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Appendix A Optimization Objectives and Equivalence Proof

As mentioned in the main text, three optimization objectives about makespan, flowtime, and sum-of-costs in the offline scenario

are actually the degenerated forms of the three optimization objectives about average throughput, average delay time, and average

travel distance in the online scenario, respectively. Here, we give three brief proofs of the equivalence between online and offline

optimization objectives.

Proposition 1. Maximizing average throughput in online scenarios is equivalent to minimizing makespan in offline scenarios.

Proof. As defined in the main text,

throughput(Γ )
.
= (1/T)

T∑
t=1

|Gb−
t | (A1)

makespan(Γ )
.
= T (A2)

In offline scenarios, agents reach and complete all targets at the end, i.e.,
∑T

t=1 |Gb−
t | = |Ge

0 |. Since Ge
0 is a static set initialized at

the beginning of an offline task and |Ge
0 | is a static value, maximizing throughput(Γ ) =

|Ge
0 |

T is obvious equivalent to minimizing

makespan(Γ ) = T .

Proposition 2. Minimizing average delay time in online scenarios is equivalent to minimizing flowtime in offline scenarios.

Proof. As defined in the main text,

delay(Γ )
.
=

1

|Ge
0 | +

∑T−1
t=1 |Ge+

t |

T∑
t=1

|Gb
t | (A3)

flowtime(Γ )
.
=

T∑
t=1

|Gb
t | (A4)

In offline scenarios, no targets are added after time step 0, i.e., |Ge
0 | +

∑T−1
t=1 |Ge+

t | = |Ge
0 |. Since |Ge

0 | is a static value, minimizing

delay(Γ ) = 1
|Ge

0 | flowtime(Γ ) is obvious equivalent to minimizing flowtime(Γ ).

Proposition 3. Minimizing average travel distance in online scenarios is equivalent to minimizing sum-of-costs in offline scenarios.

Proof. As defined in the main text,

dis(Γ )
.
=

1

|Ae
0| +

∑T−1
t=1 |Ae+

t |

T∑
t=1

∑
a∈Ae
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soc(Γ )
.
=

T∑
t=1

∑
a∈Ae

t−1

1(p
e
t−1(a) ̸= p

b
t(a)) (A6)

In offline scenarios, no agents are added after time step 0, i.e., |Ae
0|+

∑T−1
t=1 |Ae+

t | = |Ae
0|. Since |Ae

0| is a static value, minimizing

dis(Γ ) = 1
|Ae

0| soc(Γ ) is obvious equivalent to minimizing soc(Γ ).

Appendix B Method Details

The training procedure of PROFILE is illustrated by Algorithm 1.
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Algorithm 1: The training procedure of PROFILE

Input: DT = {(Ωe,t, ai, y
Opt
e,t,i)|Ωe,t ∈ Ω, ai ∈ A, yOpt

e,t,i ∈ Y ∧ yOpt
e,t,i = VOGS(Ωe,0, ai, t)}: training data

generated by VOGS algorithm, where VOGS function return the action of agent ai at time t
along its path planned by VOGS algorithm for the eth experiment;

1 While not done do
2 Sample a batch of samples DTi from DT
3 With perception field learner do
4 Compute interaction matrices IM with their definition

5 Compute distance embeddings DMan, DHor and DV er with Equation 9 and Equation 10
6 Compute the perception field F∗ with Equation 8 and Equation 11
7 With integrating field classifier do

8 Compute queryHor, queryV er, keyHor, keyV er, WHor and WV er with Equation 12

9 Compute valueHor, valueV er, ZHor
cls′ and ZHor

cls′ with Equation 13
10 Compute the final prediction PΦ(Y |Ω, a) with Equation 14 and Equation 15
11 Compute the cross-entropy loss l with Equation 16
12 Update all the learnable parameters θ ← θ − η▽θ l(θ)
13 end while

Appendix C Evaluation Metrics
Our approach aims to learn an effective solution for both offline and online unlabeled MAPF tasks with a large collective. Hence,

to research generalization ability, we evaluate the average completion rate, success rate, and average sum-of-costs in offline settings,

and average throughput in online settings; to research scalability, we evaluate average running time in both offline and online

settings. Thus we give the definitions of these metrics as follows.

Metrics for Generalization Ability.

Offline Metric. Given an offline test setting E = (G[W,H], A, S, T , T,N) where G[W,H] denotes a grid environment; A denotes a

group of agents; S denotes a target shape; T denotes a running time threshold; T denotes a moving steps threshold; and N denotes

the number of repeated experiments for A to form S within the threshold T /T in environment G[W,H], the effectiveness of a policy

P under this setting E is evaluated by three indicators: average completion rate, success rate, and average sum-of-costs.

Definition 1 (Avg. Completion Rate). The average completion rate, i.e., the average rate of target grids to be occupied at the

end of each experiment, is denoted as ρ and defined as follows:

ρ(E,P)
.
=

1

N

N∑
e=1

|CE,P,e|
|S| , (C1)

where CE,P,e denotes the set of occupied target grids when the e’th experiment terminates.

Definition 2 (Success Rate). The success rate, i.e., the rate of completely forming the shape in N experiments, is denoted as ζ

and defined as follows:

ζ(E,P)
.
=

1

N

N∑
e=1

1(e), (C2)

where 1(e) = 1 if S is formed when the e’th experiment terminates, and 0 otherwise (the experiment terminates when either S is

formed, or the number of iterations exceeds a pre-defined threshold T , or the running time exceeds a pre-defined threshold T ).

Definition 3 (Avg. Sum-of-Costs). A commonly used measure average sum-of-costs [4, 9], i.e., the average total travel distance

of the group in each experiment, is denoted as l and defined as follows:

l(E,P)
.
=

1∑N
e=1 1(e)

N∑
e=1

1(e)

|A|∑
i=1

|pi,E,P,e|, (C3)

where pi,E,P,e denotes the path of agent ai to form shape S under setting E by algorithm P when the e’th experiment terminates.

Online Metric. Referring to works in [7, 10], we research two online scenarios, called pick-up and intersection. In both online

scenarios, N targets and N agents are randomly distributed in a given grid environment at the beginning. In pick-up(/intersection),

when an agent arrives at a target grid, the current target(/agent) disappears, and a new target(/agent) will be randomly released

at an empty grid, i.e., a grid without any agent and task. All agents need to reach and complete targets within the environment

continuously. The objective is to maximize the throughput, i.e., the average number of targets reached per unit of time.

Accordingly, given a pick-up(/intersection) setting Ed = (G[W,H], A0, S0, T , T,N), where A0 and S0 are the initial agent and

target locations in the scenario, the scenario generality of a policy P under this setting is evaluated by the average throughput.

Definition 4 (Avg. Throughput). The average throughput is denoted as o and defined as follows:

o(Ed,P)
.
=

1

N × T

N∑
e=1

T∑
t=1

|It|, (C4)

where It = {ai|pt(ai) ∈ St} denotes the set of agents who reaches a target grid at time t, pt(ai) indicates the location of ai at

time t.
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Figure E1 The avg. makespan under random target distribution in 160×160 world.

Metrics for Scalability.

Offline Metric. Given an offline test setting E = (G[W,H], A, S, T , T,N), the efficiency of a policy P under this setting is

evaluated by the average running time (per case).

Definition 5 (Avg. Running Time (Offline)). The average running time is denoted as τ and defined as follows:

τ(E,P)
.
=

1

N

N∑
e=1

τE,P,e, (C5)

where τE,P,e denotes running time of algorithm P to form shape S under setting E when the e’th experiment terminates.

Online Metric.

Given a pick-up(/intersection) setting Ed = (G[W,H], A0, S0, T , T,N), the efficiency of a policy P under this setting is evaluated

by the average running time (per step).

Definition 6 (Avg. Running Time (Online)). The average running time in an online scenario is denoted as ϵ and defined as

follows:

ϵ(E
d
,P)

.
=

1

T
τ(E

d
,P). (C6)

Appendix D Baselines

MAPF baselines.

(1) CBS [1], a centralized distance-optimal method for multi-agent pathfinding (MAPF) with a given task assignment, expands

the search tree by adding new constraint nodes when encountering conflicts. The code is available at https://github.com/Jiaoyang-

Li/CBSH2-RTC.

(2) DHC [7], a reinforcement learning based algorithm for MAPF with a given task assignment, treats each agent indepen-

dently and embeds the potential choices of shortest paths from a single source as heuristic guidance. The code is available at

https://github.com/ZiyuanMa/DHC.

(3) PRIMAL2 [3], a distributed learning based algorithm combining reinforcement learning and imitation learning for one-shot

MAPF and life-long MAPF (LMAPF). ODrM∗ is used to generate expert demonstrations. Two models, PRI2-M and PRI2-LM,

are trained in MAPF and LMAPF scenarios, respectively. The code is available at https://github.com/marmotlab/PRIMAL2.

(4) MAGAT [5], an imitation learning based approach that utilizes a message-aware graph attention network to learn from an

expert for the MAPF problem. The code is available at https://github.com/proroklab/magat pathplanning.

To the best of our knowledge, there is no learning-based approach for static/online unlabeled MAPF in the grid world, which is

why we choose three learning-based methods (DHC, PRIMAL2, and MAGAT) designed for MAPF as our baselines. Among them,

MAGAT is an IL approach and has a very similar setting to PROFILE.

Unlabeled MAPF baselines.

(1) VOGS [11], a centralized distance-optimal method for shape formation, utilizes a vertex ordering and goal-swap policy in path

replanning to resolve conflicts. We also use VOGS to generate train/test datasets for supervised learning. Code is implemented by

ourselves, according to the paper.

(2) ALF [2], a self-organized method based on an artificial light field for shape formation, designs two different light signals to

attract agents towards targets and expel agents away from others. Code is implemented by ourselves, according to the paper.

(3) TSWAP [8] is a complete centralized algorithm for unlabeled MAPF, consisting of target assignment with lazy evaluation and

path planning with target swapping. The code is available at https://github.com/AlbaIntelligence/unlabeled-MAPF.

(4) Maxflow [6,12] reduces unlabeled MAPF into a maxflow problem and solves it within polynomial time. The code is available

at https://github.com/AlbaIntelligence/unlabeled-MAPF.

Appendix E Other Results

Appendix E.1 Results on Makespan

We also evaluate the average makespan, i.e., the average maximum travel distance of the group in each experiment, which is denoted

as t and defined as follows:

Definition 7 (Avg. Makespan).

t(E,P)
.
=

1∑N
e=1 1(e)

N∑
e=1

1(e) max
i∈[1,|A|]

|pi,E,P,e|. (E1)
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Table E1 The changes of avg. makespan (Mksp) under random target distribution with 512 agents and increasing
world sizes. (The best results among all planning-based/learning-based methods are bolded, and the best results
among all methods are underlined.)

World Planning-Based Methods Learning-Based Method

Size VOGS CBS TSWAP Maxflow ALF DHC PRI2-M MAGAT b Ours.

40 10 - 5.7 4.4 - - - - 11.1

Mksp 80 23.8 28.9 10.9 10.0 - 54.9 - - 29.8

160 40.5 61.0 21.9 21.5 - 77.2 - - 53.6

Table E2 The changes of avg. makespan (Mksp) under 156 types of connected target distribution with increasing
world sizes. (The best results among all planning-based/learning-based methods are bolded, and the best results
among all methods are underlined.)

World Planning-Based Methods Learning-Based Method

Size VOGS CBS TSWAP Maxflow ALF DHC PRI2-M MAGAT b Ours.

10 6.5 7.8 6.0 5.7 15.6 14.1 - - 8.5

Mksp 20 14.2 16.8 12.9 11.8 28.8 31.6 - - 22.6

40 31.5 36.5 30.6 24.4 49.2 - - - 40.8

The avg. makespan under random target distribution of different methods in 160×160 world is shown in Figure.E1. The

PROFILE’s performance on avg. makespan under random target distribution with 512 agents and increasing world sizes is shown

in Table. E1. And the PROFILE’s performance on avg. makespan under 156 types of connected target distribution with increasing

world sizes is shown in Table. E2.

(a) (b)

Figure E2 The ablation study results under random target distribution in offline 80times80 world as the team size increases.

(a) the avg. completion rate of CNN-MLP, PROFILE-CNN, PROFILE-Attention-Free, and PROFILE; (b) the avg. sum-of-costs

of CNN-MLP, PROFILE-CNN, PROFILE-Attention-Free, and PROFILE

Appendix E.2 Results for Ablation Study

This section reports the results of ablation experiments. Specifically, we test the three variants of PROFILE (PROFILE-CNN,

PROFILE-Attention-Free, and CNN-MLP) in two offline settings and two online settings like experiments in the main text Section

5.3.1.

For offline experiments, the results under random target distribution are reported in Appendix Table E3 and Figure E2. Com-

paring results in Table E3 and Figure E2 with the results in Figure 4.(c), we can find that when the team density remains the

same (e.g., 128 agents in a 40-sized world v.s. 512 agents in an 80-sized world), the performances of PROFILE and PROFILE-Free-

Attention are relatively consistent, while the performances of PROFILE-CNN and CNN-MLP sharply drop. Such results reflect

that the perception field has a greater effect and necessity in larger environments.

The results under connected target distribution are reported in Appendix Table E4. Without the perception field, the perfor-

mances of two variants (PROFILE-CNN and CNN-MLP) sharply decrease in both the average completion rate and success rate.

However, these two variants still show an advantage over learning-based baselines like DHC in the main text. Two possible reasons

behind this are (1) the differences between task assignment policy in training and testing. Specifically, current learning-based meth-

ods are designed for labeled MAPF instead of unlabeled MAPF; thus, the trained models in these methods rely on the properties of

the hidden task assigner behind its training data consisting of specific task assignment information. And when the task assignment

policies are mismatched between training and testing, the method’s performance will drop; (2) the suboptimality of decoupled task

assignment and pathfinding in unlabeled MAPF. As mentioned in related works in the main text, simply decomposing unlabeled

MAPF into two independent sub-problems of task assignment and pathfinding seriously affects the quality and efficiency of the

final solution since these two sub-processes are not jointly optimized.

The results of two online settings are reported in Appendix Table E5, in which all variants achieve acceptable performance.

In summary, ablation results show the following three patterns:
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Table E3 The avg. completion rate (CR) and avg. sum-of-costs (SoC ) of PROFILE and its variants under
random target distribution in 80-size world with increasing number of agents.

#Agt. PROFILE CNN-MLP PR.-CNN PR.-Att.Free

16 94.4 88.0 91.1 91.4

32 96.5 87.5 93.4 91.6

64 97.3 87.8 93.6 93.8

128 99.4 85.3 93.0 94.2

CR 256 99.4 83.1 89.4 93.6

512 98.7 79.8 87.7 91.3

1024 97.8 79.0 86.8 90.5

2048 97.7 78.9 86.2 89.0

16 364.0 866.3 622.4 373.2

32 533.3 1237.1 890.5 619.9

64 828.5 1739.9 1425.0 877.3

128 1248.7 2996.9 2185.2 1635.6

SoC 256 1864.2 4585.9 3392.8 2404.0

512 2602.9 6585.2 5097.5 3444.0

1024 4267.2 11649.5 8705.1 5666.8

2048 7507.3 20494.9 15990.5 10035.4

Table E4 The avg. completion rate (CR), success rate (SR), and avg. sum-of-costs (SoC ) of PROFILE and its
variants under 156 types of connected target distribution with increasing world sizes.

Size PROFILE CNN-MLP PR.-CNN PR.-Att.Free

10 100.0 74.5 76.0 99.6

CR 20 99.9 66.9 70.7 98.9

40 99.7 44.0 58.5 99.4

10 100.0 70.3 72.3 94.1

SR 20 97.2 61.5 66.4 91.5

40 92.6 28.0 31.7 90.7

10 89.9 175.8 142.0 92.4

SoC 20 532.3 1065.5 776.1 606.1

40 3732.3 6213.6 5455.6 3855.0

• in both static and dynamic settings, the perception contributes significantly to PROFILE’s generalization ability, and the

triplet cross-attention mechanism is also indispensable because it helps to further integrate and refine the perception fields and

utilize them for high-quality action decision-making;

• comparing two static settings, the existence of perception field has a greater effect on the method’s performance under connected

than random target distributions scenarios, while the opposite is true for the triplet cross-attention mechanism;

• comparing two dynamic settings, there is no apparent difference between the effects of the perception field in pick-up and

intersection scenarios, and the same is to the triplet cross-attention mechanism.
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Table E5 The avg. throughput (TP) of PROFILE and its variants in 80-size world pick-up online scenarios and
160-size world intersection online scenarios with increasing number of agents.

#Agt. PROFILE CNN-MLP PR.-CNN PR.-Att.Free

16 0.7 0.5 0.5 0.6

32 2.2 1.4 1.5 1.9

64 6.7 3.8 4.1 6.1

128 19.2 12.1 13.4 19.7

Pick.TP 256 55.3 38.6 40.4 44.1

512 159.0 130.1 137.1 119.8

1024 458.5 325.2 390.4 421.5

2048 1310.9 862.3 904.6 1071.0

64 3.6 1.5 1.9 3.5

128 9.5 3.8 5.8 7.5

256 25.9 12.1 15.8 25.1

512 75.7 37.0 50.3 63.3

Int.TP 1024 217.6 108.8 145.2 232.4

2048 622.5 356.7 421.3 525.3

3072 1159.6 697.8 689.5 1132.5

4096 1765.1 1085.7 1136.9 1289.6

5120 2464.3 1436.7 1593.7 2445.7

6144 3259.2 2315.2 2527.7 2997.9

7168 4114.5 2482.7 2886.8 3861.3
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