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Abstract Unsupervised domain adaptation (UDA) studies how to transfer a learner from a labeled source

domain to an unlabeled target domain with different distributions. Existing methods mainly focus on match-

ing marginal distributions of the source and target domains, which probably leads to a misalignment of sam-

ples from the same class but different domains. In this paper, we tackle this misalignment issue by achieving

the class-conditioned transferring from a new perspective. Specifically, we propose a method named maximiz-

ing conditional independence (MCI) for UDA, which maximizes the conditional independence of feature and

domain given class in the reproducing kernel Hilbert spaces. The optimization of conditional independence

can be viewed as a surrogate for minimizing class-wise mutual information between feature and domain. An

interpretable empirical estimation of the conditional dependence measure is deduced and connected with the

unconditional case. Besides, we provide an upper bound on the target error by taking the class-conditional

distribution into account, which provides a new theoretical insight for class-conditioned transferring. Ex-

tensive experiments on six benchmark datasets and various ablation studies validate the effectiveness of the

proposed model in dealing with UDA.

Keywords conditional independence, kernel method, domain adaptation, class-conditioned transferring

1 Introduction

Algorithms of supervised learning have made tremendous contributions to artificial intelligence and have
wide applications in real-life. Sufficient labeled data play a significant role in supervised learning. How-
ever, it is often expensive and time-consuming to collect plenty of labeled data. In contrast, it is much
easier to collect considerable unlabeled data. An intuitive idea is to directly apply the learned predictive
model with the labeled data to the unlabeled data. However, there may exist a large discrepancy between
the training and testing datasets due to the existence of dataset shift [1]. Then, a direct application may
result in a degradation of recognition performance.

Unsupervised domain adaptation (UDA) addresses the problem of transferring knowledge from a la-
beled dataset (source domain) to an unlabeled dataset (target domain), where the domains have similar
but not identical distributions (Figure 1). To learn a discriminative predictor for the unlabeled target
domain, the essence of UDA is to effectively mitigate the distribution discrepancy between domains.

Covariate shift is a common assumption in UDA, which assumes the source and target domains have
identical label space but different marginal distributions of features, i.e., P s

X 6= P t
X with Ys = Yt. Inspired

by the learning theory [2], various UDA methods have been proposed to mitigate the marginal distribution
discrepancy between domains, e.g., discrepancy minimization via maximum mean discrepancy (MMD) [3,
4] and covariance statistics [5], manifold based feature alignment [6], and adversarial learning based feature
confusion [7, 8]. These studies have achieved considerable progress in UDA. However, aligning marginal
distributions while ignoring the class information may lead to a misalignment across classes [9, 10] (Fig-
ure 1(left)). To be specific, samples from the same class but different domains may not be mapped nearby
in the latent feature space, even with a perfect marginal distribution alignment.

To alleviate the misalignment across classes, class-conditioned transferring seeks a class-conditioned
domain alignment by considering class information (including pseudo-labels) (Figure 1(right)). Zhao
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Figure 1 (Color Online) Illustration of class-conditioned transferring. Left: methods based on marginal distribution alignment

may lead to a misalignment. Right: the class-conditioned transferring can deal with this misalignment.

et al. [11] theoretically showed that matching the class-conditional distributions is non-ignorable, i.e.,
P s
X|Y = P t

X|Y . Some metric-based methods try to measure the discrepancy between class-conditional

distributions, e.g., variants of MMD [10,12,13] and maximum density divergence (MDD) [14]. Adversarial
methods [15,16] incorporate multiple-level discriminators to learn both class-discriminative and domain-
invariant features. There are methods simultaneously leveraging a metric and an adversarial loss [17–19].
For instance, methods [20–22] apply two classifiers and optimize the classifier discrepancy in an adversarial
manner to learn task-specific decision boundaries. Class-conditioned transferring methods with different
ideas have also been proposed, e.g., prediction matrix calibration [23], information maximization [24],
attention mechanism [25], and transformer-based methods [26,27]. Though these methods have achieved
remarkable performance, most cannot theoretically promise the class-conditional distribution alignment.
Further, these class-conditioned transferring methods mainly model the variables of feature and class
while without explicitly modeling the domain information. It is expected if there is a way for UDA which
can not only model the relations among feature, class, and domain but also mathematically bridge the
algorithm with a class-conditional distribution alignment.

Motivated by this, in this paper, we propose a novel method called maximizing conditional indepen-
dence (MCI) for UDA. MCI characterizes class-conditioned transferring as conditional independence,
which is a totally new statistical perspective in dealing with UDA. More precisely, MCI explicitly models
a set of variables, i.e., the extracted feature X and class Y given domain Z, then maximizes the condi-
tional independence between X and Z given Y by exploiting the conditional dependence measure. With
the conditional independence, the domain-specific information can be removed from the class-conditioned
feature space. From the perspective of information theory, MCI seeks a compact and informative feature
space with reduced class-conditioned mutual information between feature X and domain Z. Additionally,
MCI not only theoretically ensures a class-conditional distribution alignment, but also deduces that such
an alignment is sufficient to minimize the target error.

To the best of our knowledge, maximizing the conditional independence for class-conditioned trans-
ferring has not been explored yet in UDA. The contributions of our work are mainly summarized as
follows.

(1) We provide a class-conditional distribution based generalization error bound for UDA, which gives
a new theoretical insight for class-conditioned transferring.

(2) We propose a simple yet effective method MCI for UDA, which achieves class-conditioned trans-
ferring by making feature and domain conditionally independent given class. It can also be viewed as a
surrogate for minimizing class-wise mutual information.

(3) We mathematically derive that the conditional independence will lead to a class-conditional distri-
bution alignment, which theoretically guarantees that samples from the same class but different domains
are mapped nearby in the latent feature space.

(4) We derive an interpretable empirical estimation of the conditional dependence measure and connect
it with the estimation in the unconditional case, which adjusts and improves the results in [28].

The rest of this paper is organized as follows. Section 2 briefly reviews related UDA work. Section 3
provides preliminaries about the dependence measure, details of MCI, and theoretical analysis. Extensive
experiments along with analysis of MCI are presented in Section 4. Finally, Section 5 concludes this paper.
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2 Related work

In this section, we briefly review previous UDA studies from two related aspects, including marginal
distribution alignment and class-conditioned transferring.

Marginal distribution alignment. Various methods reduce the marginal distribution discrepancy
between domains. Long et al. [4] employed MMD to match the distributions of deep features in repro-
ducing kernel Hilbert spaces (RKHSs). Sun et al. [5] aligned the covariance matrices of the two domains.
Gong et al. [6] embedded the two domains into Grassmann manifolds, and constructed geodesic flows
between the domains to model domain discrepancy. Ganin et al. [7] tried to learn domain-invariant
features to confuse a domain discriminator. Optimal transport (OT) has also been applied to UDA
successively. Courty et al. [29] learned a nonlinear Wasserstein map to match the feature distributions.
Zhang et al. [30] further learned a transport map in RKHSs with Gaussian priors. As for methods based
on correlations, Yan et al. [31] employed the Hilbert-Schmidt independence criterion (HSIC), and Liu et
al. [32] introduced an entropy regularized optimal transport independence criterion (ETIC). HSIC and
ETIC match the marginal distributions by maximizing the independence between feature X and domain
Z. Differently, our MCI seeks a class-conditioned distribution alignment by achieving the conditional
independence between feature X and domain Z given class Y .

Class-conditioned transferring. Class-conditioned transferring methods show better performance
by introducing class information. Prototype-based methods [33, 34] reduce the distance between the
source and target centers with the same class. Luo et al. [35] generalized Fisher’s discriminant criterion
by exploiting the between-class and within-class scatters. Metric-based methods and adversarial methods
have been explored to reduce the class-conditional distribution discrepancy. Long et al. [12] and Zhu et
al. [13] proposed variants of MMD, which measure the discrepancy by applying MMD within or between
class-wise clusters. Ren et al. [36] exploited a conditional covariance operator in RKHS to align the
conditional distributions. Li et al. [14] optimized an adversarial loss and an MDD metric to maximize the
inter-domain divergence and intra-class density. Based on adversarial learning, Li et al. [17] class-wisely
optimized the divergence between predictions to suppress domain-variant information. Differently, Sun et
al. [18] and Zhang et al. [19] minimized a sample-level prediction discrepancy. With an auxiliary classifier,
Zuo et al. [21] optimized the L1-distance between the two classifiers’ predictions to learn task-specific
decision boundaries. The above methods explicitly model the variables of featureX and class Y to achieve
class-conditioned transferring, where the domain information is implicitly considered by aligning domains.
Though Li et al. [25] explicitly captured domain-specific information by channel-aware attention, they did
not model the relation between feature and class. Weighted correlation embedding learning (WCEL) [37]
is built on graph learning and correlation learning. However, WCEL only explores the correlation between
feature X and domain Z to find the most correlated features. Compared with existing methods, MCI
provides a new perspective by characterizing class-conditioned transferring as conditional independence,
which explicitly models the feature X , class Y , and domain Z simultaneously. Besides, we derive that
achieving conditional independence in RKHSs ensures a class-conditional distribution alignment. In
practice, we can directly measure the conditional dependence without splitting samples into class-wise
clusters or pair-wise samples like prototype-based or most metric-based methods. MCI is still valid even
if class Y is a continuous variable. Different from adversarial methods, the framework of MCI is simple
and can be optimized in an end-to-end manner.

3 Methodology

In this section, we explain the proposed method MCI for UDA. Subsection 3.1 reviews the depen-
dence measure. In Subsection 3.2, we employ the conditional dependence measure to characterize class-
conditioned transferring. Subsection 3.3 derives the empirical estimation of the dependence measure.
Finally, we provide the implementation details of MCI and theoretical analysis in Subsections 3.4 and 3.5,
respectively.

3.1 Measuring conditional independence in RKHS

Let (X ,BX ) and (Z,BZ) be measurable spaces with Borel σ-field BX and BZ , respectively. Denote
(FX , kX ) and (FZ , kZ) as corresponding RKHSs of X and Z, where kX and kZ are measurable positive
definite kernels.
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Consider a random vector (X,Z) on X × Z with EX [kX (X,X)] < ∞ and EZ [kZ(Z,Z)] < ∞. Then,
there exists a unique cross-covariance operator [38] ΣZX : FX → FZ which satisfies ∀f1 ∈ FX , f2 ∈ FZ ,

〈f2,ΣZXf1〉FZ
= E[f1(X)f2(Z)]− E[f1(X)]E[f2(Z)],

where ΣZX describes higher-order correlations of X and Z via functions f1(X) and f2(Z) in RKHSs. If
Z = X , ΣXX is the known covariance operator. Besides, ΣZX can be regarded as an extension of the
covariance matrix CZX on the Euclidean space. ΣZX can be expressed by the covariance of the marginals
and the correlation [38], that is

ΣZX = Σ
1
2

ZZVZXΣ
1
2

XX , (1)

where R (VZX) ⊂ R (ΣZX), and N (VZX)
⊥ ⊂ R (ΣZX). N (T ) and R (T ) refer to the null space and

the range of an operator T , respectively. VZX is also a unique bounded operator, named the normalized
cross-covariance operator (NOCCO). Compared with ΣZX , VZX encodes the dependence of X and Z
more directly with less influence of the marginals.

In RKHSs, conditional dependence can be derived by cross-covariance operators. Denote another
variable Y on Y and RKHS (FY , kY), where kY is also finite. The normalized conditional cross-covariance
operator (COND) [28] can be defined by

VZX|Y = VZX − VZY VY X , (2)

where VZY and VY X are similar defined by (1). VZX|Y measures the conditional dependence of random
variables X and Z given Y .

NOCCO and COND have been used to determine the independence and the conditional indepen-
dence [28]. Denote X ⊥⊥ Z as the independence of random variables X and Y . X ⊥⊥ Z | Y indicates the
conditional independence of X and Z given Y = y, ∀y ∈ Y. Consider Ẍ = (X,Y ), Z̈ = (Z, Y ) with the
kernel product kẌ = kX kY and kZ̈ = kZkY . Lemma 1 formulates the mentioned relation.

Lemma 1 ([28]). (i) If the product kX kZ is characteristic, then

VZX = 0 ⇐⇒ X ⊥⊥ Z.

(ii) Assume that the product kẌkZ̈ is a characteristic kernel on X × Y × Z, and FY + R is dense in
L2(PY ). Then,

VZ̈Ẍ|Y = 0 ⇐⇒ X ⊥⊥ Z | Y.

Note FY + R is dense in L2(PY ) means that k† is bounded and characteristic. L2(PY ) denotes the
space of the square integrable functions with the law PY .

To measure the distance between the zero element 0 and VZX (VZ̈Ẍ|Y ), the HS norm ‖·‖HS of operators

is employed. Denote that V : F1 → F2 is a linear operator, {φi} and {ψj} are complete orthonormal
systems of F1 and F2. The HS norm of V is defined as ‖V ‖2HS = Σi,j〈ψj , V φi〉2F2

. V is a HS operator if
the sum Σi,j〈ψj , V φi〉

2
F2

is finite. Since VZX and VZ̈Ẍ|Y are HS operators, we can measure the statistical
dependence as

INOCCO (X,Z) = ‖VZX‖2HS,

ICOND (X,Z|Y ) = ‖VZ̈Ẍ|Y ‖
2
HS.

3.2 Removing domain-specific information

In UDA, we assume a labeled source domain DS = {(xs
i ,y

s
i )}

ns

i=1 and an unlabeled target domain DT =

{xt
j}

nt

j=1, where x
s/t
i ∈ X represents the observation and ys

i ∈ Y is the class label. The class label space
Y = {e1, e2, . . . , eK}, where ei is a K-dimensional one-hot vector. Denote the domain label space as
Z = {zs, zt}, where zs/t is the domain label of source/target samples. The primary task of UDA is
employing Ds and Dt to predict {yt

j}
nt

j=1.
Generally, source and target domains are supposed to have similar but not identical distributions. We

consider the random variables including feature X ∈ X , class Y ∈ Y, and domain Z ∈ Z. As shown in
Figure 2(left), some UDA methods tend to explore Z → X , i.e., feature X is conditioned on domain Z.
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Figure 2 A directed graph of MCI. Xre
k denotes the class-conditioned domain-invariant features, which is the output of the feature

extractor g(·), and Xre
k

⊥ denotes the remaining features related to domain label Z. MCI aims to find Xre
k being conditionally

independent of Z given class Y .

These methods utilize various metrics to align marginal feature distributions, which aim to remove the
impact of domain Z from feature X . However, these methods ignore the consideration of class Y during
the transferring process, which may lead to a misalignment across classes (Figure 1(left)).

Differently, we propose MCI to explore Z → X |Y = ek, which achieves class-conditioned transferring
by MCI. It is obvious that feature X and domain Z are not conditionally independent, i.e.,

P (X,Z|Y ) 6= P (X |Y )P (Z|Y ),

which can be better understood by
P (X |Z, Y ) 6= P (X |Y ). (3)

Thus, samples from the same class but different domains, i.e., Xs
k ∼ P (X |Z = zs, Y = ek) and

Xt
k ∼ P (X |Z = zt, Y = ek), do not have identical conditional distributions due to the domain-specific

information. To remove the domain-specific information from the class-conditioned feature space, as
shown in the right of Figure 2, we decompose samples from class ek across domains, i.e., Xk, with
Xk = Xre

k ⊕ Xre
k

⊥, where Xre
k is independent of domain Z and Xre

k
⊥ contains all the domain-specific

information relating to Z. Conditioning the whole class space of Y , in MCI, we propose to seek the
conditional independence of feature Xre and domain Z given class Y , i.e., Xre ⊥⊥ Z | Y .

In MCI, we use COND w.r.t. Xre = g(X), Z, and Y to explore the conditional independence in
RKHSs, where g(·) is a feature extractor. According to Lemma 1, we seek the conditional independence
Xre ⊥⊥ Z | Y by learning g(·), i.e.,

min
g
ICOND(Xre, Z|Y ) = ‖VZ̈Ẍre|Y ‖

2
HS, (4)

where the extended variables Ẍre = (Xre, Y ) and Z̈ = (Z, Y ). In the following theorem, we relate
the conditional independence to class-conditional distribution alignment. The proof is provided in
Appendix A.1.

Theorem 1. Assume that the product kẌkZ is a characteristic kernel on X × Y × Z, and FY + R is

dense in L2(PY). For any conditional distributions PS
X|Y , P

T
X|Y ∈ PrS(X|Y), we have

VZ̈Ẍ|Y = 0 =⇒ PS
X|Y = PT

X|Y .

Thus, if the conditional dependence measure in (4) is zero, we will have PS
Xre|Y = PT

Xre|Y , i.e.,

P
(
Xre|Z = zs, Y = ek) = P (Xre|Z = zt, Y = ek

)
.

In this case, the distribution of Xre is essentially and solely determined by class Y , and domain Z will
be superfluous once Y is given.

Here we obtain a desired conclusion that our MCI, i.e., the COND-based method, not only achieves the
class-conditioned transferring but also derives a class-conditional distribution alignment. By removing the
domain-specific information while preserving the discriminative structure across domains, it is expected
to obtain class-discriminative and domain-invariant representations.

We further analysis the COND-based objective (4) from an information theory perspective. Mutual
information has been widely used to measure the information shared between two random variables. More
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precisely, mutual information I(Xk, Z) = H(Xk) −H(Xk|Z) > 0 with equality if, and only if, Xk and
Z are independent. We have the inequality I(Xk, Z) 6 INOCCO(Xk, Z) holds under the assumption of
Theorem 4 in [28]. In some way, optimizing MCI via COND is equal to applying NOCCO on each class
separatively. Therefore, MCI can be viewed as a surrogate for minimizing class-wise mutual information
I(Xre

k , Z) theoretically. However, the direct estimation of mutual information is intractable if the joint
distribution is highly complex. Comparatively, the empirical conditional dependence can be measured in
the kernel space directly, without estimating any distributions.

3.3 Empirical estimation of the conditional dependence measure

In this subsection, we derive the estimation of the conditional dependence measure, i.e., ÎCOND
n (X,Z|Y ) =

‖V̂Z̈Ẍ|Y ‖
2
HS. Denote D = {(xi,yi, zi)}ni=1 as a set of samples, which are assumed to be drawn i.i.d from the

joint distribution. Since the extended variable Ẍ = (X,Y ) and Z̈ = (Z, Y ) are used for ÎCOND
n (X,Z|Y ),

we concatenate samples as D = {(ẍi,yi, z̈i)}ni=1.
We map data ẍi to RKHS FẌ with the implicit feature map φ, which satisfies the reproducing prop-

erties 〈φ(ẍi), φ(ẍj)〉F
Ẍ

= kẌ (ẍi, ẍj) and 〈φ(ẍi), f〉F
Ẍ

= f(ẍi), ∀f ∈ FẌ . Similar properties hold for
λ(z̈i) ∈ FZ̈ and ψ(yi) ∈ FY . Let KẌ , KZ̈ and KY denote kernel matrices, which can be explicitly
computed as (KẌ)ij = kẌ (ẍi, ẍj), (KZ̈)ij = kZ̈(z̈i, z̈j) and (KY )ij = kY(yi,yj). Besides, the feature
map matrices are represented as

Φ = [φ (ẍ1) , φ (ẍ2) , . . . , φ (ẍn)], Λ = [λ (z̈1) , λ (z̈2) , . . . , λ (z̈n)], Ψ = [ψ (y1) , ψ (y2) , . . . , ψ (yn)].

Then, the cross-covariance matrix of Φ and Λ can be written as

Σ̂
(n)

Z̈Ẍ
=

ΛHnΦ
T

n
,

where Hn = In − 11T

n is the centering matrix and 1 ∈ R
n is the all-ones vector. Similarly, we can

compute Σ̂
(n)

ẌẌ
and Σ̂

(n)

Z̈Z̈
based on Φ and Λ. With regularization techniques [39], the NOCCO VZ̈Ẍ can

be estimated by

V̂
(n)

Z̈Ẍ
=

(
Σ̂

(n)

Z̈Z̈
+ εnI

)−1/2

Σ̂
(n)

Z̈Ẍ

(
Σ̂

(n)

ẌẌ
+ εnI

)−1/2

,

where εn > 0 is a regularization constant. With similar derivations of V̂
(n)

Z̈Y
and V̂

(n)

Y Ẍ
, we can estimate

COND VZ̈Ẍ|Y by

V̂
(n)

Z̈Ẍ|Y
= V̂

(n)

Z̈Ẍ
− V̂

(n)

Z̈Y
V̂

(n)

Y Ẍ
.

Then, the HS norm of V̂
(n)

Z̈Ẍ|Y
can be computed by

ÎCOND
n (X,Z|Y ) = Tr(V̂

(n)T

Z̈Ẍ|Y
V̂

(n)

Z̈Ẍ|Y
).

We present the final estimation ÎCOND
n (X,Z|Y ) with kernel-based matrices in the following theorem

and give proof details in Appendix A.2. Let GẌ , GZ̈ , and GY be the centered kernel matrices, which
can be represented by corresponding kernel matrix K, i.e.,

G = HnKHT
n . (5)

Then, we define RẌ , RZ̈ , and RY by

R = G(G+ nεnIn)
−1. (6)

Theorem 2. Denote S = In − RY . The empirical estimation of the conditional dependence mea-
sure is

ÎCOND
n (X,Z|Y ) = Tr(RZ̈SRẌS). (7)
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Theorem 2 deduces an interpretable empirical estimation of the conditional dependence measure, which
improves the result in [28]. From (7), it is intuitive that ÎCOND

n (X,Z|Y ) incorporates all the conditions
of Y by adjusting RZ̈ and RẌ with S, i.e., In − RY . With Theorem 2, we can make an empirical

estimation for the COND-based objective in (4), i.e., ÎCOND
n (Xre, Z|Y ).

With the assistance of the incomplete Cholesky decomposition [40] of rank-r, the computational com-
plexity of ÎCOND

n in (7) is O(r2n). To be specific, the centered kernel matrix G can be decomposed as
G = LLT, where LT ∈ R

n×r. Such procedure requires O(r2n) operations. Then, R can be rewritten as

R = LLT(LLT + nεnIn)
−1. (8)

Applying the Sherman-Morrison-Woodbury formula on the matrix inverse in (8), the complexity of R is
O(r3). Thus, the overall computational complexity of ÎCOND

n is O(r2n).

The convergence of COND V̂
(n)
ZX|Y in HS norm is provided in [28]. Since VZX , VZY , and VYX are

HS operators, and that the regularization constant εn satisfies εn → 0 and ε3nn → ∞, we have the
convergence in probability

‖V̂
(n)
ZX|Y − VZX|Y ‖HS → 0 (n→ ∞).

Thus, the empirical conditional dependence measure, i.e., ÎCOND
n (X,Z|Y ) = ‖V̂Z̈Ẍ|Y ‖

2
HS, also converges

to ICOND(X,Z|Y ) in probability rate ε
− 3

2
n n− 1

2 .
To explore how condition Y works in the empirical conditional dependence measure ÎCOND

n (X,Z|Y ),
the empirical estimation of the dependence measure, i.e., ÎNOCCO

n (X,Z), is provided for comparison,

ÎNOCCO
n (X,Z) = Tr(RZInRXIn). (9)

Compared with INOCCO(X,Z), ICOND(X,Z|Y ) further defines a random variable Y as the condition and
characterizes the conditional dependence relation. By observing the estimations in (7) and (9), we notice
that the condition information w.r.t Y is reflected in RY , which is used to adjust the identity weights
for the kernel-based matrix R. Thus, in MCI, the intrinsic structure between feature X and domain Z
is explored by considering the class condition Y . Actually, ICOND(X,Z|Y ) is still valid in dealing with
the dependence case like INOCCO(X,Z) even if the condition Y serves as a constant. This property is
explained as follows.

Proposition 1. Assuming that kẌ and kZ̈ are radial kernels. If Y is a constant random variable, then
the empirical estimations of the conditional dependence and dependence are equal. Then,

ÎNOCCO
n (X,Z) = ÎCOND

n (X,Z|Y ),

where the radial kernel is k(x, y) = k(‖x− y‖).
The constant random variable Y means that it takes a constant value, regardless of any event that

occurs. Thus, Y is independent of both X and Z. In this case, the empirical conditional dependence
measure ÎCOND

n (X,Z|Y ) boils down to the empirical dependence measure ÎNOCCO
n (X,Z). For UDA,

Yan et al. [31] estimated ÎNOCCO
n (X,Z) between feature X and domain Z, which aims to align marginal

feature distributions across domains. Differently, our MCI pursues the class-conditional distribution
alignment by employing the empirical conditional dependence measure ÎCOND

n (X,Z|Y ). Based on the
relation between ÎCOND

n (X,Z|Y ) and ÎNOCCO
n (X,Z) in Proposition 1, MCI is also applicable to achieve a

marginal distribution alignment if the class variable Y is ignored. Thus, MCI not only seeks a class-level
distribution alignment but also can deal with more general cases.

3.4 MCI for UDA

As described in Subsection 3.2, we propose MCI for UDA, which can achieve a class-conditional distribu-
tion alignment by seeking feature Xre that satisfies the conditional independence Xre ⊥⊥ Z | Y . In this
subsection, we discuss the implementation details of MCI for UDA.

In MCI, the entire network structure consists of a feature extractor g : x 7→ xre and a classifier
C : xre 7→ ŷ. With the feature extractor g(·), the feature matrix is derived by Xre = g(X) ∈ R

d×n,
where n = ns + nt. Domain matrix Z ∈ R

2×n can be defined by the binary domain labels with a
one-hot coding scheme. Denote Y ∈ R

K×n as the class matrix. It is worth noting that target labels are
unavailable in UDA. To construct Y , we use probability (soft) predictions {ŷt

j}
nt

j=1 as pseudo-labels. In



Zhai Y M, et al. Sci China Inf Sci May 2024, Vol. 67, Iss. 5, 152108:8

Algorithm 1 MCI

Require: Source dataset Ds, target dataset Dt, batch size bs/t, εn, entropy weight βEnt, and COND weight βCOND.

Ensure: Network parameters Wg, WC , predictions {ŷt
j}

nt
j=1.

1: while not converged do

2: Sample data Bs = {xs
i ,y

s
i }

bs
i=1 and Bt = {xt

j}
bt
j=1

from Ds and Dt, respectively;

3: Forward propagate data Xre
s = g(Xs), Xre

t = g(Xt), Ŷ s = C(Xre
s ), Ŷ t = C(Xre

t );

4: Estimate the cross-entropy loss LCE by (10) and the target entropy loss LEnt by (11);

% Estimation of LCOND

5: Construct domain matrices Zs ∈ R
2×bs for Xs and Zt ∈ R

2×bt for Xt;

6: Construct matrices Xre = (Xre
s ,Xre

t ) ∈ R
d×(bs+bt), Y = (Y s, Ŷ t) ∈ R

K×(bs+bt), Z = (Zs,Zt) ∈ R
2×(bs+bt);

7: Concatenate matrices by Ẍre = (Xre ;Y ) ∈ R
(d+K)×n and Z̈ = (Z;Y ) ∈ R

(2+K)×n;

8: Map Ẍre , Z̈, and Y into RKHSs by computing kernel matrices K
Ẍre , KZ̈

, and KY as (16);

9: Compute R
Ẍre , RZ̈

, and RY via (5) and (6);

10: Estimate the conditional dependence loss LCOND by (12);

% Model update

11: Update Wg , WC by minimizing the overall objective function in (13);

12: end while

experiments, we will discuss the accuracy of pseudo-labels. With Xre, Z, and Y , MCI can calculate and
minimize the conditional dependence measure ÎCOND

n (Xre, Z|Y ).

To build a basic classification network, a supervised learning task performed on the source domain
is considered. Let Wg and WC represent the parameters of the feature extractor g(·) and the classifier
C(·), respectively. We apply the cross-entropy function on the labeled source samples, i.e.,

LCE(Wg,WC) =

K∑

i=1

ns∑

j=1

−ysij log ŷ
s
ij , (10)

where ŷsij = C(g(xs
j)) and

∑K
i=1 ŷ

s
ij = 1. ŷsij is the prediction probability of xs

j belonging to the i-th
class. ys

j is the ground-truth label of xs
j .

To explore the intrinsic structure of the target domain, we employ the entropy function, i.e.,

LEnt(Wg,WC) =

K∑

i=1

nt∑

j=1

−ŷtij log ŷ
t
ij , (11)

where ŷtij = C(g(xt
j)) and

∑K
i=1 ŷ

t
ij = 1. ŷtij is the probability prediction of xt

j belonging to the i-th
class. The entropy loss LEnt improves the quality of target pseudo-labels by reducing the uncertainty of
target predictions, which benefits the estimation of the conditional dependence measure.

To perform the class-conditioned transferring, the conditional dependence ICOND(Xre, Z|Y ) shown
in (4) is estimated by the extracted feature Xre, domain Z and class Y . We firstly extend variables
as Ẍre = (Xre, Y ) and Z̈ = (Z, Y ). Corresponding samples are concatenated as Ẍre ∈ R

(d+K)×n and
Z̈ ∈ R

(2+K)×n, respectively. Then, the kernel matrix KẌre can be explicitly computed by kẌ (ẍre
i , ẍ

re
j ).

Kernel matrices KZ̈ and KY can be derived in a similar way. According to the estimation of conditional

dependence in Theorem 2, ÎCOND
n (Xre, Z|Y ) is estimated as

LCOND(Wg) = RZ̈SRẌreS. (12)

With positive hyper-parameters βCOND and βEnt, the objective function of MCI can be written as

LMCI(Wg,WC) = LCE + βCONDLCOND + βEntLEnt. (13)

The training pipeline of MCI is provided in Algorithm 1. According to Lemma 1, minimizing LCOND

ensures a conditional independence, i.e., Xre ⊥⊥ Z | Y . Then, Theorem 1 indicates that it is expected to
align the class-conditional distributions, i.e., PS

Xre|Y = PT
Xre|Y . Thus, the classifier trained in the aligned

feature space tends to give more accurate target pseudo-labels. The estimation of LCOND will be more
precise and reliable, which leads to a better class-conditional distribution alignment. Therefore, feature
learning and classifier learning can benefit from each other and promote the training of the adaptation
model.
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3.5 Theoretical analysis

Following we provide a new theoretical insight based on the divergence between class-conditional distri-
butions PS

X|Y and PT
X|Y . Based on [2], domain D = (µ, f) is defined by a distribution µ on inputs X and

a labeling function f . The probability according to the distribution µ that a hypothesis h disagrees with
a labeling function f (which can also be a hypothesis) is defined as

ǫD(h) = ǫD(h, f) = Ex∼µ[I(h(x), f(x))],

where I(·, ·) is an indicator function. For the source and target domains, we denote the source error and
target error of a hypothesis h as ǫS(h) and ǫT (h), respectively.

Theorem 3. Let H be a hypothesis space of VC dimension d, m be the sample size of the source
domain and fs be the ground truth labeling function for the source domain. If ĥ ∈ H is the empirical
minimizer of ǫ̂S(h) and h

∗
T = argminh∈H ǫT (h) is the target error minimizer, then for any δ ∈ (0, 1), with

probability at least 1− δ,

ǫT (ĥ) 6 ǫT (h
∗) + 2

(
λ+

1

2
EY [dH∆H(PS

X|Y , P
T
X|Y )] + ‖PS

Y − PT
Y ‖1

)
+ 2

√
1

2m

(
log

d

δ

)
, (14)

where λ = minh∈H{ǫS(h) + ǫT (h)}.
Theorem 3 shows the upper bound on the target error of the learned hypothesis. Here we focus on

the expectation of divergence between the class-conditional distributions, i.e., EY [dH∆H(PS
X|Y ,P

T
X|Y )],

and the joint prediction error λ. The former item evaluates the discrepancy between class-conditional
distributions, which motivates class-conditioned transferring based UDA methods. MCI aims to remove
the domain-specific information by achieving the conditional independence with VẌreZ̈|Y = 0. Theorem 1

ensures that MCI derives a class-conditional distribution alignment, i.e., PS
Xre|Y = PT

Xre|Y . This indicates
that optimizing MCI is equal to minimizing the expectation of the class-conditioned H∆H-divergence.

If the joint prediction error λ in (14) is large, it is impossible to learn a classifier that performs well on
both domains. Thus, it is also important to bound λ. We mathematically show that MCI optimizes the
upper bound of λ by using the pseudo-labels. Based on the triangle inequality for classification error [41],
i.e., ǫ(f1, f2) 6 ǫ(f1, f3) + ǫ(f3, f2), for any labeling functions f1, f2 and f3, we have

λ = min
h∈H

ǫS(h, fs) + ǫT (h, ft) 6 min
h∈H

ǫS(h, fs) + ǫT (h, fs) + ǫT (fs, ft). (15)

To present a more clear illustration, we decompose the hypothesis into the feature extractor g(·) and
classifier C(·). Thus, Eq. (15) can be rewritten as

min
g,C

ǫS(C ◦ g, Cs ◦ g) + ǫT (C ◦ g, Cs ◦ g) + ǫT (Cs ◦ g, Ct ◦ g),

where fs = Cs ◦ g and ft = Ct ◦ g. The first and second items denote the disagreements between
the classifier C(·) and the source classifier Cs(·) on source and target domains, respectively. With the
supervised training on the labeled source domain, the disagreements can be decreased by approximating
Cs(·). The last item originally denotes the disagreement between the source labeling function fs and the
target labeling function ft on the target domain, which is nonnegative. If g(·) maps samples from the same
class but different domains nearby in the latent feature space, Cs(·) and Ct(·) will have similar decision
boundaries on the target domain. Then, the last item can be decreased by learning class-discriminative
and domain-invariant features, which can be sufficiently guaranteed by the class-conditional distribution
alignment. Thus, the three items in (15) are expected to be small. The joint prediction error λ can be
optimized by the training of MCI.

4 Experiments

4.1 Datasets and implementation details

Image-CLEF [42]. This dataset has 3 domains with 12 classes, i.e., Caltech (C), ImageNet (I), and
Pascal (P). Especially, it is a balanced dataset as each domain contains 600 images.
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Office-10 [6]. This dataset contains 2533 images from 4 domains with 10 classes, i.e., Amazon (A),
Caltech (C), DSLR (D), and Webcam (W). There are 8 to 151 samples per class per domain.

Office-31 [43]. This dataset contains 4110 images from 3 domains with 31 classes, i.e., Amazon (A),
Webcam (W), DSLR (D).

Office-Home [44]. This dataset consists of 15500 images from 4 domains with 65 classes. The domains
include Artistic (Ar), Clipart (Cl), Product (Pr), and Real-World (Rw). Each class has around 70 images
and 99 images maximally.

VisDA-2017 [45]. This is a challenging large-scale dataset, which consists of 280k images in 12 classes.
Domain synthetic (S) includes 152397 synthetic images generated by 3D models. Domain real-image (R)
collects 55388 object images. A synthetic-to-real domain gap will be explored.

DomainNet [46]. This is the largest domain adaptation dataset so far. It contains about 0.6 million
images from 6 domains with of 345 classes: Clipart (clp), Infograph (inf), Painting (pnt), Quickdraw
(qdr), Real (rel), and Sketch (skt).

MCI is trained with back-propagation in a mini-batch manner. The feature extractor g(·) is based on
a backbone followed by two/three fully-connected layers with 512/256 output units, where the backbones
include convolutional neural networks (CNNs) and vision transformer (ViT) [47]. ResNet-50/101 [48]
and AlexNet [49] are employed as the CNNs backbones. ViT-base with 16×16 patch size [47] is employed
as the ViT backbones. All backbones are pre-trained on ImageNet [50]. The classifier C(·) is a single
fully-connected layer with K output units and a softmax activate function. The Gaussian kernel is used
due to its characteristic property. Thus, kernel matrix K can be computed by

Kij = exp
(
−Dij/σ

2
)
, Dij = ‖xi − xj‖

2
2, σ2 = 1TD1/n2, (16)

where 1 ∈ R
n is the all-ones vector and σ2 equals to the mean of all the square Euclidean distances Dij .

The εn in (6) is set as 1e−5 for Image-CLEF and Office-10, and 1e−4 for other datasets.

4.2 Main results

In this subsection, we evaluate MCI with two kinds of backbones, i.e., CNNs (AlexNet, ResNet-50/101)
and ViT (ViT-Base), and present comparisons against state-of-the-art UDA methods.

CNNs-based results. The results on Image-CLEF, Office-10, and Office-31 are reported in Table 1.
MCI substantially achieves the highest mean accuracy on these datasets. The encouraging results indicate
the importance of class-conditioned transferring and the effectiveness of MCI. The Source-Only model
basically trains a cross-entropy loss on the source domain. The average accuracies of marginal adaptation
methods (e.g., CORAL [5], GFK [6], DAN [4], DANN [7], OT-IT [29], KGOT [30], and ETIC [32]) are
higher than the Source-Only model, which shows that matching marginal distributions can alleviates do-
main discrepancy. Specifically, ETIC outperforms most marginal methods, which indicates the advantage
of the independence criterion. We also find that class-conditioned transferring methods (e.g., CTSN [21],
DSAN [13], DMP [35], ATM [14], BuresNet [36], SymmNets-V2 [22], WCEL [37], DCAN+SCDA [17],
and MCI) improve significantly over these marginal adaptation methods. CDAN+E [9] formulates the
joint adaptation by incorporating the class variable into DANN, and its average accuracy lies between
most marginal adaptation methods and class-conditioned transferring methods. These results indicate
the importance of class information in promoting the transferability and discriminability of adaptation
models. Specifically, MCI outperforms other class-conditioned transferring methods, which indicates the
superiority of MCI in explicitly exploring the relations among feature, domain, and class.

The results on Office-Home, VisDA-2017, and DomainNet are presented in Tables B2, B4, and B5,
respectively. Class-conditioned transferring methods and marginal methods have similar conclusions as
mentioned above. The performance of SHOT [24] is slightly better than MCI on Office-Home and VisDA-
2017, probably due to its efforts to obtain reliable target predictions. DCAN+SCDA employs class-wise
MMD, pair-wise Jensen-Shannon divergence, and domain-wise attention, while MCI only relies on a
conditional dependence measure. Thus, it is reasonable that DCAN+SCDA performs better than MCI
on Office-Home. Nevertheless, the mean accuracy of MCI is higher than most methods, e.g., DSAN,
DMP, ATM, BuresNet, SymmNets-V2, and WCEL, on Office-Home and VisDA-2017. Though WCEL
is built upon correlation learning, MCI improves the mean accuracy over WCEL by 2.1% and 1.5% on
Office-Home and VisDA-2017, respectively. This result further confirms that MCI is effective in exploring
the relations among feature, class, and domain. MCI obtains the highest average accuracy with 36.9%
on DomainNet. The average accuracy of MCI makes an improvement over MDD+SCDA [17] by 3.6%,
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Table 1 Accuracies (%) on Office-31, Image-CLEF (ResNet-50) and Office-10 (AlexNet)a)

Method
Office-31 Image-CLEF

A→W D→W W→D A→D D→A W→A Mean I→P P→I I→C C→I C→P P→C Mean

Source-Only [48] 68.4 96.7 99.3 68.9 62.5 60.7 76.1 74.8 83.9 91.5 78.0 65.5 91.2 80.7

DAN [4] 80.5 97.1 99.6 78.6 63.6 62.8 80.4 74.5 82.2 92.8 86.3 69.2 89.8 82.5

DANN [7] 82.0 96.9 99.1 79.7 68.2 67.4 82.2 75.0 86.0 96.2 87.0 74.3 91.5 85.0

KGOT [30] 75.3 96.2 98.4 80.3 65.2 63.5 79.8 76.3 83.3 93.5 87.5 74.8 89.0 84.1

ETIC [32] 88.0 100.0 98.0 85.9 68.2 69.0 84.8 80.4 91.3 95.1 90.9 78.4 94.2 88.4

CDAN+E [9] 94.1 98.6 100.0 92.9 71.0 69.3 87.7 77.7 90.7 97.7 91.3 74.2 94.3 87.7

DSAN [13] 93.6 98.3 100.0 90.2 73.5 74.8 88.4 80.2 93.3 97.2 93.8 80.8 95.9 90.2

DMP [35] 93.0 98.7 100.0 92.4 75.4 74.2 88.9 80.7 92.5 97.2 90.5 77.7 96.2 89.1

ATM [14] 95.7 99.3 100.0 96.4 74.1 73.5 89.8 80.3 92.9 98.6 93.5 77.8 96.7 90.0

SHOT [24] 90.1 98.4 99.9 94.0 74.7 74.3 88.6 – – – – – – –

DCAN+SCDA [17] 94.8 98.2 100.0 94.6 77.5 76.4 90.3 – – – – – – –

BuresNet [36] – – – – – – – 80.7 93.7 97.0 93.5 79.2 97.0 90.2

SymmNets-V2 [22] 94.2 98.8 100.0 93.5 74.4 73.4 89.1 79.0 93.5 96.9 93.4 79.2 96.2 89.7

MCI 93.8 99.0 100.0 96.8 86.2 83.4 93.2 82.0 92.8 97.0 95.8 82.2 96.0 90.9

Office-10

A→C A→D A→W C→A C→D C→W D→A D→C D→W W→A W→C W→D Mean

Source-Only [49] 82.7 85.4 78.3 91.5 88.5 83.1 80.6 74.6 99.0 77.0 69.6 100.0 84.2

GFK [6] 78.1 84.7 76.3 89.1 88.5 80.3 89.0 78.4 99.3 83.9 76.2 100.0 85.3

CORAL [5] 85.3 80.8 76.3 91.1 86.6 81.1 88.7 80.4 99.3 82.1 78.7 100.0 85.9

OT-IT [29] 83.3 84.1 77.3 88.7 90.5 88.5 83.3 84.0 98.3 88.9 79.1 99.4 87.1

KGOT [30] 85.7 86.6 82.4 91.4 92.4 87.1 91.8 85.6 99.3 89.7 85.0 100.0 89.7

ETIC [32] 84.5 91.1 93.2 93.2 96.0 91.4 79.0 72.3 97.3 77.0 68.8 100.0 87.0

DMP [35] 86.6 90.4 91.3 92.8 93.0 88.5 91.4 85.3 97.7 91.9 85.6 100.0 91.2

BuresNet [36] 87.0 93.6 90.2 93.4 93.6 90.8 92.7 83.5 100.0 92.4 84.3 100.0 91.8

MCI 87.9 92.7 96.0 93.7 94.5 94.1 93.1 87.0 99.6 93.8 86.6 100.0 93.2

a) Bold font indicates the highest accuracy.

which shows the superiority of MCI. Overall, we conclude that MCI is helpful in reducing the domain
discrepancy on challenging datasets.

ViT-based results and backbone analysis. With the surge of a transformer, we exploit ViT-B
as the feature extractor to evaluate MCI. The comparison methods include CDtrans [26], TVT [27],
SSRT-B [18], and SHOT [24]. The transformer-related results on Office-31 are reported in the second
row of Table B1. We can observe that MCI achieves the highest accuracy with 94.0%. Considering
the results based on AlexNet and ResNet-50, we conclude that MCI can promote performance under
different backbones. The results on Office-Home are presented in Table B3. The mean accuracy of
MCI is 5.3% higher than SHOT, which indicates that MCI can show more advantages under a stronger
backbone. Since Office-Home has 65 categories, the self-training strategy in SSRT-B and the information
maximization loss in TVT play a vital role in boosting performance. It might be why SSRT-B and
TVT perform slightly better than MCI. Though CDtrans designs a cross-attention module and labeling
strategy, MCI achieves a better performance than it. Overall, MCI is effective in aligning domains with
different backbones.

4.3 Ablation studies and discussion

Parameter sensitivity. We evaluate the parameter sensitivity on Image-CLEF. Figures 3(a) and (b)
show grid search results by selecting βCOND from {1e−2, 1e−1, 1e0, 1e1} and βEnt from {5e−3, 5e−2,
5e−1, 5e−0, 5e1}, where (βCOND, βEnt) = (1e−1, 5e−2) is the optimal setting for the two tasks. In
general, MCI is stable under different parameter settings. We can find that the accuracy decreases with
smaller values of βCOND. Such results indicate that maximizing the conditional independence is vital for
achieving better performance.

Ablation study. To explore the impact of LCOND and LEnt, we design ablation experiments from
three aspects: MCI without LCOND, MCI without LEnt, and HSIC [31] based on (9), where HSIC matches
marginal distributions by maximizing independence of the feature and domain. In Table 2, we observe
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Figure 3 (Color online) Parameter sensitivity of βCOND and βEnt on Image-CLEF tasks (a) C → I and (b) C → P; (c) A-distance

and AC-distance on Image-CLEF task C → I. The lower, the better.

Table 2 Accuracies (%) of ablation studies on Image-CLEF and Office-Home datasets

Method
Image-CLEF Office-Home

C→P I→P C→I P→C Cl→ Rw Pr → Ar Rw → Ar Rw → Pr

MCI (w/o LCOND) 77.6 79.5 91.5 93.9 70.3 61.1 67.6 80.8

MCI (w/o LEnt) 81.8 81.7 95.5 95.2 75.5 64.4 69.1 83.0

HSIC [31] 80.7 81.6 95.1 93.8 71.3 61.6 68.0 82.2

MCI 82.2 82.0 95.8 96.0 76.3 64.8 69.3 83.3

Table 3 Dependence test on Image-CLEF task C → Ia)

Source-Only [48] DANN [7] HSIC [31] ATM [14] MCI (w/o LEnt) MCI

ÎNOCCO
n 0.3444 0.2402 0.0572 0.1349 0.0672 0.0485

ÎNOCCO
nC

0.7370 0.7205 0.5354 0.6337 0.4959 0.4293

Accuracy (%) 78.0 87.0 95.1 93.5 95.5 95.8

a) Lower values indicate lower dependence.

that MCI consistently achieves the best, which suggests the superiority of MCI. MCI (w/o LEnt) surpasses
MCI (w/o LCOND) with at least 1.6% in accuracy, which indicates that loss LCOND plays a key role in
the class-conditioned transferring. The accuracies of MCI are higher than HSIC, which validates that the
class-discriminative and domain-invariant features are helpful in training a discriminative classifier.

Dependence test. We estimate ÎNOCCO
n to explore the dependence of feature and domain. ÎNOCCO

nC
=

E[ÎNOCCO
nc

] is defined to estimate a class-level dependence. In Table 3, the Source-Only has the highest
domain-level and class-level dependence values and lowest classification accuracy. DANN reduces the
domain-level dependence and improves the accuracy of Source-Only by learning domain-invariant features.
Class-conditioned transferring methods ATM and MCI perform better with much lower dependence values
than DANN. HSIC achieves lower dependence values and gives better accuracy than ATM, which shows
the superiority of the dependence measure in dealing with UDA. MCI achieves the best result along with
the lowest dependence at both levels, which validates the superiority of MCI.

Distribution discrepancy. To measure the domain discrepancy, we employ A-distance dA=2(1−2ǫ),
where ǫ is the test error of a classifier which is trained to discriminate domains [2]. We also estimate the
class-level distribution discrepancy by dAC=E[dAc ], where dAc is the A-distance of the class-conditional
distributions based on class yc. In Figure 3(c), MCI (w/o LCOND) has smaller A-distance and AC -
distance than MCI (w/o LEnt), which validates that LCOND is the key of MCI. Though ATM and MCI
have similar A-distance, MCI has a smaller AC -distance. Thus, MCI is helpful to learn more separable
features.

Feature visualization. To evaluate the aligned features intuitively, we use t-SNE [51] to visualize
the features of Source-Only, DANN, and MCI on Image-CLEF task C→I, as shown in Figures 4(a)–(c).
In Figure 4(a), the source and target domains have different spatial distributions before adaptation.
Compared with DANN, MCI has intra-class compactness and inter-class separability, which validates
that MCI leads to a class-conditional distribution alignment by MCI.

Pseudo labeling. To compute LCOND, we exploit pseudo-labels of target samples. The pseudo-labels
are dynamically updated in each iteration. From Figure B1, we can see that the accuracy of pseudo-labels
is steadily increasing with the iteration until convergence. Compared with MCI w/o LEnt and MCI w/
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(a) (b) (c)

Figure 4 (Color online) The t-SNE visualization of features generated by (a) Source-Only, (b) DANN, and (c) MCI on Image-

CLEF task C → I. Here, “◦” means source domain and “+” means target domain. Each color denotes one class.

hard predictions, the pseudo-label accuracy of MCI converges at a higher level, which shows that LEnt

and soft predictions can boost the reliance of pseudo-labels.
Time comparison. We compare the time of metric estimation in Table B6. For MCI, the time is the

cost of computing LCOND with extracted features, similarly for HSIC and ETIC. All experiments are run
on a device with an NVIDIA GTX1080Ti GPU. From Table B6, we obtain the following observations:
(1) MCI and HSIC take longer time than ETIC since they have to calculate the inverse of the kernel
matrix. MCI and HSIC are built upon covariance operators in RKHSs. The time of MCI is slightly longer
than HSIC due to MCI models one more variable. (2) MCI achieves higher accuracies than other methods
and significantly improves the harder task W→A. Though MCI takes a longer time, it has superiority
in classification performance. Therefore, MCI is generally practical, which ensures significant accuracy
improvement with slightly increased computation cost.

5 Conclusion

In this paper, we deal with UDA by removing the domain-specific information while preserving the dis-
criminative structure simultaneously. Specifically, we explore the class-conditioned transferring from a
new statistical perspective, which maximizes the conditional independence of the extracted features and
domain-specific information. Meanwhile, this transferring derives a class-conditional distribution align-
ment mathematically. By providing an interpretable empirical estimation of the conditional dependence,
it is clear that the class-conditional information is sufficiently considered to learn the class-conditioned
domain-invariant features. We also derive an informative upper bound of the target error based on the
class-conditional distributions, which provide a theoretical insight into our proposal. Extensive experi-
ments validate the effectiveness of our MCI in dealing with UDA.
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