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Abstract As wireless communication traffic experiences rapid growth, the carbon emissions caused by the

communication industry are also on the rise. To achieve “carbon neutrality”, researchers are considering the

use of renewable energy sources to power cellular networks, thereby reducing carbon emissions. However, a

challenge arises when using renewable energy, specifically owing to the unpredictable nature of both the energy

consumption of the cellular network and the power generation from renewable sources. This inconsistency

results in low renewable energy utilization and reduced carbon efficiency. Herein, we construct a carbon

efficiency model of solar-powered cellular networks using practical data from solar radiation. We propose

a mechanism that alternately optimizes the performance of the renewable energy network and the cellular

network. This approach is based on convex optimization theory and the Dinkelback algorithm, and it leads

to the design of a carbon efficiency optimization algorithm. This algorithm aims to improve the carbon

efficiency of cellular networks and reduce their carbon emissions. Simulation results demonstrate that our

optimization scheme yields a maximum improvement of 2.56 × 108 bps/g in the carbon efficiency of the

cellular network as compared to conventional power allocation schemes such as the traditional water filling

method and heuristic energy sharing and charge/discharge algorithms.

Keywords cellular networks, renewable energy, carbon efficiency, convex optimization theory, dinkelbach

1 Introduction

The Paris Agreement, ratified by 197 nations on December 12, 2015, during the Conference of the Parties
in Paris, stands as a strong commitment to global endeavors toward green, low-carbon, climate-resilient,
and sustainable development. International organizations like the International Telecommunication Union
and the Global System for Mobile Communications Association are championing this case, urging the
global information and communications technology industry to reduce carbon emissions by 45% by
2030 [1]. A significant proportion of carbon emissions from cellular networks comes from scope 2 emissions,
which are produced during the manufacturing process of the outsourced electricity used [2]. Notably, a
study presented in the Huawei 5G white paper reveals that a 5G base station (BS) consumes around
300% to 350% more power than a 4G BS [3]. As the 5G network expands, this will inevitably lead to
an increase in cellular network carbon emissions. To counteract this, the integration of distributed re-
newable energy sources, such as solar energy, into BSs for the energy consumption of cellular networks is
proposed [4,5]. However, on the supply side, the power generation system of distributed renewable energy
forms a renewable energy network. This network has inherent drawbacks such as volatility, intermittency,
and unpredictability [6]. On the demand side, the BSs form a cellular network, with energy dictated by
random traffic [7]. This variability makes it difficult to match the power generation of renewable energy
with the energy consumption of BSs, resulting in a low utilization rate of renewable energy. It presents
a significant challenge to simultaneously optimize the performance of both the renewable energy network
and the cellular network to improve the carbon efficiency (CE) of cellular networks powered by renewable
energy.
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To meet the above challenge, it is necessary to find a feasible solution to match the energy supply
of renewable sources with the energy demand of BSs. In other words, we need to align the energy
flow of renewable energy networks with the information flow of cellular networks. From the perspective
of the renewable energy network, optimized architectures of renewable energy have been proposed for
powering wireless networks [8–11]. For instance, an energy cooperation model combining traditional grid
power and renewable energy was proposed for cellular networks, considering limited energy storage [8].
In remote areas of Bangladesh, where wind and photovoltaic characteristics are distinctive, an energy
cooperation framework was proposed for hybrid photovoltaic wind-supplied long-term evolution BSs [9].
The sustainability, cost-effectiveness, and energy efficiency of diesel generators and photovoltaic supply
for off-grid BSs were discussed in [10]. Based on average and complete network reachable statistics, an
inter-BS physical power line deployment algorithm was proposed [11]. An energy-sharing algorithm for
wireless networks powered by renewable energy has also been investigated in [12, 13]. One such study
utilized interior point methods to reduce energy costs, proposing an energy cooperation scheme based on
wind and photovoltaic energy supply models [12]. Another study suggested an energy-sharing strategy
to improve energy efficiency and supply stability while reducing carbon emissions in off-grid cellular
networks [13].

From the perspective of the cellular network, various control algorithms for BSs have been proposed
to optimize the performance of renewable energy-powered wireless networks [6, 14–16]. For instance,
one proposal [14] suggested using harvested energy to minimize grid power consumption through BS
deployment and power control. Another study [15] proposed a wireless network resource allocation
approach based on the Dinkelbach method, optimizing both time and power resources. To minimize
the weighted sum of the grid energy cost and the packet drop cost, a greedy assignment algorithm and
a heuristic online policy were proposed [16]. In addition, an adaptive resource management and user
access control algorithm was put forward to solve the randomness of renewable energy and enhance the
sustainability of wireless networks [6].

However, these studies primarily focused on either renewable energy networks or cellular networks with-
out considering the joint optimization of both. To address this gap, a study [17] investigated a user access
algorithm designed to minimize the total energy consumption of cellular networks. Another study [18]
designed a BS states control algorithm, which optimized system energy consumption by sharing energy
within a microgrid composed of BSs. Certain studies have shown a particular interest in reducing grid
power consumption, as this area produces a greater amount of carbon emissions than power generated by
renewable sources. By jointly optimizing the transmission power and user access mechanisms in cellular
networks, energy sharing and traffic shifting approaches were proposed to minimize grid energy consump-
tion for cellular networks [19]. Lagrangian dual decomposition and meta-heuristic algorithms were used
to solve BS power allocation and energy cooperative the optimization problems [20]. A framework for
energy cooperation among BSs in coordinated multipoint (CoMP) transmission-based cellular networks
was proposed [21], allowing renewable energy to be shared among BSs. This network integrates a dy-
namic point selection CoMP technique for selecting the best-serving BSs for user equipment. However,
these studies have not considered the energy storage configuration nor the charging and discharging of
batteries for optimizing CE in cellular networks powered by renewable energy.

To improve CE, we propose joint CE optimization algorithms for solar-powered cellular networks. The
main contributions of this paper are summarized as follows:

• Drawing on practical data, a power generation model of solar energy has been proposed for renewable
energy networks. Furthermore, a CE model specifically designed for solar-powered cellular networks has
been proposed. Here, CE is defined as the ratio of the total downlink throughput of cellular networks to
their carbon emissions.

• An alternative CE optimization scheme has been developed for these solar-powered cellular net-
works. Using the interior point approach, this scheme includes an energy-sharing algorithm and a
charge/discharge algorithm among BSs to reduce traditional grid power consumption and improve carbon
emissions in solar-powered cellular networks. To further improve CE, a BS transmission power allocation
algorithm has been proposed, which is based on the Lagrangian dual and Dinkelbach methods.

• The simulation results show that after implementing our optimization scheme, the CE of the cellular
network showed a maximum improvement of 2.56× 108 bps/g compared with the cellular network using
the traditional water filling power allocation scheme and heuristic energy sharing and charge/discharge
algorithms.
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Figure 1 (Color online) (a) Solar-powered cellular networks; (b) solar-powered BS architecture.

2 System model

We have a similar scenario with [5,8,22] which is shown in Figure 1. Figure 1(a) shows the solar-powered
cellular network that consisting of N BSs integrated with distributed power generation systems of solar
energy which can supply renewable energy to the BSs. BSs can be powered by both renewable source
and traditional grid power. Besides, each BS is integrated with an energy storage system with limited
capacity. Because the solar energy is only abundant during the daytime, the energy storage system can
store the energy generated by the solar power during the daytime and discharge it at night. As solar power
systems generate direct current (DC) and BSs are powered by DC, connecting BSs via DC power lines to
form a DC micro-grid is a logical approach. Despite DC being less stable than AC, DC micro-grids have
been successfully deployed in many areas over short distances [23]. Within the network, a centralized
energy management unit (EMU) assumes the responsibility of collectively managing the energy supply
from the renewable energy network and the energy consumption of the cellular network. The EMU
is equipped to make informed decisions concerning energy sharing and the power control scheme for
BS energy consumption. Figure 1(b) illustrates the solar-powered BSs architecture. The grid power is
connected to the DC micro-grid through the alternating current-direct current (AC-DC) converter. Given
that the output voltage of the solar power generation system and the energy storage battery differs from
that required by the BSs, a DC-DC converter is employed to adjust the voltage before powering the BSs.
Each BS is integrated with a local EMU, which can receive instructions from the centralized EMU and
manage the BS, solar power generation system, and energy storage system.

2.1 Solar energy generation model

We consider a discrete time system where the time is divided into multiple time slots with slot index t,
and the length of a time slot is the unit time ∆t. The average power generated by the power generation
system of solar energy integrated by BSi at time slot t is [24, 25]

PRE(i)(t) = Hi(t)λA, (1)

where PRE(i) is the average power at the time slot t generated by the generation system of solar energy
integrated at BSi, A is the area of solar photovoltaic panels, λ is the efficiency of the solar photovoltaic
panel, Hi(t) is the solar radiation on the panels at the time slot t and BSi. It can be seen from (1) that
the generated power has a linear relationship with the solar radiation intensity.

Based on the solar radiation data provided by the European Centre for Medium-Range Weather Fore-
casts [26], the hourly variations of solar radiation at Jianghan District, Wuhan City in spring, summer,
autumn, and winter are plotted in Figure 2.

It can be seen from Figure 2 that the hourly variation of the solar radiation is periodic. Besides, the
solar radiation in summer is larger than that in spring, autumn, and winter. However, because of the
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Figure 2 (Color online) Solar radiation time series changed hour-by-hour.

Table 1 Solar radiation model parameters

Season a b c

Spring 3979.25 2.40 11.72

Summer 5820.65 3.38 12.09

Autumn 3671.52 2.35 11.84

Winter 3069.08 2.31 11.86

influence of clouds cover, the hourly variation of the solar radiation fluctuates based on periodic variations
which can affect the solar radiation in different space distributions.

The Gaussian distribution is usually used to fit the daily variation of solar radiation, and it has been
proven to be suitable for most regions in [27, 28]. The cloud shading factor is used to simulate the
occlusion of clouds [29]. The solar radiation model is as follows:

Hi(t) = Si(t)a
1√
2πb

e
−

(

(t−c)2

2b2

)

, (2)

where a, b are parameters of Gaussian distribution, Si(t) represents the cloud shading factor of BSi at
the time slot t. The parameters of Gaussian distribution in this paper are given in Table 1, which are
obtained by MATLAB using the data in Figure 2. Si(t) is calculated as

Si(t) = a1ri(t)
2 + a2ri(t) + a3, (3)

where a1, a2, a3 are parameters that depend on the region and the season, ri(t) is the cloud cover over
BSi at the time slot t.

2.2 Energy storage model

The battery is considered as the energy storage system in this paper. The main characterization parameter
of the battery energy storage system is the energy state Bi(t) which represents the battery energy of BSi
at the time slot t. There are the upper charge threshold EBmax and the lower discharge threshold EBmin

which represent the maximum energy storage and the minimum energy storage of the battery respectively.
When the upper charge threshold is exceeded, the battery will enter into the overcharge state. On the
contrary, when the energy of the battery is lower than the lower discharge threshold, the battery will
enter into the over-discharge state. The lower discharge threshold is determined by the depth of discharge
(DOD) EBmin = (1−DOD)×EBmax. There are two efficiencies in the charging and discharging processes
of the battery, i.e., the charging efficiency and the discharging efficiency. The charging efficiency refers
to the ratio between the actual charging power received by the battery and the charging power supplied
by the energy source during the charging process. The discharging efficiency refers to the ratio between
the discharge power received by the load and the discharge power supplied by the battery during the
discharging process. Therefore, the actual charging power received by the battery is computed as the
product of the charging power supplied by the energy source and the charging efficiency. Conversely,
the actual discharging power received by the load is determined by the product of the discharging power
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supplied by the battery and the discharging efficiency. The discharging power supplied by the battery
remains unaffected by the discharging efficiency. It is assumed that the charging efficiency of the battery
is equal to the discharging efficiency denoted as µ.

The energy of the battery in BSi at the end of the time slot t is calculated in

Bi(t) = Bi(t−∆t) + ∆t× µ× Ci(t)−∆t×Di(t), (4a)

s.t. EBmin 6 Bi(t) 6 EBmax, (4b)

Ci(t) > 0, Di(t) > 0, (4c)

Ci(t)×Di(t) = 0, (4d)

where Ci(t) represents the average charging power supplied by the energy source in BSi at the time slot
t, Di(t) represents the average discharging power of the battery in at the time slot t.

2.3 BS energy consumption model

It is assumed that each BS has M antennas. The users and BSs follow the Poisson point processes (PPP)
with density λu and λb respectively. The users access the nearest BS, so the coverage area of a BS is
a Voronoi polygon [30–32]. The channel matrix of BSi is Gi ∈ CKi(t)×M , where C represents the set
of complex numbers, Ki is the number of users within coverage area of BSi. C

Ki(t)×M represents the
Ki(t)×M dimensional matrix in the complex number domain

Gi = F
1
2
i Hi, (5a)

Hi =









h(i,1)

...

h(i,Ki(t))









, (5b)

where Fi = diag
[

β(i,1), β(i,2), . . . , β(i,Ki(t))

]

, β(i,k) represents the large-scale fading channel matrix be-

tween the kth user and the BSi, β(i,k) =
φζ

dα
(i,k)

, d(i,k) represents the distance between the kth user and the

BSi, α is the path loss coefficient, φ is constant related to the carrier frequency and the antenna gain, ζ is
a log-normal shadow fading variable, 10 log10 ζ ∼ N

(

0, σ2
sh

)

. Hi ∈ C
Ki(t)×M is Rayleigh fading matrix,

Hi ∼ exp(1), h(i,k) ∈ C1×M .
We assume that the BSs use the zero-forcing (ZF) precoding which can effectively eliminate intra cell

interference. The signal received by users access the BSi at the time slot t is

yi = GiWiP
1
2

t(i)xi + ni, (6)

where xi is the transmission signal vector of BSi, Wi is ZF precoding matrix, W i = HH
i (HiH

H
i )

−1
,

Wi = [w1(i),w2(i), . . . ,wK(i)],wk(i) = wk(i)
‖wk(i)‖

, wk(i) is the kth column vector of W i, Pt(i) is the

transmission power vector of BSi. ni is the additive white Gaussian noise.
In inter cell, the adaptive partial frequency multiplexing technology is used to avoid the same frequency

band used by adjacent cells, so the inter cell interference can be eliminated effectively [33]. So the signal-
to-noise ratio (SNR) received by kth user from BSi is

θi,k =
β(i,k)Pt(i,k)(t)

σ2 ‖wk(i)‖2
. (7)

Because the users access the nearest BS, so the probability density function of the distance between
the kth user and the BSi is

fdi,k
(r) = e−λbπr22πλbr. (8)

Based on this, we can get

E
[

β(i,k)

]

= E
[

d−α
(i,k)

]

φE [ζ]
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=
π

α
2 (−λb)

α
2 φ

Γ
(

α+2
2 ,−πd2maxλb

)

− Γ
(

α+2
2 ,−πd2minλb

) exp

[

−1

2

(

ln 10

10
σsh

)2
]

, (9)

where dmin, dmax is the minimum and maximum distance between the user and the BS that it accesses
respectively.

Because the uplink throughput is not affected by the BS transmission power, we only consider the
downlink throughput in this paper. The lower bound of the downlink ergodic throughput received by
kth user from BSi is

Ri,k(t) > Ri,k(t) = B log2 (1 +E[θi,k])

≈ B log2

(

1 +
E
[

β(i,k)

]

Pt(i,k)(t)(M −Ki(t))

σ2Ki(t)

)

, (10)

where B is the bandwidth, σ2 is the Gaussian additive white noise, Pt(i,k) is the transmission power
of BSi for kth user. The downlink total throughput of BSi at the time slot t can be represented as

R(i)−sum(t), R(i)−sum(t) =
∑Ki(t)

k=1 Ri,k(t). The total downlink ergodic throughput of the solar-powered
cellular network Rsum(t) is the sum of the ergodic throughput of all BSs collected in the micro-grid, which
can be formulated as

Rsum(t) =

N
∑

i=1

Ki(t)
∑

k=1

B log2

(

1 +
E
[

β(i,k)

]

Pt(i,k)(t)(M −Ki(t))

σ2Ki(t)

)

=

N
∑

i=1

Ki(t)
∑

k=1

Ri,k(t). (11)

The total transmission power PT(i)−sum(t) of BSi at the time slot t is the sum of the transmission

power of the BS to all accessed users at the time slot t, i.e., PT(i)−sum(t) =
∑Ki(t)

k=1 Pt(i,k)(t).

The downlink power consumption of the BS is generally divided into two types: the power consumption
of the power amplifier and the static power consumption Pstatic [34]. The former is related to the trans-
mission power of the BS and is affected by the load, while the latter is related to the power consumption
of the circuit Pcircuit. So the power consumption model of the BS is

Pi(t) = NTrx

(

Pstatic +∆PPT(i)−sum(t)
)

, (12)

where ∆P is the efficiency of power amplifier, NTrx is the number of multiple transceivers.

2.4 Energy sharing model

Since the BSs are connected by power lines, the energy generated by solar power can be shared through
power lines in the DC micro-grid. Moreover, batteries of BSs can be charged/discharged. The average
available renewable power of BSi at the time slot t is calculated as

Pavailable(i)(t) = PRE(i)(t) + γ

N
∑

j 6=i

Pji(t)−
N
∑

j 6=1

Pij(t)− Ci(t) + µDi(t), (13a)

s.t. Pij(t) > 0, Ci(t) > 0, Di(t) > 0, ∀i ∈ N, (13b)

Pij(t)× Pji(t) = 0, ∀i, j ∈ N, (13c)

where Pji(t) ∈ Pex(t), 1 6 i 6 N , 1 6 j 6 N is the shared power from BSj to BSi at the time slot t.
Pex(t) ∈ RN×N is the average shared power matrix of the cellular network at the time slot t. R represents
the set of real numbers. RN×N represents the N ×N dimensional matrix in the real number domain. γ
is the efficiency of power lines.
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3 Modeling and optimization of CE of cellular network

Energy efficiency only shows the relationship between the consumption of energy by a network and its
performance, rather than the relationship between its carbon emissions and performance. To better
evaluate the trade-off between network carbon emissions and performance, this section introduces the
concept of CE. CE of cellular networks can be defined as the ratio between the performance of a network
and the carbon emissions it generates. Therefore, we define the CE as the ratio of the total downlink
throughput of cellular networks to the carbon emissions generated by cellular networks whose units are
in bps/kg. We use the carbon emission factor specified by the intergovernmental panel on climate change
(IPCC) [35] to calculate the carbon emission. Therefore, the carbon emission per unit time of cellular
networks in the use phase is calculated as

CF(t) =κgridEgrid (t) + κreEcon re(t)

=κgrid∆tPgrid(t) + κre∆tPcon re(t)

=κgridPgrid(t) + κrePcon re(t), (14)

where the ∆t is the unit time which can be ignored.
We define the energy of the city grid as traditional energy. Egrid is the traditional energy consumption

of the cellular network at time slot t, κgrid, κre is the carbon emission factor of the traditional grid and
the renewable source. Pgrid is the average traditional power consumption of the cellular network at the
time slot t, calculated as the sum of the average traditional power consumption of all BSs in cellular
networks, Pgrid(t) =

∑N
i=1 Pgrid(i)(t), Pgrid(i)(t) is the average traditional power consumption of the BSi

at the time slot t. Pcon re(t) =
∑N

i=1 Pcon re(i)(t) is the average renewable power consumption of the BSi
at the time slot t.

The average traditional power consumed by the BSi at time slot t is

Pgrid(i)(t) = max
(

Pi(t)− Pavailable(i)(t), 0
)

, (15)

where Pavailable(i)(t) is the available renewable power of the BSi at time slot t. Eq. (15) means that when
the the available renewable power is greater than the power consumption of BSi, the traditional power
is not be consumed by BSi. Otherwise, the traditional power is used to make up the part of available
renewable power that is less than the power consumption of BSi.

The renewable power consumed by BSi at time slot t is

Pcon re(i)(t) = min
(

Pi(t), Pavailable(i)(t)
)

. (16)

Eq. (16) indicates that when the available renewable power of BSi is less than the power consumption
of BSi, BSi consumes all the available renewable power. Otherwise, the renewable power consumed by
BSi is equal to the power consumption of BSi, that is, the available renewable energy power consumed
by BSi cannot exceed its power consumption.

Then the CE of cellular networks is

ηCE(t) =
Rsum(t)

CF(t)
. (17)

Combined with the content of Section 2, the CE optimization model is established as

max
Pt,Pex,C,D

ηCE(t) =
Rsum(t)

CF(t)
, (18a)

s.t. Pij(t) > 0,

Ci(t) > 0, Di(t) > 0, ∀i, j ∈ N, (18b)

Pij(t)× Pji(t) = 0,

Ci(t)×Di(t) = 0, ∀i, j ∈ N, (18c)

EBmin 6 Bi(t) 6 EBmax, ∀i ∈ N, (18d)

Ri,k(t) > Rreq(k), ∀i ∈ N, ∀k ∈ Ki(t), (18e)

PT (i)−sum(t) 6 Ptmax, ∀i ∈ N, (18f)
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Algorithm 1 CE optimization algorithm for cellular networks

Require: Generation power of renewable source at the time slot t PRE(t); BS static power PS; the power consumption of AC loads

PAC.

Ensure: Energy sharing matrix Pex; charge and discharge matrix C, D; transmission power allocation matrix Pt.

1: Initialize: Pex = 0; number of iterations I = 1000;

2: Repeat :

3: Calculate the transmission power allocation matrix Pt to maximize CE ηCE;

4: Calculate the energy sharing matrix Pex and the charge and discharge matrix C, D, transmission power allocation

matrix Pt to maximize carbon efficiency ηCE;

5: Calculate the CE ηCE(j) = Rsum
CF ;

6: if j < I

7: j = j + 1;

8: else

9: Break;

10: end if

11: Until ηCE(j) − ηCE(j − 1) < ǫ;

12: ηCE(j) is the optimal CE.

where the constraint (18b) represents that in the process of energy sharing among BSs and charg-
ing/discharging of batteries, the shared power and the charged/discharged power should be non-negative.
Constraint (18c) means that in the process of energy sharing, due to the limitation of power lines, there
can only be one energy flow in the power line between BSi and BSj at the same time, and the batteries
in the same BS cannot be charged and discharged at the same time. Constraints (18d) means the energy
of batteries is limited by the upper charge threshold and the lower discharge threshold. Rreq(k) stands for
the kth user’s quality of service (QoS) requirement. In this paper, Rreq(k) is defined as the throughput
requirement. Eq. (18e) means that the ergodic downlink throughput of the cellular network must ensure
the user’s QoS requirements. Ptmax is the maximum transmission power of BSs. Constraint (18f) means
that the transmission power of BSs cannot exceed the maximum transmission power.

To facilitate the solution, the method in [8] proves that the constraint (18c) can be ignored. Then the
optimization problem (18) is equivalent to the optimization problem Eq. (19)

max
Pt,Pex,C,D

ηCE(t) =
Rsum(t)

CF(t)
, (19a)

s.t. Pij(t) > 0,

Ci(t) > 0, Di(t) > 0, ∀i, j ∈ N, (19b)

EBmin 6 Bi(t) 6 EBmax, ∀i ∈ N, (19c)

Ri,k(t) > Rreq , ∀i ∈ N, ∀k ∈ Ki(t), (19d)

PT(i)−sum(t) 6 Ptmax, ∀i ∈ N. (19e)

The solution of the optimization problem (19) is shown as Algorithm 1.
Because of the coupling of energy sharing and charge/discharge algorithm with transmission power

allocation algorithm, it is difficult to directly solve optimization problem (19). Therefore, we introduce
an alternate optimization solution and divide the optimization problem (19) into two parts: the CE
optimization problem based on transmission power allocation algorithm in (20) and the CE optimiza-
tion problem based on energy sharing and charge/discharge algorithm in (21). The two models are
solved alternately until the CE of cellular networks converges. The optimization problem (20) and the
optimization problem (21) are shown as follows:

max
Pt

ηCE(t) =
Rsum(t)

CF(t)
, (20a)

s.t. Ri,k(t) > Rreq , ∀i ∈ N, ∀k ∈ Ki(t), (20b)

PT(i)−sum(t) 6 Ptmax, ∀i ∈ N. (20c)

In the optimization problem (20), it is supposed that the optimal energy sharing and charge/discharge
strategy is known, and the transmission power allocation algorithm to maximize the CE needs to be
found.

max
Pex,C,D

ηCE(t) =
Rsum(t)

CF(t)
, (21a)
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s.t. Pij(t) > 0, Ci(t) > 0, Di(t) > 0, ∀i, j ∈ N, (21b)

EBmin 6 Bi(t) 6 EBmax, ∀i ∈ N. (21c)

In the optimization problem (21), it is assumed that the BS transmission power allocation matrix is
known, and an energy sharing and charge/discharge algorithm to maximize the CE of cellular networks
needs to be found.

Based on the Dinkelbach algorithm [36], we can simplify the optimization problem P3 and obtain
Theorem 1 as follows.

Theorem 1. Optimization problem (20) has an optimal CE value η∗CE(t) if and only if the equation
(22) is established

max
Pt

Rsum (Pt)− CF (Pt) η
∗
CE

= Rsum (P ∗
t )− CF (P ∗

t ) η
∗
CE

= 0, (22)

where P ∗
t is the optimal power allocation policy.

Proof. See Appendix A for proof.
According to Theorem 1, the transmission power allocation problem can be transformed into an opti-

mization problem (23) as follows:

max
Pt

Rsum (Pt)− CF (Pt) ηCE (23a)

s.t. Ri,k(t) > Rreq(k), ∀i ∈ N, ∀k ∈ Ki(t), (23b)

PT(i)−sum(t) 6 Ptmax , ∀i ∈ N. (23c)

The Lagrangian duality problem of the optimization problem (23) can be established as

min
γ,γ

L2 (Pt, ηCE, χ, γ) = min
χ,γ

max
Pi

Csum (Pt)− ηCECF (Pt)

+ χ
(

Pt max − Pt(i,k)(t)
)

+ γ
(

C (Pt)−Rreq(k)

)

= min
γ,γ

max
Pi

N
∑

i=1

Ki
∑

k=1

E

[

B log2

(

1 +
β(i,k)Pt(i,k)(t)

σ2

)]

− ηCE (κgridPi,grid(t) + κre Pi,con re(t))

+
N
∑

i=1

χi

(

Pt max −
Ki
∑

k=1

Pt(i,k)(t)

)

+
N
∑

i=1

Ki
∑

k=1

γk

(

E

[

B log2

(

1 +
β(i,k)Pt(i,k)(t)

σ2

)]

−Rreq(k)

)

(24a)

s.t. χi > 0, (24b)

γk > 0. (24c)

Since there is no fixed express of Pgrid(i)(t) and Pcon re(i)(t), there are two cases to solve the optimization
problem (24). In these two cases, the way to solve this problem is the same.

The first case is that the available renewable power of BSi is less than the power consumption of BSi,
that is Pavailable(i)(t) 6 Pi(t). In this case, the model of Pgrid(i)(t) and Pcon re(i)(t) is shown in Eq. (25).

Pgrid(i)(t) = Pi(t)− Pavailable(i)(t), (25a)

Pcon re(i)(t) = Pavailable(i)(t). (25b)

In this case, we solve the problem according to KKT (Karush-Kuhn-Tucker) conditions [37], and finally
get the power allocation strategy as follows:

P ∗
t(i,k) =

[

B (1 + γk)

ln 2 (∆pκgridηCE − χ)
− σ2

β(i,k)

]+

. (26)
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Algorithm 2 Transmission power allocation algorithm to maximize CE

Require: BS available power at the time slot t Pavailable(t); BS static power PS; the power consumption of AC loads PAC.

Ensure: The transmission power allocation matrix at the time slot t Pt.

1: Initialize: Maximum tolerance error ǫ; number of iterations I = 1000; ηCE(0) = 0;

2: Repeat:

3: Calculate the transmission power allocation matrix Pt to maximize Rsum(Pt) − CF(Pt)ηCE(i);

4: if Rsum(Pt) − CF(Pt)ηCE(i) > ǫ and i < I;

5: ηCE(i + 1) = Rsum
CF ;

6: i = i + 1;

7: else

8: Break;

9: end if

10: Until Rsum(Pt) − CF(Pt)ηCE(i) 6 ǫ;

11: P
∗

t = Pt.

The second case is that the available renewable power of BSi is more than the power consumption of
BSi, that is Pavailable(i)(t) > Pi(t). In this case, the model of Pgrid(i)(t) and Pcon re(i)(t) is shown in

Pgrid(i)(t) = 0, (27a)

Pcon re(i)(t) = Pi(t). (27b)

In this case, we also solve the problem according to KKT conditions, and finally get the power allocation
strategy as follows:

P ∗
t(i,k) =

[

B (1 + γk)

ln 2 (∆pκreηCE − χ)
− σ2

β(i,k)

]+

. (28)

The gradient descent method is used to get Lagrange multipliers.

χt+1
i =

[

χt
i − δ(t)

(

Ptmax − PT(i)−sum(t)
)]+

, (29)

γt+1
k =

[

γt
k − δ(t) (Ri,k(t)−Rreq)

]+
. (30)

Until the Lagrange multipliers converge, the optimal power allocation matrix is obtained.
Therefore, the transmission power allocation algorithm to maximize the CE is shown in Algorithm 2.
Since the total downlink throughput Rsum of cellular networks is unrelated to energy sharing and

charge/discharge algorithm, it can be regarded as a constant in the optimization problem (21). Therefore,
the optimization objective of the optimization problem (21) can be simplified as follows:

min
Pex,C,D

CF(t) = κgrid∆tPgrid(t) + κre∆tPcon re(t). (31)

Therefore, the problem of energy sharing and charge/discharge algorithm can finally be formulated as

min
Pex,C,D

CF(t) = κgrid∆tPgrid(t) + κre∆tPcon re(t), (32a)

s.t. Pij(t) > 0, Ci(t) > 0, Di(t) > 0, ∀i, j ∈ N, (32b)

EBmin 6 Bi(t) 6 EBmax, ∀i ∈ N. (32c)

The optimization problem (32) can be considered a constrained linear programming optimization
problem, which can be solved directly by the interior point method [37]. Based on it, an energy sharing
and charge/discharge algorithm is designed shown in Algorithm 3.

There are two algorithms involved in this section, the transmission power allocation algorithm and
the energy sharing and charge/discharge algorithm. The transmission power allocation algorithm mainly
uses the Lagrangian dual equation to solve, and its complexity is O (

∑

N Ki). The energy sharing and
charge/discharge algorithm is mainly solved by the linear programming scheme in convex optimization,
and its complexity is O(N3).

4 Simulation analysis

The simulation parameters are shown in Table 2 [34, 38, 39]. The carbon emission factor of the grid in
central China specified by IPCC is selected.



Zhao Y X, et al. Sci China Inf Sci May 2024, Vol. 67, Iss. 5, 152302:11

Algorithm 3 Energy sharing and charge/discharge algorithm to maximize CE

Require: Generation power of renewable source at the time slot t PRE(t); BS static power PS; the power consumption of AC loads

PAC; the transmission power allocation matrix at the time slot t Pt(t).

Ensure: BS available power at the time slot t Pavailable(t); energy sharing matrix Pex; charge and discharge matrix C,D.

1: Initialize: Number of iterations I = 1000; iteration step size δ; initialize the penalty factor r0; select initial P 0
ex, C0, D0 in

the feasible domain; approximate parameter m, i = 0;

2: Constructing a penalty function Ω(u) = −
(

1
m

)

log(−u);

3: The constrained optimization problem is transformed into an unconstrained optimization problem

min f(P i
ex,C

i,Di, ri) = ∆t
N
∑

n=1

|PC + ∆PPT (i)sum(t) − Pavailable(i)(t)| + ri(Ω(P i
ex) + Ω(Ci) + Ω(Di) + Ω(Ci,Di));

4: Repeat:

5: Solve the unconstrained optimization problem min f
(

P
i
ex,C

i,Di, ri
)

;

6: ri+1 = δri;

7: Untill riΩ(P i
ex,C

i,Di) < ǫ.

Table 2 Simulation parameters

Parameter Value

BS Static power consumption Pstatic 130 Watt [34]

BS transmission power slope ∆P 4.7 [34]

The number of multiple transceivers NTrx 6 [34]

Upper charge threshold EBmax 2000 Wh

Lower discharge threshold EBmin 250 Wh

Total area of solar photovoltaic panels A 2.256 m × 1.133 m

Photovoltaic panel efficiency λ 21.12%

Path loss coefficient α 2 [38]

White Gaussian noise σ2 −174 dBm [39]

BS maximum transmission power Ptmax 47 dBm [34]

Maximum tolerance error ǫ 0.01

Number of iterations I 1000

Number of BS antennas M 128

Charge/discharge efficiency µ 95%

Transmission efficiency of power lines β 95%

Carbon emission factor of renewable energy κre 0.05 g/Wh

Carbon emission factor of traditional energy κgrid 0.5703 g/Wh

User downlink bandwidth B 5 Mhz

The density of BS λb 0.00001/m2

The nearest distance between BS and user dmin 1 m

The farthest distance between BS and user dmin 500 m

The area of the cellular network 500 m × 500 m

The constant related to the carrier frequency and the antenna gain φ 1

The Variance of log-normal shadow fading σ2
sh 10 dB

In this scenario, it is assumed that users always connect to the nearest BS [38]. The initial battery
energy is denoted as Binitial, which represents the battery energy level at the start of the simulation.

The generation model of solar energy established in Section 2 is used to simulate the variation of
power generated by generation systems integrated by BSs. Given the geographic proximity of the BSs,
the power variation generated by their respective solar energy systems exhibits a comparable pattern.
However, due to the presence of cloud cover, the power generated by these systems becomes uncertain
and subject to fluctuation. It can be seen that the power generated by the generation system of each BS
is uneven in spatial and temporal. Considering that the overall pattern of solar radiation for the four
seasons, as demonstrated in Section 2, is similar, we select the solar radiation data from summer as a
representative reference for display. Figure 3 shows the power generated by the solar energy generation
system of some BSs in the cellular network calculated using (2).

In the subsequent simulation results, we make a comparison between the cellular network implementing
the proposed carbon efficiency optimization algorithm (CEOA) and the cellular network employing the
energy efficiency optimization algorithm (EEOA) proposed in [40] alongside a heuristic energy sharing
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Figure 3 (Color online) Power generated by solar energy generation system.
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Figure 4 (Color online) (a) CE of the cellular network and (b) carbon emissions of the cellular network using CEOA, EEOA, and

water filling with different density of users and different power generated by solar energy generation system. The initial battery

energy Binitial = 250 Wh.

and charge/discharge algorithm proposed in [19]. Additionally, we consider the cellular network uti-
lizing the water filling power allocation scheme in conjunction with the heuristic energy sharing and
charge/discharge algorithm. To simplify the representation, we use “EEOA” to refer to the combi-
nation of EEOA and the heuristic energy sharing and charge/discharge algorithm, and we use “water
filling” to encompass the water filling power allocation scheme as well as the heuristic energy sharing and
charge/discharge algorithm.

Figure 4(a) presents the variation of CE for the entire network as the power generated by the solar
energy generation system of each BS in the cellular network changes, considering different user densities.
It can be seen from Figure 4(a), it is evident that as the power generated by the solar energy generation
system increases, the CE also increases. However, once the power generated by the solar energy generation
system surpasses a certain threshold, the CE reaches its maximum and remains unchanged thereafter.
Besides, the CE of the cellular network using CEOA is larger than the CE of the cellular network using
EEOA and the CE of the cellular network using water filling. Moreover, the greater the power generated
by the solar energy generation system of each BS, the more significant the improvement in CE achieved
through the adoption of CEOA. According to Algorithm 1 in Section 3, when the available renewable
power of BS is more than the power consumption of this BS, the optimization objective is similar to
energy efficiency, resulting in identical CE for both the cellular network utilizing CEOA and the one
employing EEOA.

Figure 4(b) illustrates the variation of carbon emissions for the entire network as the power generated
by the solar energy generation system of each BS in the cellular network changes, considering different user
densities. It can be seen from Figure 4(b), with the increase of power generated by solar energy generation
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Figure 5 (Color online) (a) CE of the cellular network and (b) carbon emissions of the cellular network using CEOA, EEOA,
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system, the carbon emissions decrease. Besides, the carbon emissions of cellular network using CEOA
are less than the carbon emissions of cellular network using EEOA and the carbon emissions of cellular
network using water filling in the same density of users. Additionally, the carbon emissions of the cellular
network are greater with higher user density. According to the algorithm in Section 3, when the available
renewable power of BS is more than the power consumption of this BS, the optimization objective is
similar to energy efficiency, resulting in identical carbon emissions for both the cellular network utilizing
CEOA and the one employing EEOA.

Figure 5(a) shows the CE of the entire network as it varies with the power generated by the solar
energy generation system and the initial battery energy of each BS within the cellular network. It can be
seen from Figure 5(a), with the increase of power generated by solar energy generation system, the CE
increases. However, once the power generated by the solar energy generation system surpasses a certain
threshold, the CE reaches its maximum value and remains unchanged thereafter. Additionally, the larger
the initial battery energy, the smaller the value of the power generated by the solar energy generation
system at which the CE reaches its maximum value.

Figure 5(b) depicts the carbon emissions of the entire network as they vary with the power generated
by the solar energy generation system and the initial battery energy of each base BS within the cellular
network. Once the power generated by the solar energy generation system surpasses a certain threshold,
the carbon emissions reach their minimum value and remain unchanged thereafter. Furthermore, it is
worth noting that the larger the initial battery energy, the smaller the value of the power generated by the
solar energy generation system at which the carbon emissions reach their minimum value. Additionally,
from Figure 5(b), it can be observed that cellular networks with lower initial battery energy levels tend
to exhibit higher carbon emissions.

Figure 6(a) shows the hourly variation in the CE of the cellular network. As observed in Figure
6(a), the implementation of the CEOA leads to an improvement in the CE of the cellular network in
the simulation scenario. By utilizing CEOA, the CE of the cellular network can be enhanced by up to
2.70× 107 bps/g when compared to the cellular network employing the EEOA. Furthermore, the CE of
the cellular network can be improved by up to 2.56× 108 bps/g when compared to the cellular network
utilizing the water filling.

Figure 6(b) shows the hourly variation in the traditional power consumption of the cellular network.
From Figure 6(b), it can be seen that the traditional power consumption of the cellular network in
the simulation scenario is reduced when the CEOA is used. By employing CEOA, the traditional power
consumption of the cellular network can be decreased by up to 72.24 Watts when compared to the cellular
network utilizing the EEOA. Additionally, the traditional power consumption of the cellular network can
be reduced by up to 1681.07 Watts when compared to the cellular network employing the water filling.

Figure 6(c) presents the cumulative carbon emissions of cellular networks over the course of one day. It
can be seen from Figure 6(c), the cumulative carbon emissions keep increasing with time going by. During
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Figure 6 (Color online) (a) CE of the cellular network, (b) carbon emission of the cellular network, and (c) cumulative carbon

emissions of the cellular network using CEOA, EEOA, water filling within one day. The initial battery energy Binitial = 250 Wh.

The density of users λu = 0.0005/m2.

noon, when the solar energy generation system produces a significant amount of power, the cumulative
carbon emissions exhibit slower growth. After using the CEOA, the cumulative carbon emissions of
cellular networks in a single day can be reduced by 205.10 g compared with the cellular network using
EEOA. Furthermore, the cumulative carbon emissions of cellular networks in one day can be reduced by
2.12× 104 g when compared to the cellular network employing the water filling.

In summary, the CEOA proposed in this paper effectively resolves the mismatch between the energy
consumption of cellular networks and the power generation of energy networks. Through control of BS
transmission power and energy sharing, CEOA can significantly lower traditional energy consumption in
cellular networks, reducing carbon emissions and improving their CE. Finally, the low-carbon commu-
nication system will aid in achieving the goal of international carbon neutrality. Comparative analysis
against EEOA and water filling demonstrates that CEOA yields improvements in both CE and carbon
emissions. Despite the complexity of CEOA being linked to the number of users and BSs, it remains less
intricate than the greedy scheme. In large-scale cellular networks, due to the complexity of CEOA, the
implementation of CEOA may pose challenges, but a feasible approach involves dividing BSs into multi-
ple sub-networks and optimizing each sub-network using CEOA. Furthermore, the comparison with the
algorithm optimizing for energy efficiency reveals that the algorithm prioritizing CE as the optimization
goal can achieve greater reductions in carbon emissions. This outcome underscores the efficacy of CE in
better capturing the intricate relationship between carbon emissions and the performance of the cellular
network compared to energy efficiency.

5 Conclusion

Because of the low-carbon requirement of cellular networks, it is a promising solution to use renewable
source to supply cellular networks. However, due to the stochastic and spatial-temporal heterogeneity
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inherent in renewable energy generation and cellular network energy consumption, achieving compati-
bility between the renewable energy network and the cellular network becomes a challenge, resulting in
suboptimal utilization of renewable energy. To solve this problem, based on convex optimization and
the Dinkelbach algorithm, using the idea of alternating optimization, a cellular network CE optimization
algorithm is proposed. The algorithm enables each BS in the cellular network to adjust the transmission
power allocation algorithm, charge/discharge algorithm of the energy storage systems occupied by BSs,
and energy sharing algorithm in time according to the power generated by the solar energy and the energy
in the energy storage systems and the number of users who access the cellular network. Consequently, the
algorithm enhances the CE of cellular networks and reduces their carbon emissions. Simulation results
demonstrate that our optimization scheme yields a maximum improvement of 2.56 × 108 bps/g in the
CE of the cellular network, as compared to conventional power allocation schemes such as the traditional
water filling method and heuristic energy sharing and charge/discharge algorithms.
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Appendix A Proof of the Theorem 1

On the one hand, when the optimal CE value η∗

CE exists, there is an equation

η
∗

CE =
Rsum (P ∗

t )

CF (P ∗

t )
>

Rsum (Pt)

CF (Pt)
. (A1)

Then we can get
{

Rsum (Pt) − CF (Pt) η
∗

CE 6 0,

Rsum (P ∗

t ) − CF (P ∗

t ) η∗

CE = 0.
(A2)

Therefore, the power allocation strategy P
∗

t in Rsum (P ∗

t ) − CF (P ∗

t ) η∗

CE = 0 is the optimal power allocation policy. On the

other hand, when maxPt Rsum (Pt) − CF (Pt) η
∗

CE = Rsum (P ∗

t ) − CF (P ∗

t ) η∗

CE = 0 has an optimal power allocation strategy P
∗

t ,

then have inequality:

Rsum (Pt) − CF (Pt) η
∗

CE 6 Rsum

(

P
∗

t

)

− CF
(

P
∗

t

)

η∗

CE = 0. (A3)

Then we get

η
∗

CE =
Rsum (P ∗

t )

CF (P ∗

t )
>

Rsum (Pt)

CF (Pt)
. (A4)

In this case, the optimal allocation strategy is the one that maximizes CE.
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