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Abstract This paper deals with a recursive filtering problem for a class of discrete time-varying nonlinear

networked systems with the encoding-decoding mechanism. The linear fitting method is introduced to handle

the nonlinearity. An encoding-decoding mechanism is constructed to describe the data transmission process

in wireless communication networks (WCNs). To be specific, the measurement outputs are mapped by a

quantizer to unique codewords for transmission in WCNs. Then, the codewords are decoded by the decoder

to recover the measurement outputs which are sent to the filter. The processing/encoding delay and network

delay have been considered. Firstly, on the premise that the upper bound of the filtering error covariance is

minimum, the appropriate filtering gain is calculated. Then, the mean square exponential boundedness of

the filtering error is analyzed. Finally, two simulation examples are presented to verify the effectiveness of

the proposed algorithm.

Keywords encoding-decoding mechanism, uniform quantizer, linear fitting, networked systems, recursive

filtering

1 Introduction

For the past few years, filtering problem has received numerous research enthusiasm in the field of signal
processing and a great deal of excellent filtering algorithms have been proposed such as the Kalman
filtering [1–3], the H∞ filtering [4–6], the set membership filtering [7], and the particle filtering [8].
Among others, the Kalman filtering stands out for its high estimation accuracy and real-time computing
ability [9,10]. Therefore, the Kalman filtering has been widely applied in missile guidance, radar tracking,
aerospace, and many other fields. For example, the Kalman filtering has provided the theoretical basis
for the feasibility of the famous Apollo space program implementation, especially for the vehicle-mounted
navigation system [11]. A postprocessing algorithm using the Kalman filtering has been designed to
forecast the weather more accurately [12].

As is known to all, the classic Kalman filtering is optimal for linear systems with Gaussian noises.
Nevertheless, the systems in practical engineering are often nonlinear systems which lead to modifications
of the classic Kalman filtering. Recently, the extended Kalman filtering (EKF) [13] and the unscented
Kalman filtering (UKF) [14, 15] are two common methods to resolve filtering problems for nonlinear
systems. The EKF uses first-order Taylor expansion for linearization. Unfortunately, when the degree of
nonlinearity is high, the neglect of the high-order terms may cause large linearization errors. The core
idea of the UKF is using a group of weighted sigma points to calculate the predicted mean and variance
after nonlinear transformation which is known as unscented transformation. The UKF is able to achieve
the approximate second-order accuracy but does not obtain the Jacobian matrix of the nonlinear function.
Note that, the Jacobian matrix is of great importance in some kinematic fields such as the instantaneous
angular change of a manipulator. By combining the unscented transformation and the weighted least
squares (WLS) method, the linear fitting algorithm (LFA) has been proposed in [16]. Compared with
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the EKF and the UKF, the LFA can obtain the Jacobian matrix of a nonlinear function and ensure the
approximate second-order accuracy.

By means of the rise of digital communication, wireless communication networks (WCNs) have been
widely applied due to the advantages of simple wiring, strong operability, and low power consump-
tion [17, 18]. Despite the advantages of the WCNs, there are still certain limitations including limited
network bandwidth and increasingly serious network security problems [19–24]. To deal with the limited
network bandwidth, various communication protocols have been proposed, such as the event-triggering
mechanism [25–31], the Try-Once-Discard protocol [32], and the random access protocol [33]. The core
idea of these protocols is that the information transmissions are scheduled according to a given rule under
which the valuable network sources are saved. Nevertheless, under these protocols, the transmitted data
is still vulnerable to cyber attacks. For the purpose of enhancing bandwidth utilization and ensuring
network security at the same time, research attention has been paid to the encoding-decoding mechanism
(EDM) in recent years [34–36].

As the name implies, the EDM consists of two parts: encoder and decoder. In the encoding process, the
measurement outputs are converted into completely different data, which can be regarded as a mapping
process. These codewords are transmitted over WCNs to the decoder and then restored to approximate
values of the original measurement outputs. Finally, the decoded outputs are sent to the filter for state
estimation. It is pretty obvious that, under the EDM, only the codewords are transmitted over WCNs and
hence the EDM provides a new way to solve the network security problem. As one of the most commonly
used EDMs, the quantization-based EDM has recently received interest from researchers [37–41].

Under the EDM, due to the introduction of a quantizer in the encoding process, the decoded output
will not be exactly the same as the original measurement output which brings additional challenges to the
corresponding filtering/control problems [42–46]. In existing results, the research of quantization-based
EDM in control has been fully considered while the filtering problems have received inadequate attention.
The main reason is that it is difficult to find a correspondence between the actual measurement output
and the decoded output. Meanwhile, due to the introduction of the quantizer, the quantization error will
inevitably occur which may lead to the divergence of the filtering error. As such, the filtering problem
under the quantization-based EDM still needs further research effort.

EDM usually contains two types of delays: processing/encoding delay and network delay [47]. Pro-
cessing delay may result from detecting delay, computational delay, and other uncertainties of concerned
events, and the network delay is mainly caused by the limited bandwidth in the communication net-
work [48]. In other words, due to the processing/encoding delay, the codeword at the current time
instant could correspond to the measurement output at a past time instant. Similarly, on account of the
network delay, the decoded output at the current time instant could also correspond to the codeword at
the past time instant. In the filtering problems, the overlook of such delays may degrade the filtering
performance. Unfortunately, as far as we know, such a phenomenon has not been well considered which
inspired the present study.

To summarize the above discussion, we focus on the problem of recursive filter design with EDM
considering processing/encoding delay and network delay. The main challenges to be addressed are
(1) how to construct a proper EDM to characterize the processing/encoding delay and network delay and
(2) how to adequately take the error caused by the introduction of quantizer into account. To this end, the
main contributions of this paper are (1) the LFA has been introduced to handle the considered nonlinear
systems which perform better than the traditional methods; (2) a novel model has been proposed for the
EDM with processing/encoding delay and network delay; and (3) the variance of the quantization error
has been calculated which facilitates the subsequent filter design.

2 Problem formulation

Consider the following class of time-varying nonlinear systems:

xk+1 = h(xk) + Bkwk, (1)

zk = Ckxk + vk, (2)

where xk ∈ R
nx is the system state and zk ∈ R

nz is the measurement output. wk and vk are the zero-
mean Gaussian process noise and measurement noise with covariances Rk > 0 and Qk > 0, respectively.
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h(·) is a nonlinear function. Bk and Ck are known matrices. x0 with the mean x̄0 and the covariance P0|0

is the initial value of the state xk.

Remark 1. It is worth noting that when the nonlinear function is not differentiable or the nonlinear
degree is large, the EKF will be inapplicable or generate a large linearization error. In addition, the
UKF may not be able to obtain the Jacobian matrix of nonlinear functions. In this paper, we introduce
the LFA based on unscented transformation to deal with the nonlinear function so as to achieve higher
accuracy and obtain a Jacobian matrix at the same time.

2.1 Linear fitting algorithm

To handle the nonlinear function h(·), sigma points are first selected as follows:

Xk,1 = x̂k|k, (3)

Xk,s = x̂k|k +
(√

(nx + κ)Θk|k

)

s−1
, for s = 2, . . . , nx + 1, (4)

Xk,s = x̂k|k −
(
√

(nx + κ)Θk|k

)

s−1−nx

, for s = nx + 2, . . . ,m, (5)

where x̂k|k is the state estimate defined later, Θk|k is the upper bound (UB) on the estimation error

covariance, (
√

(nx + κ)Θk|k)j is the jth column of (
√

(nx + κ)Θk|k), κ is a given scalar to determine the
spread of sigma points, and m = 2nx + 1.

Remark 2. Generally speaking, more sigma points are able to approximate the distribution of xk more
accurately at the cost of a larger computational burden. When the dimension of the system state is
nx, it is suggested to select 2nx + 1 sigma points. In addition, κ affects the high-order moment of the
sigma points; thus an appropriate κ is helpful to reduce the overall approximate distribution error. It is
suggested to select κ such that nx + κ = 3 when the state is assumed Gaussian distribution [49].

After selection, the sigma points are mapped through a nonlinear function as [50]

Xk+1|k,i = h(Xk,i), i = 1, . . . ,m. (6)

In order to minimize the error between the nonlinear function and its linearization, the WLS algorithm
is introduced to calculate the linearized matrix Hk with the help of Xk+1|k,i as follows [16]:

Hk =
[

Hk,1 Hk,2 · · · Hk,nx

]T

∈ R
nx×(nx+1), (7)

where

Hk,i , (X kWXT

k )
−1X kWXT

k+1|k,i, i = 1, . . . , nx,

X k ,

[

Xk,1 Xk,2 · · · Xk,m
1 1 · · · 1

]

∈ R
(nx+1)×m,

Xk+1|k ,
[

Xk+1|k,1 Xk+1|k,2 · · · Xk+1|k,m

]

∈ R
nx×m,

W , diag(W1,W2, . . . ,Wm),

W1 ,
κ

nx + κ
, Ws ,

1

2(nx + κ)
, s = 2, . . . ,m,

and X k+1|k,i is the ith row of Xk+1|k. Considering the structure of X k, we remove the last column of Hk

to obtain the Hk equal to the numerical Jacobian matrix of nonlinear function [16]:

Hk → Hk ∈ R
nx×nx .

Thus, for the state model (1), the approximate linearized state model is written as

xk+1 = Hkxk + Bkwk. (8)

Remark 3. Up to now, the nonlinear function h(·) has been linearized by using the LFA and achieves a
second-order approximation accuracy [51]. Unlike the UKF, which uses sigma points to directly calculate
the posterior mean and variance, the LFA uses the WLS method to derive the Jacobian matrix of the
nonlinear function to obtain the posterior mean and variance. It is worth noting that the numerical
Jacobian is of great significance when a nonlinear function has an incomplete analytic expression.
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2.2 Encoding-decoding mechanism

During the data transmission, network security and bandwidth limitation are two great concerns which
need to be seriously taken into account. The EDM is an effective way to handle these two concerns. In
recent studies on the EDM, it is often assumed that the encoding and decoding processes are completed
at the same time instant. Unfortunately, both the processing/encoding delay and network delay are
able to affect the filtering performance. In this case, the assumption that the encoding and decoding
processes are completed at the same time instant is unrealistic and it is of great significance to consider
the processing/encoding delay and network delay.

By taking into account the time spent in the encoding process and the network transmission process,
the encoder is defined as follows:

sk = q

(

1

ηk−d
zk−d

)

, (9)

where sk is the codeword that is transmitted over the WCNs, d > 0 denotes the encoding delay, and q(·)
is a uniform quantizer. ηk > 0 is a scaling function used to zoom in or out the measurement so that it
falls within the range of the quantizer.

The form of the quantizer q(·) is shown below:

q(χ) =



























n,
2n− 1

2
ζ 6 χ <

2n+ 1

2
ζ, n ∈ {0, 1, . . . , l − 1},

l, χ >
2l− 1

2
ζ,

− q(−χ), χ < −1

2
ζ,

where ζ means the quantization interval and l is the saturation value of the quantizer.
Similarly, the decoder is defined as

{

y0 = 0,

yk = ζηk−τ−dsk−τ ,
(10)

where yk is the decoding output received by the filter and τ denotes the network delay.

Remark 4. In EDM, due to the processing/encoding delay and network delay, the encoder and decoder
will not work at the same time. d and τ represent the time required for the encoding process and the
network transmission process, respectively. Note that, d and τ can be obtained from the prior knowledge
and are assumed to be known in this paper.

In this paper, the recursive filter is designed in the following form:

x̂k+1|k = Hkx̂k|k, (11)

x̂k+1|k+1 = x̂k+1|k + Lk+1

(

yk+1 − Ck+1−ux̂k+1−u|k−u

)

, (12)

where x̂k+1|k and x̂k|k are one-step prediction and the estimate of xk at time instant k, respectively.

u , d + τ represents the total time required for the encoding process and the network transmission
process, and Lk+1 represents the filter gain to be designed subsequently.
ek+1|k , xk+1− x̂k+1|k and ek+1|k+1 , xk+1− x̂k+1|k+1 are defined as the prediction error and filtering

error, respectively. Our main purpose is to design a recursive filter subject to the EDM considering
processing/encoding delay and network delay and ensure that the filtering error covariance (FEC) has a
minimal UB.

3 Main results

In this section, we are going to obtain the filter gain that minimizes the upper bound on the filtering
error covariance. The following lemmas are given in advance to simplify the calculation.

Lemma 1 ([52]). For vectors a ∈ R
na and b ∈ R

nb , the following inequality holds:

abT + baT 6 δaaT + δ−1bbT, (13)

where δ > 0.



Jiang B, et al. Sci China Inf Sci May 2024, Vol. 67, Iss. 5, 152203:5

Lemma 2 ([53]). For given matrix X = XT > 0 and two functions φk (X) = φTk (X) and ψk (X) = ψT
k (X),

if

φk (Y) > φk (X) , ∀ X 6 Y = YT,

and

ψk (Y) > φk (Y) ,

then the solutions Gk and Hk of the following two difference equations:

Gk+1=φk (Gk) , Hk+1=ψk (Hk) , G0=H0>0,

satisfy Gk 6 Hk.

Lemma 3. For the uniform quantizer q(·), defining the quantization error as Dk , 1
ηk−d

zk−d− ζsk, one
has

Tr
{

E
{

Dk−τD
T
k−τ

}}

=

nz
∑

i=1

ℑi,k−u,

where

ℑi,k−u ,











ℑi,k−u|a, for yi,k=nζηk−u,

ℑi,k−u|b, for yi,k= lζηk−u,

ℑi,k−u|c, for yi,k=−lζηk−u,

ℑi,k−u|a ,
~i,k−u|a

η2k−u
− 2nζ

ηk−u
ℵi,k−u|a+(nζ)2, ℑi,k−u|b ,

~i,k−u|b

η2k−u
− 2lζ

ηk−u
ℵi,k−u|b+(lζ)2,

ℑi,k−u|c ,
~i,k−u|c

η2k−u
+

2lζ

ηk−u
ℵi,k−u|c+(lζ)2, ℵi,k−u|a , µi,k−u − σ2

i,k−u

o(ℓk−u,n)− o(ℓk−u,n)

O(ℓk−u,n)−O(ℓk−u,n)
,

ℵi,k−u|b , µi,k−u + σ2
i,k−u

o(ϑk−u)

1−O(ϑk−u)
, ℵi,k−u|c , µi,k−u − σ2

i,k−u

o(−ϑk−u)

O(−ϑk−u)
,

~i,k−u|a , σ2
i,k−u

[

1−
ℓk−u,no(ℓk−u,n)− ℓk−u,no(ℓk−u,n)

O(ℓk−u,n)−O(ℓk−u,n)

]

+ µi,k−uℵi,k−u|a,

~i,k−u|b , σ2
i,k−u

[

1 +
ϑk−uo(ϑk−u)

1−O(ϑk−u)

]

+ µi,k−uℵi,k−u|b,

~i,k−u|c , σ2
i,k−u

[

1 +
ϑk−uo(−ϑk−u)

O(−ϑk−u)

]

+ µi,k−uℵi,k−u|c,

ℓk−u,n , (2n− 1)ζηk−u/2, ℓk−u,n , (2n+ 1)ζηk−u/2, ϑk−u , (2l− 1)ζηk−u/2,

o(zi,k−u) ,
1√

2πσi,k−u

e
−

(zi,k−u
−µi,k−u

)2

2σ2
i,k−u , O(zi,k−u) ,

∫ zi,k−u

−∞

1√
2πσl,k−u

e
−

(t−µi,k−u
)2

2σ2
i,k−u dt,

µi,k−u ,
(

Ck−ux̂k−u|k−u−1

)

i
, σ2

i,k−u
= Qi,k−u,

o(zi,k−u) and O(zi,k−u) are the probability density function and the cumulative distribution function of
zi,k−u, respectively. (Ck−ux̂k−u|k−u−1)i is the ith component of Ck−ux̂k−u|k−u−1 and Qi,k−u stands for
the ith main diagonal element of Qk−u.

Theorem 1. The recursive expressions of the one-step prediction error covariance Pk+1|k ,

E{ek+1|ke
T
k+1|k} and the FEC Pk+1|k+1 , E{ek+1|k+1e

T
k+1|k+1} is shown below:

Pk+1|k = HkPk|kHT
k + BkRkBT

k (14)

and

Pk+1|k+1
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= E{(I − Lk+1Ck+1)Pk+1|k(I − Lk+1Ck+1)
T + Lk+1Ck+1Pk+1|kCT

k+1LT
k+1 + Lk+1Qk+1−uLT

k+1

+ η2k+1−u
Lk+1E{Dk+1−τD

T
k+1−τ}LT

k+1+Υ1,k+1 + Lk+1Ck+1−uPk+1−u|k−u
CT
k+1−u

LT
k+1 +ΥT

1,k+1

−Υ2,k+1 −ΥT
2,k+1 +Υ3,k+1 +ΥT

3,k+1 −Υ4,k+1 −ΥT
4,k+1 +Υ5,k+1 +ΥT

5,k+1

−Υ6,k+1 −ΥT
6,k+1 −Υ7,k+1 −ΥT

7,k+1}, (15)

where

Υ1,k+1 ,(I − Lk+1Ck+1|k)ek+1|ke
T
k+1|kCT

k+1LT
k+1,

Υ2,k+1 ,(I − Lk+1Ck+1|k)ek+1|ke
T
k+1−u|k−u

CT
k+1−u

LT
k+1,

Υ3,k+1 ,(I − Lk+1Ck+1|k)ek+1|kD
T
k+1−τη

T
k+1−u

LT
k+1,

Υ4,k+1 ,Lk+1Ck+1ek+1|ke
T
k+1−u|k−u

CT
k+1−u

LT
k+1,

Υ5,k+1 ,Lk+1Ck+1ek+1|kD
T
k+1−τη

T
k+1−u

LT
k+1,

Υ6,k+1 ,Lk+1vk+1−uD
T
k+1−τη

T
k+1−u

LT
k+1,

Υ7,k+1 ,Lk+1Ck+1−uek+1−u|k−u
DT
k+1−τη

T
k+1−u

LT
k+1.

Proof. Taking (8) and (11) into consideration, one has

ek+1|k = xk+1 − x̂k+1|k

= Hkxk + Bkwk −Hkx̂k|k

= Hkek|k + Bkwk. (16)

From (10), (12), and the definition of quantization error, the filtering error ek+1|k+1 is obtained as

ek+1|k+1 = xk+1 − x̂k+1|k+1

= ek+1|k−Lk+1(zk+1−u−ηk+1−uDk+1−τ−Ck+1−ux̂k+1−u|k−ı)

= (I−Lk+1Ck+1)ek+1|k+Lk+1Ck+1ek+1|k−Lk+1vk+1−u

−Lk+1Ck+1−uek+1−u|k−u
+Lk+1ηk+1−uDk+1−τ . (17)

Theorem 1 can be directly derived by (16) and (17).

Theorem 2. Given positive scalars α1, α2, α3, α4, α5, α6, and α7, on the premise that Θ0|0 > P0|0 > 0,
for the following two recursive matrix equations:

Θk+1|k = HkΘk|kHT
k + BkRkBT

k (18)

and

Θk+1|k+1 = δ1(I − Lk+1Ck+1)Θk+1|k(I − Lk+1Ck+1)
T + δ5Lk+1Ck+1−uΘk+1−u|k−u

CT
k+1−u

LT
k+1

+ δ2Lk+1Ck+1Θk+1|kCT
k+1LT

k+1 + δ4η
2
k+1−u

nz
∑

i=1

ℑi,k+1−uLk+1LT
k+1 + δ3Lk+1Qk+1−uLT

k+1,

(19)

where

δ1 , 1 + α1 + α2 + α3, δ2 , 1 + α−1
1 + α4 + α5, δ3 , 1 + α6,

δ4 , 1 + α−1
3 + α−1

5 + α−1
6 + α−1

7 , δ5 , 1 + α−1
2 + α−1

4 + α7,

the solution Θk+1|k+1 is an UB of Pk+1|k+1. Meanwhile, the filtering gain given below:

Lk+1 = δ1Θk+1|kCT
k+1M−1

k+1, (20)

where

Mk+1 , (δ1 + δ2)Ck+1Θk+1|kCT
k+1 + δ3Qk+1−u + δ5Ck+1−uΘk+1−u|k−u

CT
k+1−u

+ δ4η
2
k+1−u

nz
∑

i=1

ℑi,k+1−uI,

ensures that Θk+1|k+1 is minimal.
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Algorithm 1 Recursive filtering algorithm with the EDM and LFA

Step 1. Give the initial value x̂0|0, the initial value of the UB Θ0|0, and set k = 0.

Step 2. Calculate the linearized matrix Hk with the help of (3)–(7).

Step 3. Obtain the one-step prediction x̂k+1|k by (11).

Step 4. Compute the variance of quantization error Dk+1 based on Lemma 3.

Step 5. Design the filter gain Lk+1 by (20). Obtain the minimum UB Θk+1|k+1 on the FEC according to (19).

Step 6. Calculate the state estimate x̂k+1|k+1 by (12).

Step 7. Set k = k + 1 and go to Step 2.

Remark 5. As the EDM is introduced into the WCNs, the filtering performance will be affected by the
parameters ηk, ζ, and u. According to practical engineering experience, ηk can be dynamically selected to
ensure that the encoded data fall within the quantizer range. Meanwhile, the quantization error decreases
with the decrease of quantization interval ζ. In general, the more suitable ηk is selected, and the smaller
the quantization interval is, the better the filtering performance gets. In addition, the bigger u, that is,
the larger the processing/encoding delay and network delay, the filter performance will be correspondingly
worse.

Remark 6. Compared with other studies on the EDM, in this paper, the processing/encoding delay
and network delay have been considered in the EDM, which is more practical. In addition, the previous
studies usually ignore or limit quantization error, but in this paper, the variance of the quantization error
has been calculated, which leads to the conservatism to some extent.

The specific recursive filtering algorithm is given in Algorithm 1.

4 Analysis of boundedness

In this section, we are committed to finding sufficient conditions for the filtering error to satisfy the
mean-square exponential bounded (MSEB).

Lemma 4 ([54]). If stochastic process Vk(ψk) and real numbers ϑ, ϑ, ρ, and 0 < λ < 1 satisfy

ϑ ‖ψk‖2 6 Vk(ψk) 6 ϑ ‖ψk‖2

and

E {Vk(ψk)|ψk−1} 6 (1− λ) Vk−1(ψk−1) + ρ,

then ψk is MSEB.

Theorem 3. Supposing there are positive numbers b, b, c, c, h, h r, r, q, q, η, η, θ, θ, ̟, and ̟ that
satisfy the following conditions:

h 6 ‖Hk‖ 6 h < 1, b 6 ‖Bk‖ 6 b, c 6 ‖Ck‖ 6 c,

rI 6 Rk 6 rI, qI 6 Qk 6 qI, η 6 ηk 6 η,

θI 6 Θk+1|k 6 θI, ̟I 6 Θk+1|k+1 6 ̟I, (21)

then the filtering error is MSEB.

Remark 7. So far, a recursive filter has been constructed with the EDM. By introducing the LFA
with the WLS, the nonlinear function has been approximately linearized under the condition of minimum
linearization error. In addition, an EDM model considering processing/encoding delay and network delay
has been constructed to precisely reflect the working situation of the EDM. The variance of quantization
error caused by the EDM has been calculated to improve the estimation accuracy. Then, a minimal UB
on the FEC has been derived. Finally, we have analyzed the filtering error is MSEB. In Section 5, we
present a simulation example and a numerical simulation.

5 Simulation examples

Example 1. In this simulation, we study a nonlinear pendulum system [55] for which the dynamical
equations are given below:

ω̇(t) = θω(t) + α(t)((1 − θ)ω(t) + θω(t)),
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Figure 1 (Color online) (a) State x1,k and its estimate; (b) state x2,k and its estimate.

ω̇(t) = −g sin(ω(t)) + (d/fm)ω(t) + (amf/4)ω(t)2 sin(2ω(t))
2f
3 − a

2mf cos(ω(t))
2

− (amfθ/4)w(t),

z(t) = sin(ω(t)) + θω(t) + θv(t),

where ω is the angle of the pendulum in the vertical direction, ω stands for the angular velocity. m and
M are the mass of the pendulum and cart, respectively. g means the acceleration of gravity. f and d
are the length of the pendulum and the associated damping coefficient, respectively. w and v are the
interference acting on the cart and the noise produced in the measurement process, respectively. In this
paper, specific parameters are selected as follows: m = 2 kg, M = 8 kg, f = 0.5 m, d = 0.7 N·m/s,
θ = 0.6, and sampling period T = 0.02 s. Letting x1,t = ω(t) and x2,t = ω(t), the discrete-time pendulum
system model is shown as follows:

xk+1 = h(xk) + Bkwk,
zk = Ckxk +Dkvk,

where

h(xk) =

[

0.48x1,k + 0.2x2,k + 0.12 sin(x2,k)

0.03x1,k + 0.5x2,k

]

,

Bk =

[

0.2

0.5

]

, Ck =
[

−0.18 + 0.12 sin(5k) 0.48
]

, Dk = 0.28,

with xi,k (i = 1, 2) being the ith element of xk.

In the simulation, x0|0 = [−0.5 1]T and P0|0 = 2I ∈ R
2×2. The covariances of wk and vk are chosen

as Rk = 0.01 and Qk = 0.01, respectively. ηk = 0.08, ζ = 0.16, d = 1, τ = 1, and l = 12. The mean

square error (MSE) is defined as MSE = 1
M

∑M
j=1

∑2
i=1

(

xi,k − x̂i,k|k
)2

where M = 300 is the number of
simulation tests.

Figures 1(a) and (b) show the actual states xi,k (i = 1, 2) and estimated values x̂i,k|k (i = 1, 2).
Figures 2(a) and (b) visually show Tr{Θk|k} is larger than MSE and the filtering error is bounded,
which implies the correctness of Theorems 2 and 3. Figure 3 depicts the actual measurement outputs
are mapped to special codewords and transmitted over the WCNs, which means that it is difficult for
attackers to steal valuable information and improves the security of the WCNs to a large extent.

Example 2. In this simulation, we are committed to highlighting the gap between the LFA and the
Taylor expansion method (TEM), and also to showing the effect of the time required by the EDM on the
filtering performance, with system parameters as follows:

h(xk) =

[

0.73x2,k − 0.6x1,kx2,k

0.43 sin(x1,kx2,k) + 0.6x2,k

]

, Bk =

[

0.5

−0.7 + 0.1 sin(0.2k)

]

,
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Figure 2 (Color online) (a) Tr{Θk|k} and the MSE; (b) filtering error.
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Figure 3 (Color online) Measurement outputs and compiled codewords.

Ck =

[

0.6 + 0.01 cos(2k) 0

0 0.4 + 0.02 sin(3k)

]

.

The rest of parameters are as follows: x0|0 = [0.1 0.2]T, P0|0 = 2I ∈ R
2×2, Rk = 0.01, Qk = 0.01I ∈

R
2×2, ηk = 0.2, ζ = 0.3, l = 10, and M = 500. In addition, for the purpose of intuitively reflecting the

impact of the time required for EDM on the filtering performance, two cases are selected in this paper:
case 1 is d = 1, τ = 1 and case 2 is d = 3, τ = 3.

Figures 4(a) and (b) represent the actual state curve and estimated value curve. Figure 4(c) plots the
norm of filtering error. It is not difficult to find from Figure 4 that, compared with the TEM, the LFA has
higher estimation accuracy and smaller filtering errors, which indicates that LFA has certain advantages
in dealing with nonlinear problems. Similarly, Figure 4 shows that when the process delay and network
delay increase, the filtering error will increase, resulting in a decrease in the estimation accuracy.

6 Conclusion

In this paper, the recursive filter has been designed which mainly includes nonlinear problem and the
EDM considering encoding and decoding delays. The Jacobian matrix of the nonlinear function has
been calculated using the LFA. In order to better describe the reality, an EDM with the process delay
and network delay has been constructed to encrypt and compress measurement output to strengthen the
security of WCNs. A suitable filter gain has been obtained to make that the UB of FEC is minimized.
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Figure 4 (Color online) (a) State x1,k and its estimate; (b) state x2,k and its estimate; (c) filtering error.

Moreover, sufficient conditions have been given to satisfy that the filtering error is MSEB. Finally, two
simulation examples have been given to demonstrate the effectiveness of the designed algorithm.
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Appendix A Proof of Lemma 3

By using the properties of truncated Gaussian, for zi,k−u ∈ [ℓk−u,n, ℓk−u,n), one has

E

{
zi,k−u|zi,k−u ∈ [ℓk−u,n, ℓk−u,n), xk−u

}

=

∫
ℓk−u,n

ℓk−u,n

zi,k−u

o(zi,k−u)

O(ℓk−u,n) − O(ℓk−u,n)
dzi,k−u

=
µi,k−u

O(ℓk−u,n) − O(ℓk−u,n)

∫
ℓk−u,n

ℓk−u,n

o(zi,k−u)dzi,k−u
−

σ2
i,k−u

∫ ℓk−u,n

ℓk−u,n

−(zi,k−u
−µi,k−u

)

σ2
i,k−u

o(zi,k−u)dzi,k−u

O(ℓk−u,n) − O(ℓk−u,n)

, ℵi,k−u|a.

Furthermore, one has

E

{
z2i,k−u

|zi,k−u ∈ [ℓk−u,n, ℓk−u,n), xk−u

}

=

∫
ℓk−u,n
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z
2
i,k−u
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= −

σ2
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O(ℓk−u,n) − O(ℓk−u,n)
dzi,k−u

, ~i,k−u|a.

Then, it is obtained that

E

{
D

2
i,k−τ |zi,k−u ∈ [ℓk−u,n, ℓk−u,n), xk−u

}

= E

{(
1

ηk−u

zi,k−u − nζ

)2 ∣∣zi,k−u ∈ [ℓk−u,n, ℓk−u,n), xk−u

}

, ℑi,k−u|a.

Similarly, when zi,k−u > ϑk−u and zi,k−u < −ϑk−u, we have

E

{
D2

i,k−τ

∣∣zi,k−u > ϑk−u, xk−u

}
, ℑi,k−u|b

and

E

{
D2

i,k−τ

∣∣zi,k−u < −ϑk−u, xk−u

}
, ℑi,k−u|c.

Appendix B Proof of Theorem 2

By using Lemma 1, we have
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k+1−τ}η

T
k+1−u

L
T
k+1. (B1)

https://doi.org/10.1109/9.754809
https://doi.org/10.1109/TAC.2015.2437526


Jiang B, et al. Sci China Inf Sci May 2024, Vol. 67, Iss. 5, 152203:13

Applying (B1) and Lemma 3 to (17) yields

Pk+1|k+1 6 δ1(I − Lk+1Ck+1)Pk+1|k(I − Lk+1Ck+1)
T + δ5Lk+1Ck+1−uPk+1−u|k−u

CT
k+1−u

LT
k+1

+ δ2Lk+1Ck+1Pk+1|kC
T
k+1L

T
k+1 + δ4η

2
k+1−u

nz∑

i=1

ℑi,k+1−uLk+1L
T
k+1 + δ3Lk+1Qk+1−uL

T
k+1. (B2)

Then, based on Lemma 2, (14), (18), (19), and (B2), one has

Pk+1|k+1 6 Θk+1|k+1.

Finally, in light of the completing-the-square method, we have

Θk+1|k+1 = Lk+1Mk+1Lk+1 − δ1Θk+1|kC
T
k+1L

T
k+1 − δ1Lk+1Ck+1Θk+1|k + δ1Θk+1|k

= (Lk+1 − δ1Θk+1|kC
T
k+1M

−1
k+1)Mk+1(Lk+1 − δ1Θk+1|kC

T
k+1M

−1
k+1)

T

− δ21Θk+1|kC
T
k+1M

−1
k+1Ck+1Θk+1|k + δ1Θk+1|k. (B3)

For the sake of minimizing the UB Θk+1|k+1, it is not difficult to calculate the filter gain Lk+1 from (B3).

Appendix C Proof of Theorem 3

The filtering error ek+1|k+1 can be rewritten by (16) and (17) as

ek+1|k+1 = Hkek|k + Bkwk − Lk+1Ck+1−uHk−uek−u|k−u
− Lk+1Ck+1−uBk−uwk−u − Lk+1vk+1−u

+ Lk+1ηk+1−uDk+1−τ . (C1)

From (20), it is derived that

‖Lk+1‖ =
∥∥∥δ1Θk+1|kCk+1M

−1
k+1

∥∥∥

<
∥∥δ1Θk+1|kCk+1

∥∥
∥∥∥[δ1Ck+1Θk+1|kC

T
k+1]

−1
∥∥∥ (C2)

6
θc

θ c2
, ι. (C3)

We define a recursive function about Ψk:

Ψk+1 , HkΨkH
T
k + BkRkB

T
k + γI, (C4)

where Ψ0 , B0Q0B
T
0 + γI and γ > 0.

By the properties of the matrix norm, we have

‖Ψk+1‖ 6 ‖Hk+1‖
2
‖Ψk‖ + ‖BkRkB

T
k ‖ + ‖γI‖ 6 h

2
‖Ψk‖ + b

2
r + γ. (C5)

In addition, it follows from (C4) that

Ψk > γI. (C6)

By means of (21) and Lemma 4, ψI 6 Ψk 6 ψI, where ψ and ψ are two positive scalars.

Subsequently, a quadratic function is constructed as follows:

Vk(ek|k) , e
T
k|kΨ

−1
k ek|k. (C7)

Applying (C1) to (C7), one has

E
{
Vk+1(ek+1|k+1)|ek|k

}
− (1 + β)Vk(ek|k)

= E{eTk|kH
T
k Ψ−1

k+1Hkek|k + wT
k BT

k Ψ−1
k+1Bkwk + eTk−u|k−u

HT
k−u

CT
k+1−u

LT
k+1Ψ

−1
k+1Lk+1Ck+1−uHk−uek−u|k−u

+ vTk+1−u
LT

k+1Ψ
−1
k+1Lk+1vk+1−u + wT

k−u
BT

k−u
CT
k+1−u

LT
k+1Ψ

−1
k+1Lk+1Ck+1−uBk−uwk−u

+DT
k+1−τη

T
k+1−u

LT
k+1Ψ

−1
k+1Lk+1ηk+1−uDk+1−τ − Ξ1,k+1 − ΞT

1,k+1 − Ξ2,k+1 − ΞT
2,k+1 − Ξ3,k+1

− ΞT
3,k+1 − Ξ4,k+1 − ΞT

4,k+1 − (1+β)eTk|kΨ
−1
k ek|k}, (C8)

where

Ξ1,k+1 = eTk|kH
T
k Ψ−1

k+1Lk+1Ck+1−uHk−uek−u|k−u
,

Ξ2,k+1 = eTk|kH
T
k Ψ−1

k+1Lk+1Ck+1−uBk−uwk−u,

Ξ3,k+1 = wT
k−u

BT
k−u

LT
k+1Ψ

−1
k+1Lk+1ηk+1−uDk+1−τ ,

Ξ4,k+1 = vTk+1−u
LT

k+1Ψ
−1
k+1Lk+1ηk+1−uDk+1−τ .
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Similarly, according to Lemma 1, one has

E

{
−Ξ1,k+1 − ΞT

1,k+1

}

6 σ1e
T
k|kH

T
k Ψ−1

k+1Hkek|k + σ−1
1 eTk−u|k−u

HT
k−u

CT
k+1−u

LT
k+1Ψ

−1
k+1Lk+1Ck+1−uHk−uek−u|k−u

,

E

{
−Ξ2,k+1 − ΞT

2,k+1

}

6 σ2e
T
k|kH

T
k Ψ

−1
k+1H

T
k ek|k + σ

−1
2 w

T
k−u

B
T
k−u

C
T
k+1−u

L
T
k+1Ψ

−1
k+1Lk+1Ck+1−uBk−uwk−u,

E

{
−Ξ3,k+1 − Ξ

T
3,k+1

}

6 σ3w
T
k−u

BT
k−u

LT
k+1Ψ

−1
k+1Lk+1Bk−uwk−u + σ−1

3 η2k+1−u
DT

k+1−τL
T
k+1Ψ

−1
k+1Lk+1Dk+1−τ ,

E

{
−Ξ4,k+1 − ΞT

4,k+1

}

6 σ4v
T
k+1−u

LT
k+1Ψ

−1
k+1Lk+1vk+1−u + σ−1

4 η2k+1−u
DT

k+1−τL
T
k+1Ψ

−1
k+1Lk+1Dk+1−τ , (C9)

where σ1 = σ2 = β/2, σ3 and σ4 are positive scalars.

The following inequalities can be obtained from the property of the matrix trace:

E

{
wT

k BT
k Ψ−1

k+1Bkwk

}
6 nxrb

2
ψ,

E

{
vTk+1−u

LT
k+1Ψ

−1
k+1Lk+1vk+1−u

}
6 nzqι

2ψ,

E

{
eTk−u|k−u

HT
k−u

CT
k+1−u

LT
k+1Ψ

−1
k+1Lk+1Ck+1−uHk−uek−u|k−u

}
6 nx̟h

2
ι2c2ψ,

E

{
η
2
k+1−u

D
T
k+1−τL

T
k+1Ψ

−1
k+1Lk+1Dk+1−τ

}
6 nzη

2
ι
2
ψζ

2
/4,

E

{
wT

k−u
BT

k−u
CT
k+1−u

LT
k+1Ψ

−1
k+1Lk+1Ck+1−uBk−uwk−u

}
6 nxrb

2
c2ι2ψ. (C10)

Based on the matrix inversion lemma, one obtains

H
T
k Ψ

−1
k+1Hk − Ψ

−1
k

= HT
k (HkΨkH

T
k + BkRkB

T
k + γI)−1Hk − Ψ−1

k

= −[Ψk + ΨkH
T
k (BkRkB

T
k + γI)−1HkΨk]

−1

= −[I + HT
k (BkRkB

T
k + γI)−1HkΨk]

−1Ψ−1
k

6 −

(

1 +
h
2
ψ

b2r

)−1

Ψ−1
k . (C11)

Taking Lemma 4 and (C9)–(C11) into consideration, one has

E
{
Vk+1(ek+1|k+1)|ek|k

}
− (1 + β)Vk(ek|k)

6 E{(1 + β)eTk|k[H
T
kΨ−1

k+1Hk − Ψ−1
k ]ek|k + (1 + 2β−1)eTk−u|k−u

HT
k−u

CT
k+1−u

LT
k+1Ψ

−1
k+1Lk+1Ck+1−uHk−uek−u|k−u

+ σ4v
T
k+1−u

LT
k+1Ψ

−1
k+1Lk+1vk+1−u + (1 + 2β−1 + σ3)w

T
k−u

BT
k−u

CT
k+1−u

LT
k+1Ψ

−1
k+1Lk+1Ck+1−uBk−uwk−u

+ wT
k BkΨ

−1
k+1Bkwk + (σ−1

3 + σ−1
4 )η2k+1−u

DT
k+1−τL

T
k+1Ψ

−1
k+1Lk+1Dk+1−τ}

6 −(1 + β)

(

1 +
h
2
ψ

b2r

)−1

Vk(ek|k) + ̺, (C12)

which means that

E
{
Vk+1(ek+1|k+1)|ek|k

}
6 νVk(ek|k) + ̺,

where

ν = (1 + β)

[

1 −

(

1 +
h
2
ψ

b2r

)−1]

,

̺ = (1 + 2β−1)nx̟h
2
c2ι2ψ + (1 + 2β−1 + σ3)nxrb

2
c2ι2ψ

+ nxrb
2
ψ + σ4nzqι

2ψ + (σ−1
3 + σ−1

4 )nzη
2ι2ψζ2/4.

It is obvious that 0 < ν < 1 for some β > 0. Consequently, in light of Lemma 4, the filtering error is MSEB.
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