells, the larger the cumulative error of the model. Here, we use data normalization to eliminate this
error, and the RMSE and MAE results are shown in Figures 7 and 8. The figures show that the optimal
cell size is different by dataset. The optimal cell size for the “SMS” and “Internet” is 16 in the Milan
dataset, while the same for the “Call” is 25. The corresponding RMSEs are 0.0472, 0.0452, and 0.0094,
respectively. Their lowest MAE are 0.0264, 0.0245, and 0.0063, respectively. Differently, the optimal
cell size for “Internet” in the Trentino dataset is 16. This indicates that different regions have different
service usage preferences, and our method mines the causalities of traffic between regions generated by
this preference. Therefore, we use different cell sizes in different datasets to achieve optimal prediction
performance. In addition, neither the larger cell size nor the smaller cell size obtained the optimal
prediction results. This is because the prediction results do not consider causality beyond the region for
small numbers of cells, while larger numbers of cells introduce spurious causality into the predictions.

In Figures 9 and 10, we evaluate the effect of different batch sizes on the model. Here, to find the
batch size corresponding to the best prediction result, we set the batch size to 32, 64, 128, and 256.
As can be seen in the figures, the optimal batch sizes corresponding to different services are different.
Although the prediction performance of the model when the batch size is 32 and 64 is higher, the model
is underfitting on “SMS” and “Call”. The reason is that the spatio-temporal causalities between regions
are very complex for “SMS” and “Call” services. As shown in Figure 6, the model cannot mine all the
causalities between the variables with a smaller batch size. On the contrary, a larger batch size can provide
the model with more data, allowing the model to discover more causalities within the data. Therefore,
training the prediction model with a large batch size is necessary for the optimal traffic prediction results.
The optimal RMSE values for the three services in the Milan dataset are 39.2290, 21.3864 and 98.6580,
and 13.0518, 4.0880 and 13.1588 for the Trentino dataset.

Similarly, the learning rate is also an important parameter of our model. Different from other studies,
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Figure 5 (Color online) Prediction results of our method on the Trentino dataset. Prediction results of our method on (a) “SMS”,

(d) “Call”, and (g) “Internet”. Prediction results of MVSTGN on (b) “SMS”, (e) “Call”, and (h) “Internet”. The CDF of our

method on (c) “SMS”, (f) “Call”, and (i) “Internet”.
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Figure 6 (Color online) Causal graph of our method on the Milan dataset. (a) “Internet”; (b) “Call”; (c) “SMS”.

we explore the effect of different learning rates on the prediction results and illustrate them in Figures 11
and 12. Here, the learning rates are set to be 0.00005, 0.0005, 0.001, and 0.005, respectively. As
seen from the figures, different learning rates greatly impact prediction performance. Also, different
services correspond to different optimal learning rates. The optimal learning rate for the “SMS” and
“Call” services in the Milan and Trentino datasets is 0.001, with corresponding RMSE values of 27.5620,
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Figure 7 (Color online) Prediction performance of our method on the Milan dataset for different cell sizes. RMSE of our

method on (a) “SMS”, (b) “Call”, and (c) “Internet” for different cell sizes. MAE of our method on (d) “SMS”, (e) “Call”, and

(f) “Internet” for different cell sizes.
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Figure 8 (Color online) Prediction performance of our method on the Trentino dataset for different cell sizes. RMSE of our

method on (a) “SMS”, (b) “Call”, and (c) “Internet” for different cell sizes. MAE of our method on (d) “SMS”, (e) “Call”, and

(f) “Internet” for different cell sizes.

15.4701, 4.1189, and 19.3220, respectively. However, the optimal learning rate for the “Internet” service
is 0.0005, with an RMSE of 98.6580 and 13.1588. The reason is that the causalities between “SMS” and
“Call” services mainly focus on spatio-temporal features, while the “Internet” service contains potential
causalities, such as the regional economy and population application preference. To mine these potential
causalities, the model must be trained with a lower learning rate, allowing for optimal prediction results.
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Figure 9 (Color online) Prediction performance of our method on the Milan dataset for different batch sizes. RMSE of our

method on (a) “SMS”, (b) “Call”, and (c) “Internet” for different batch sizes. MAE of our method on (d) “SMS”, (e) “Call”, and

(f) “Internet” for different batch sizes.
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Figure 10 (Color online) Prediction performance of our method on the Trentino dataset for different batch sizes. RMSE of our

method on (a) “SMS”, (b) “Call”, and (c) “Internet” for different batch sizes. MAE of our method on (d) “SMS”, (e) “Call”, and

(f) “Internet” for different batch sizes.

5 Conclusion

This paper proposed a traffic prediction method SSTCD based on causal discovery to solve the problem
of end-to-end network traffic prediction. First, we adopt Granger causal discovery to mine the spatio-
temporal causality on observed data to identify decisive prediction variables. Then, a GNN-based model
is built to make causal predictions with spatio-temporal causality. To achieve the causal discovery with-
out groundtruth causal graph in the observed data, we design a self-supervised manner to improve the
accuracy of the traffic prediction task. Finally, we verify the effectiveness of the proposed method through
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Figure 11 (Color online) Prediction performance of our method on the Milan dataset for different learning rates. RMSE of our

method on (a) “SMS”, (b) “Call”, and (c) “Internet” for different learning rates. MAE of our method on (d) “SMS”, (e) “Call”,

and (f) “Internet” for different learning rates.
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Figure 12 (Color online) Prediction performance of our method on the Trentino dataset for different learning rates. RMSE of our

method on (a) “SMS”, (b) “Call”, and (c) “Internet” for different learning rates. MAE of our method on (d) “SMS”, (e) “Call”,

and (f) “Internet” for different learning rates.

simulation results on two real datasets, which achieved 30.4% and 19.1% performance improvements on
RMSE and MAE to other baseline methods, respectively.
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