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Abstract Intelligent education is a significant application of artificial intelligence. One of the key research

topics in intelligence education is cognitive diagnosis, which aims to gauge the level of proficiency among

students on specific knowledge concepts (e.g., Geometry). To the best of our knowledge, most of the existing

cognitive models primarily focus on improving diagnostic accuracy while rarely considering fairness issues; for

instance, the diagnosis of students may be affected by various sensitive attributes (e.g., region). In this paper,

we aim to explore fairness in cognitive diagnosis and answer two questions: (1) Are the results of existing

cognitive diagnosis models affected by sensitive attributes? (2) If yes, how can we mitigate the impact of

sensitive attributes to ensure fair diagnosis results? To this end, we first empirically reveal that several well-

known cognitive diagnosis methods usually lead to unfair performances, and the trend of unfairness varies

among different cognitive diagnosis models. Then, we make a theoretical analysis to explain the reasons

behind this phenomenon. To resolve the unfairness problem in existing cognitive diagnosis models, we

propose a general fairness-aware cognitive diagnosis framework, FairCD. Our fundamental principle involves

eliminating the effect of sensitive attributes on student proficiency. To achieve this, we divide student

proficiency in existing cognitive diagnosis models into two components: bias proficiency and fair proficiency.

We design two orthogonal tasks for each of them to ensure that fairness in proficiency remains independent

of sensitive attributes and take it as the final diagnosed result. Extensive experiments on the Program for

International Student Assessment (PISA) dataset clearly show the effectiveness of our framework.

Keywords fairness, intelligent education, cognitive diagnosis, psychometrics, adversarial learning

1 Introduction

Intelligent education, an important avenue for artificial intelligence (AI), employs AI technology to inves-
tigate the learning laws of students. As an interdisciplinary study, the research of intelligent education
has attracted considerable attention from scholars in different fields [1–5], such as education, machine
learning, and psychology. In intelligence education, one of the key research topics is cognitive diagnosis
(CD), which aims to measure the proficiency level of students in terms of specific knowledge about certain
concepts (e.g., Geometry). Figure 1(a) shows a toy example of CD. Generally, the student usually first
chooses to practice a set of exercises (e.g., e1, e2, e3) and provide responses (correct or wrong). Then,
the CD can infer the degree of mastery the student possesses over the corresponding concepts (e.g., Ge-
ometry). With the comprehensive understanding of students, CD could be further applied to numerous
applications, such as student assessment [6] and educational recommendation systems [7], which can
lessen the burden of both teachers and students and offer effective learning experiences for students.

In the literature, massive research efforts have been undertaken from both psychometrics and machine
learning to further their understanding through CD. With the help of psychometric theories, many
researchersmanually designed linear interaction functions that combine the multiplication of students’ and
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Figure 1 (Color online) Illustrative examples of (a) the cognitive diagnosis system, (b) the fairness definition, (c) the unfair

performance—narrow the gap and (d) the unfair performance—widen the gap. A and B represent the groups divided by sensitive

attributes (e.g., gender).

exercises’ trait features linearly [1, 3, 8, 9]. Among them, item response theory (IRT) [1] has been widely
recognized as a classical framework in which interpretable parameters accompanied by item response
functions are adopted to assess student performance. In terms of machine learning, the researchers have
adopted deep neural networks to model high-order interaction functions. Representative methods such
as NeuralCD (NCD) [10] have been proposed by leveraging neural networks to model more complex
student-exercise interaction records. The result demonstrates that NeuralCD can achieve both accurate
and interpretable diagnostic results.

Despite considerable efforts, we observe that most existing studies primarily focus on enhancing the
accuracy of cognitive diagnostic performance while ignoring a fundamental but critical criterion in edu-
cation — fairness. Here, fairness refers to the principle that sensitive attributes, which are characteristics
prone to discrimination such as gender and race, should not be an obstacle to achieving educational po-
tential [11]. In other words, various groups classified by sensitive attributes (e.g., gender, region) should
be treated similarly [12]. In this paper, we explore the crucial issue of fairness in CD. Following the
classical fairness definition of equal opportunity [13], we define fairness in CD as the proficiency gap
between different groups divided by sensitive attributes should be maintained; i.e., it is unfair when CD
models narrow or widen the gap of proficiency. In Figures 1(b)–(d), A and B depict two student groups
separated by a sensitive attribute (e.g., gender); B possesses a lower level of proficiency compared to A,
which can be attributed to the lack of study resources. It is deemed unfair that the predicted proficiency
gap between these two groups is narrowed or widened, as shown in Figures 1(c) and (d), which may
further lead to unfair education outcomes (e.g., college admission) in practical scenarios [11].

In this paper, we comprehensively analyze the fairness issue in CD and try to answer two questions:
(1) Are the results of existing CD models affected by sensitive attributes? (2) If yes, how can we mitigate
the impact of sensitive attributes to ensure fair diagnosis results? Specifically, to address the first question,
we conduct experimental CD studies on the public Program for International Student Assessment (PISA)
dataset. With rigorously controlled experiments, we can draw the conclusion that unfairness indeed exists
in CD models, and they exhibit different unfair performances (i.e., they narrow or widen the gap). In
order to explain this phenomenon, we conduct a theoretical analysis and reveal that model complexity
results in different unfair performances.

After verifying that CD results are indeed affected by sensitive attributes, we attempt to answer
the second question. In an attempt to address this question, several approaches have been proposed
in the literature, such as adversarial learning [14–16] and regularization methods [17], among which
adversarial learning-based methods reveal their theoretical elegance and have achieved widespread success
in domains such as recommender system [17], healthcare [18]. For instance, Shao et al. [15] introduced an
adversarial framework, FairCF, to analyze fair representations independent of sensitive attributes for the
recommendation. Because of the success of adversary learning approaches, we appropriate and expand
the application of this technology into CD to eliminate unfairness. However, due to the instability of the
training process of adversarial learning [19] and the complex modeling process in cognitive diagnostics [20],
the diagnosis results may still contain biased information about sensitive user attributes in practice.
To address this challenge, we propose a decomposed adversarial learning-based CD framework, FairCD.
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Specifically, we categorize student proficiency in existing CDmodels into two components: bias proficiency
and fair proficiency, and design two orthogonal tasks for each of them to ensure fairness in proficiency
independent of sensitive attributes. This is then taken as the final diagnosed result. More concretely, we
adopt an adversarial learning task, ensuring fair proficiency to directly eliminate the effect of sensitive
attributes. Moreover, an attribute prediction task is applied for bias proficiency to capture biases related
to sensitive attributes, which further ensures fair proficiency independent of sensitive attributes. Finally,
we conduct extensive experiments on PISA, and the results demonstrate the effectiveness of FairCD.

The main contributions of this work are as follows.
• Fairness exploration. To the best of our knowledge, fairness in CD has not been investigated in

any prior research. We first realize the existence of unfairness in CD models and confirm the presence of
various unfair performances. Then, we conduct a theoretical analysis to explain this phenomenon.

• Fairness improvement. We propose a fairness-aware cognitive diagnosis framework, FairCD,
which can enhance the fairness of all CD models.

• Fairness evaluations. We perform comprehensive experimental evaluations on PISA to demon-
strate the effectiveness of our work in maintaining both utility and fairness.

2 Related work

2.1 Cognitive diagnosis

The CD serves as a fundamental scientific topic in many real-world educational scenarios, such as student
assessment [21–25] and educational recommender systems [7,26]. It is largely derived from psychometrics
in the early years, with IRT [1] being one of the standard CD models commonly used in GRE [27]. IRT
defined student-exercise interactions using manually constructed functions such as the logistic function
and considered each student as a single latent characteristic. Subsequently, MIRT [8] was proposed by
extending the single trait features in IRT into multiple dimensions. Although these models were designed
effectively based on psychometric theories and the diagnostic results were well interpreted, these studies
relied on handcrafted interaction functions and could only exploit users’ numerical response records [28].
With the development of machine learning, researchers turned to develop several CD models to address
these problems from a machine learning perspective, among which NeuralCD [29] was one of the typical
models. NeuralCD used neural networks to learn the interactions between students and exercises and
got satisfactory results. Based on NeuralCD, several methods were proposed. Ghosh et al. [30] extended
current methods beyond the scope of accuracy prediction to accurately predict the options students choose
in multi-choice problems, which could detect individual student errors. Gao et al. [20] proposed a relation
map-driven CD to capture the relation between the student-exercise concept. Cheng et al. [31] proposed
IK-NeuralCD to express the importance of knowledge points in student modeling, which improved the
degree of fitting the complex relationship between students and exercises. However, although existing
models can generate satisfactory reports, the fairness issue remains underexplored.

2.2 Fairness in machine learning

As machine learning continues to be widely used in modern society [32–36], researchers realize the sig-
nificance of fairness [17,37–40]. Existing studies on fairness can be concluded from two perspectives: the
definition of fairness and techniques for improving fairness. Fairness definition can be divided into two
categories: (1) individual fairness, which requires similar individuals to be treated similarly [41], and
(2) group fairness, which requires that the disadvantaged group be treated similarly to the advantaged
group [12]. In this work, we focus on group fairness in CD. The most representative definitions of group
fairness include demographic parity [41], equal opportunity [13], and equalized odds [13]. Demographic
parity required that all subgroups received the same proportion of positive outcomes. However, it was
limited as the base rates of subgroups differed. Equalized odds attempted to maintain consistency in both
true positive and false positive rates across different subgroups, which might not directly address the issue
of equitable access to educational opportunities. Equalized opportunities aimed to ensure that people
with equivalent qualifications or abilities possessed equal chances of achieving positive outcomes, regard-
less of their sensitive characteristics. This metric is particularly relevant in the context of education, as
it seeks to create a level playing field for all students to achieve their full potential. Thus, we extend
the definition of equalized opportunities to our educational application. Approaches can be classified
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Table 1 Statistics of the datasets

Dataset Group # Students # Questions # Records

PISA-OECD
OECD 159897 183 4668107

Non-OECD 158593 183 4443408

PISA-GENDER
Female 202442 183 5746608

Male 201167 183 5741626

based on the stage at which the mechanism operates [42, 43], which is divided into pre-processing [44],
in-processing [45], and post-processing approaches [46]. Pre-processing approaches attempt to remove
underlying bias from training data before the learning process. In-processing approaches attempt to re-
vise the training of the models to achieve fairness. Post-processing methods directly change the predictive
labels of trained models to mitigate unfairness. We hold the distinction of being the initial researchers
to investigate the fairness of CD models and suggest an in-processing approach based on deconstructed
adversarial learning to ensure the fairness of all CD models.

2.3 Educational fairness

Education is a major factor in determining how people spend their adult lives. A greater level of educa-
tion translates into higher incomes, better health, and a longer life [47,48]. It remains doubtful that any
child can reasonably be expected to succeed in life if they are deprived of education opportunities [49].
Fairness in education implies ensuring that personal and social circumstances (e.g., gender) should not be
an obstacle for an individual to fulfill their educational potential, which is a principle along the same vein
as the concept of equal opportunity [11]. This definition is also followed in this paper. Extensive inves-
tigations have been conducted on educational fairness. For example, Hutt et al. [50] aimed at predicting
on-time graduation from college applications. Hu et al. [51] investigated the fairness of identifying at-risk
students. Yu et al. [52] analyzed fair prediction of college success from different sources of student data.
Li et al. [53] proposed a fair logistic regression model to address the fairness of AI prediction in education.
Gómez et al. [54] researched the understudied impact of recommender systems on instructors’ exposure
to online platforms and offered a method for promoting fairness in recommendation visibility and expo-
sure across countries. However, limited work was conducted to investigate fairness in the fundamental
educational research area of CD, which revealed important application potential in various educational
contexts.

3 Preliminaries

3.1 Data description

PISA1) is one of the most famous worldwide testing programs, gaining honorary status as the Olympic
Games in testing projects and attracting nearly one hundred regions or countries. Specifically, PISA
measures 15-year-olds’ ability on several topics including reading and science. Moreover, it provides
questionnaires to collect students’ contexts that contain some sensitive attributes (e.g., gender, region).

In this paper, we obtain a public dataset of PISA 20152) for our study, which focuses on diagnosis
assessment on the “science” topic. We select two sensitive attributes, i.e., gender and region, to explore
the fairness issue of CD. We specifically categorize data into male and female gender groups, OECD
groups, and Non-OECD groups based on whether the region is part of the Organization for Economic
Co-operation and Development (OECD) countries. To avoid the influence of students answering different
questions, we chose 57 locations where students answered the same questions, filtered out students with
missing sensitive information, and created two datasets (i.e., PISA-GENDER, PISA-OECD). The basic
statistics are shown in Table 1.

3.2 Cognitive diagnosis

In this subsection, we formally define the CD problem. Assume there are N students, M exercises,
and K knowledge concepts, which are defined as U = {u1, u2, . . . , uN}, E = {e1, e2, . . . , eM}, and K =

1) https://www.oecd.org/pisa/.

2) https://www.oecd.org/pisa/data/2015database/.
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{k1, k2, . . . , kK}. The response logs R are a set of triplets (u, e, y), where y is the score obtained by
student u on exercise e. Given response logs R, the goal of CD is to mine students’ proficiency.

There are two main categories of CD models: traditional methods that rely on manually designed
functions and deep learning-based methods that model complex cognitive interactions. We choose two
models to investigate fairness in CD: IRT from the first category, which has been widely implemented in
GRE [27], and NeuralCD from the second category, which serves as the foundation for several advanced
models [20, 30]. Please note that our investigation of these two most representative methodologies is
broad enough to be applied to other CD models. The model details are as follows.

IRT [1, 55] models each student i as a proficiency variable θi, each exercise as a discriminating factor
aj and a difficulty factor bj, and a logistic function is used to forecast the likelihood that student i will
answer exercise j correctly based on a logistic function3):

ŷij = 1/(1 + eaj(θi−bj)). (1)

NeuralCD [10] is a novel deep CD model that generalizes the student’s proficiency and exercise parame-
ters into high dimensions and adds neural networks to learn their complicated interactions. Furthermore,
NeuralCD requires a Q-matrix (often provided by experts) Q ∈ R

M×K , where Qij = 1 if exercise ei is
related to the knowledge concept kj and Qij = 0 if not.

ŷij =f(Qj ◦ (h
s
i − hdiff

j )× hdisc
j ), (2)

where hs
i ∈ R

K is the proficiency vector of student i, hdiff
j ∈ R

K and hdisc
j ∈ R

1 are difficulty and
discrimination factors of exercise j, respectively, ◦ is the element-wise product, Qj is exercise j’s factor
that arises from the Q-matrix, and f represents multiple full connection layers.

3.3 Fairness in cognitive diagnosis

In this paper, we consider group fairness in CD. Here, we divide students into subgroups based on
sensitive attributes. For simplicity, we consider binary-sensitive factors such as gender4). The subgroups
can be represented by A and B. Following the core idea of the classical fairness definition of equal
opportunity [13], we propose the FairCD definition.

Definition 1 (FairCD). A CD model is considered to be fair if the gap between true proficiency and
predicted proficiency is identical across both groups (i.e., FCD = 0).

FCD =

(

1

|A|

∑

i∈A

Ŷi −
1

|B|

∑

i∈B

Ŷi

)

−

(

1

|A|

∑

i∈A

Yi −
1

|B|

∑

i∈B

Yi

)

, (3)

where Yi, Ŷi are the actual correct rate, the predicted correct probability by CD for the i-th student
from groups A or B. For instance, suppose student i answers ten questions. He/she accurately answered
five of them, although a CD model indicates that he/she will answer four questions. Then, Yi equals 0.5
and Ŷi equals 0.4. Owing to the fact that we cannot obtain the true proficiency of students, we use the
correct rate and predicted correct probability to represent the true proficiency and predicted proficiency.
This alternative approach is based on the assumption that these two groups of students answer the same
questions as obtained by our dataset preprocessing in the data description. The same approach has been
widely implemented in many other instances, such as the recommender system [17].

In Definition 1, the closer FCD is to 0, the fairer this model is. Meanwhile, FCD > 0 indicates a wider
gap, while FCD < 0 indicates a narrower gap. For example, in Table 2, the original gap between A and
B is 0.1, and the cognitive diagnosis model predicted gap is 0.25; thus, FCD is 0.15. As a result, the CD
model widens the distance between A and B. The original gap between B and C is 0.1, but the cognitive
diagnostic model projected a gap of 0; therefore, FCD is −0.1, indicating that the cognitive diagnosis
model closes the gap between B and C.

3) Here we adopt two-parameter logistic IRT model.

4) Our definition is easily extensible to different types of sensitive properties.
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Table 2 Example of fairness in cognitive diagnosis

Group Student
Actual correct rate Predicted correct probability

Individual Group Individual Group

A
a1 0.8

0.7
0.9

0.8
a2 0.6 0.7

B
b1 0.7

0.6
0.6

0.55
b2 0.5 0.5

C
c1 0.5

0.5
0.6

0.55
c2 0.5 0.5

Table 3 FCD of NeuralCD and IRTa)

Group NeuralCD IRT

OECD/Non-OECD 0.0279 ↑ −0.0852 ↓
Male/Female 0.0059 ↑ −0.0115 ↓

a) ↑ means widening the gap; ↓ means narrowing the gap.

Table 4 Variances of predicted correct probability for IRT and NeuralCD

Model PISA-OECD PISA-GENDER

IRT 0.0088 0.0065

NeuralCD 0.0554 0.0561

4 Understanding fairness in cognitive diagnosis

In this section, we attempt to answer the first question: are the results of existing CD models affected
by sensitive attributes? We train IRT and NeuralCD on PISA and compute the FCD metric in (3) for
each CD model; the results are shown in Table 3. We believe the metric reflects the fact that NeuralCD
and IRT are unfair. Meanwhile, these two CD models exhibit distinct unfair phenomena (i.e., NeuralCD
widens the gap, and IRT narrows the gap).

To better understand the fairness in cognitive diagnosis, we need to figure out why different models
have different fairness performance. We discover that the outcomes predicted by IRT in different groups
are essentially identical, while the results predicted by NeuralCD are vastly different. Therefore, we
compute the variances of expected results of different models. The results are shown in Table 4. Here, let
Var denote the variances of predicted correct probability. In each dataset, Var(NeuralCD) > Var(IRT).
Inspired by this revelation, we intend to establish a link between variance and various unfair performance.
Furthermore, we can explore the reasons behind different unfair performance. As such, we provide the
following Lemma 1.

Lemma 1. Let ŶA, ŶB indicate the projected accurate probability of groups A and B predicted by a
CD model, and ĝ represent the predicted correct probability gap (i.e., ŶA − ŶB), g represent the actual
correct rate gap between A and B. Assume ŶA, ŶB i.i.d. ∼ N(µ, σ2). Therefore, (1) the smaller σ, the
greater the probability of closing the gap (i.e., P (ĝ < g)); (2) the larger σ, the greater the probability of
increasing the gap (i.e., P (ĝ > g)).

Proof. Since ŶA, ŶB i.i.d. ∼ N(µ, σ2), we have ĝ ∼ N(0, 2σ2); then, we can get ĝ√
2σ

∼ N(0, 1). P (ĝ <

g) = P ( ĝ√
2σ

< g√
2σ

) =
∫

g√
2σ

−∞
1√
2π

e(− x2

2 )dx. Because g is calculated from training records, it can be consid-

ered a constant. Therefore, when σ decreases,
∫

g√
2σ

−∞
1√
2π

e(−x2

2 )dx increases; i.e., P (ĝ < g) increases. P (ĝ

> g) = P ( ĝ√
2σ

> g√
2σ
) =

∫∞
g√
2σ

1√
2π

e(−x2

2 )dx. When σ increases,
∫∞

g√
2σ

1√
2π

e(− x2

2 )dx gets larger. Thus, we

have P (ĝ > g) increases. This completes the proof.
Lemma 1 can be better understood through an extreme example. Assume the variance of a CD model’s

anticipated accurate probability is equal to zero; hence, we may infer that all predicted results of CD
models are the same, and the difference between different groups is reduced to 0.

Using Lemma 1 and the results (i.e., Var(NeuralCD) > Var(IRT)) in Table 4, the reason behind
NeuralCD and IRT possessing different unfair performance can be transformed into the reason behind
the larger observed variance in NeuralCD compared to IRT. The following theoretical analysis is obtained.

Theorem 1. Assume the parameters in NeuralCD hs − hdiff ∼ N(0, σ2I); the model complexity leads
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to Var(NeuralCD) > Var(IRT). Further, we conclude that model complexity leads to NeuralCD widening
the gap and IRT narrowing the gap.

Proof. The interaction layer in NeuralCD is defined as x = Qj◦(hs
i−hdiff

j )×hdisc
j ; for simplicity, we only

consider NeuralCD with one connection layer and the sigmoid activation function f1 = δ(wTx + b). We
assume hs−hdiff ∼ N(0, σ2I); thus, we have x ∼ N(0, (σ ·hdisc)2diag(Q)2). The distribution can therefore
be estimated as wTx+ b ∼ N(b, wT(σ · hdisc)2diag(Q)2w). A second order Taylor expansion is applied to

δ at the origin δ(x) ≈ δ(0) + xδ′(0) + x2

2 δ′′(0) = 1
2 + 1

4x. We can approximate that Var(f1) =
1
16w

T(σ ·

hdisc)2diag(Q)2w by combining these results. Finally, we obtain Var(f1) ≈
1
16 (σ · hdisc)2

∑K

i=1(wi · qi)2.
When the dimension K is set to 1 and the parameters w, q are both set to 1, NeuralCD degenerates
into IRT. As a result, the dimension and number of parameters in NeuralCD result in a higher variance
as compared to IRT. In the meantime, these two factors reflect the model’s complexity. Thus, we can
attribute the inequality Var(NeuralCD) > Var(IRT) to model complexity. Combining it with Lemma 1,
we can deduce that the model complexity causes NeuralCD to widen the gap and IRT to close it. This
completes the proof.

Theorem 1 underscores a vital consideration for CD researchers: the complexity of the models they
develop can considerably impact fairness. As a result, when developing novel CD models, it is essential
to examine the potential effects of their complexity on performance in various settings and among diverse
populations. This evaluation facilitates the improvement of more equitable and fair CD tools that can
effectively address the needs of a broad range of individuals and circumstances.

5 Improving fairness in cognitive diagnosis

After confirming the existence of unfair phenomena in CD, we now address the second question: how can
we mitigate the impact of sensitive attributes to ensure fair diagnosis results? There are two requirements:
(1) the method should be model agnostic and can enhance the fairness of all the CD models; (2) the
strategy should achieve fairness while keeping proficiency estimates accurate.

We summarize the commonalities of CD models to satisfy these two requirements. In general, CD
models comprise three parts: student proficiency θ

u, exercise factors e, and the interaction function
f [56]. Different CD models are distinguished by the different methods by which these three components
are modeled. Taking IRT (introduced in preliminaries) as an example, student proficiency corresponds
to a single dimension variable θi, exercise factors correspond to discrimination factor aj and difficulty
factor bj , and the interaction function is (1). Based on these commonalities, the most direct method is to
eliminate the impact of sensitive attributes on student proficiency θ

u based on adversarial learning, which
consists of two components: (1) a trained filter module that filters the effect of sensitive attributes on
student competence θ

u; (2) a discriminator module that attempts to forecast the corresponding qualities
based on the filtered student proficiency θ

u. Through adversarial training, the effect of sensitive attributes
can be removed. However, because the training process of adversarial learning can be unstable [19], the
student proficiency θ

u may still contain biased knowledge about sensitive user qualities in practice.

To address this issue, we present FairCD, a deconstructed adversarial learning-based CD framework,
FairCD, which can further ensure that θu does not contain information about sensitive attributes infor-
mation. The architecture of FairCD is shown in Figure 2. We divide student proficiency θ

u in existing
CD models into two components in this architecture: bias proficiency θ

b and fair proficiency θ
f . Bias

proficiency θ
b seeks to gather as much biased information regarding sensitive user attributes as possible,

whereas θf aims to reduce the effect of sensitive user attributes as much as possible. Through these two
components θ

f , θb, we can ensure θ
f independent of sensitive attributes and accept it as the ultimate

student proficiency. To achieve this goal, we design two orthogonal tasks for θf , θb. We use an adversarial
learning task for θf to directly remove the effect of sensitive attributes. Also, an attribute prediction task
is applied for θb to capture biases related to sensitive attributes, which further ensures θ

f independent
of sensitive attributes.

In the following section, we introduce these two tasks, respectively. Subsequently, we explain the
approach behind integrating pre-existing CD models into the FairCD framework. Finally, we present the
entire training algorithm of FairCD and provide the corresponding pseudocode.
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Figure 2 (Color online) Architecture of FairCD.

5.1 Adversarial learning task

Fair proficiency θ
f aims to eliminate the effect of sensitive user attributes as much as possible. First,

we calculate each student’s original fair proficiency by multiplying the student’s one-hot representation
vector xs by a trainable matrix F :

θ
f = sigmoid(xs × F ). (4)

We then use an adversarial learning task to reduce the effect of sensitive attributes for θ
f . More

specifically, we use an attribute discriminator which attempts to predict sensitive user attributes from
fair proficiency. Our goal is to encourage the discriminator D to avoid predicting sensitive information.
Thus, we can generate fair proficiency θ

f , which does not contain sensitive information. To accomplish
this, we maximize the cross entropy LF :

ŝf = softmax(W f
θ

f + b
f),

LF = −
∑

i

∑

j

sij log ŝ
f
ij ,

(5)

where W
f and b

f are parameters, ŝf is the predicted probability vector, sij and ŝf
ij represent ground

truth and predicted probability of the i-th student’s sensitive attribute in the j-th class.

5.2 Prediction task

Although an adversarial learning task was used to eliminate the effect of sensitive user attributes on
θ

f , biased information about sensitive user attributes may still be leaked into θ
f due to the unstable

nature of the adversarial training process [19]. To solve this issue, we use an additional predictor P for
bias proficiency θ

b to collect as much biased information as possible, ensuring that θf is independent of
sensory qualities. Similar to θ

f , θb is obtained by multiplying the student’s one-hot representation vector
x

s with a trainable matrix B. That is,

θ
b = sigmoid(xs ×B). (6)

The loss function of the attribute prediction task is similar to the discriminator. The purpose of the
attribute prediction task, unlike the adversarial learning task, is to capture more biased information
linked to sensitive attributes; therefore, we directly minimize LB in model training.

ŝb = softmax(W b
θ

b + b
b),

LB = −
∑

i

∑

j

sij log ŝ
b
ij ,

(7)
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Algorithm 1 Detailed training procedures of FairCD

Require: Students U ; exercises E; response logs R; user sensitive labels S; training epochs M ; discriminator training steps T ;

Ensure:

1: Random initialize fair proficiency θ
f and bias proficiency θ

b, exercise factors e, discriminator’s parameters θD, predictor’s

parameters θP;

2: for each epoch do

3: Sample a batch of training data, including students-exercises pairs and corresponding responses and sensitive la-

bels (ui, ej , yij , s);

4: for each pair of input (ui, ej , yij , s) in the batch do

5: Reconstruct the student proficiency θ
u through (8);

6: Compute the cognitive diagnosis models loss LCD (9);

7: Optimize θ
f , θb, e to minimize cognitive diagnosis loss LCD with θD, θP fixed;

8: for each discriminator training step do

9: Compute the discriminator loss LF (5);

10: Optimize θD to minimize discriminator loss −LF with θ
f , θb, e fixed;

11: Compute the predictor loss LB (7);

12: Optimize θP to minimize predictor loss LB with θ
f , θb, e fixed;

13: end for

14: end for

15: end for

where W
b and b

b are parameters, ŝb is the predicted probability vector, sij and ŝb
ij represent ground

truth and predicted probability of the i-th student’s sensitive attribute in the j-th class.

5.3 FairCD integration

Finally, we introduce a method to integrate existing CD models into the FairCD framework. After
obtaining θ

f and θ
b, we combine them to recreate the student proficiency θ

u in the original CD model:

θ
u = θ

f + θ
b. (8)

The likelihood of the student ui successfully answering exercise ej can be predicted by ŷij = f(θu, e),
where f and e are the interaction function and exercise factors inherited from the previous model. In
the case of IRT, the interaction function is (1), and exercise factors are the discrimination factor aj and
difficulty factor bj . Moreover, we need to maintain the accuracy of proficiency estimates. To accomplish
this, we use the student performance prediction task to train cognitive diagnostic models. CD models
are expected to minimize the difference between the anticipated probability ŷij and the true answer yij .
The loss function of CD to maintain accuracy is as follows:

LCD = −
∑

i

∑

j

(yij log ŷij + (1− yij) log(1− ŷij)). (9)

FairCD strives toward fairness while maintaining the accuracy of proficiency estimations. Thus, com-
bining (5), (7), and (9), our final loss function in FairCD can be formulated as follows:

L = LCD + λBLB − λFLF , (10)

where adversarial coefficients λB and λF are hyperparameters that serve to control the tradeoff between
diagnosis accuracy and fairness. Herein, we discuss the effect of λB, λF in Experiments (RQ3). Because
all cognitive diagnostic models have three components θ

u, e, f , our FairCD is a general fairness-aware
cognitive diagnosis that can improve the fairness of all CD models.

5.4 Training algorithm

In our implementation, we use mini-batch training for adversarial learning. Specifically, for each batch,
we first feed the input to the cognitive diagnosis models to obtain LCD, LB, and LF . The parameters
of the discriminator and predictor are then fixed, and the cognitive diagnosis models are optimized by
minimizing LCD. Subsequently, LB and −LF are minimized for T steps while the parameters of CD
models are fixed. Here, T = 10 in our implementation. The pseudocode for the entire training algorithm
is given in Algorithm 1.
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6 Experiments

In this section, we first introduce the experimental setup, following which we conduct experiments using
the PISA dataset, comparing FairCD to other baselines to answer the following questions.

RQ1: Does FairCD outperform the fairness-aware baselines on both model utility and fairness?

RQ2: Can FairCD improve the fairness of CD applications (e.g., educational recommender system)?

RQ3: How will adversarial learning and prediction tasks influence FairCD?

RQ4: Does bias proficiency (i.e., θb) contain useful information?

6.1 Experimental setup

Parameter settings and baselines. To establish a training procedure. The parameters are initialized
using Xavier initialization [57], which fills the weights with random values sampled fromN (0, std2), where
std =

√

2/(nin + nout). nin is the number of neurons feeding into the weights, and nout is the number
of neurons fed the results. To evaluate the generalization of our method, we adopt IRT, NeuralCD,
and MIRT models; MIRT is a multidimensional extension of IRT. For convenience, we use NCD to
represent NeuralCD in the experiment. In terms of model parameter configuration, NCD adheres to the
settings outlined in [10]. The fully connected layers have dimensions of 512, 256, and 1, respectively.
The sigmoid function also serves as the activation function for all layers. MIRT’s dimension of student
proficiency parameters matches those in NeuralCD. For all datasets and models, we set the learning rate
to 0.001 and the dropout rate to 0.2. We apply Adam as the optimization algorithm to update the
model parameters. The discriminator D and predictor P in the deconstructed adversarial architecture
are three-layer perceptrons with the activation function of LeakyReLU. We set the dropout rate to 0.1
and the slope of the negative section for LeakyReLU to 0.2 for them. The loss coefficients λB, λF in (10)
are set to 0.2 and 0.4, respectively. We implement all models with PyTorch by Python and conduct our
experiments on a Linux server with four 2.0 GHz Intel Xeon E5-2620 CPUs and a Tesla K20m GPU.

To the best of our knowledge, we hold the distinction of being the initial researchers delving into the
field of fairness in cognitive diagnostics. In an effort to reveal the effectiveness of FairCD, we also compare
FairCD with the following baselines.

• CD: original cognitive diagnosis models (i.e., IRT, MIRT, NeuralCD) that do not consider fairness.

• CD+REG: a well-known fairness improvement strategy that considers the fairness metric as a reg-
ularization for the loss and has been used in prior fairness studies [17, 46]. In our work, we use (3) as a
regularization for (9).

• CD+DP: a fairness improving method regards demographic parity as a regularization [17].

• CD+AD: an adversarial learning method that serves to eliminate the effect of sensitive attributes.
Specifically, a filter module that has been trained to filter the effect of sensitive attributes on student
competence θ

u and a discriminator module that attempts to forecast corresponding attributes based on
filtered student proficiency [14]. The adversarial architecture is the same as our experimental setting.

• FairCD (θb): we use the bias proficiency (θb) in our FairCD as input for students’ performance
prediction task.

• FairCD (θf): we use the fair proficiency (θf) in our FairCD as the final proficiency estimate for
students’ performance prediction task.

In summary, we compare FairCD with original CD models that do not consider fairness. CD+REG
and CD+DP improve fairness in fairness-aware baselines by including alternative fairness regularization
terms. CD+AD employs adversarial training methods to eliminate sensitive information.

Experimental evaluation. In terms of model evaluation, we employ θ
f as the final proficiency

estimate. The evaluation can be divided into two parts. (1) Evaluation of accuracy. Because we cannot
obtain the true proficiency of students, we utilize students’ performance prediction tasks to demonstrate
the utility of cognitive diagnostic, as in previous studies [10,20,58]. We adopt different metrics from the
perspectives of regression and classification. From the regression perspective, we select MAE and RMSE
to quantify the difference between predicted and actual scores. From the classification perspective, we
consider that the incorrect and correct answers can be represented as 0 and 1, respectively, and we use
AUC and ACC for model evaluation. (2) Fairness evaluation. We are interested in whether FairCD can
promote fairness. For convenience, we use the |FCD| metric to measure the fairness of cognitive diagnosis
models. The closer this metric is to 0, the fairer the CD model is.
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Table 5 Utility results in different datasetsa)

PISA-OECD PISA-GENDER

AUC ACC MAE RMSE AUC ACC MAE RMSE

IRT 0.715 0.661 0.415 0.462 0.716 0.660 0.417 0.461

IRT+REG 0.692 0.641 0.429 0.471 0.692 0.641 0.441 0.468

IRT+DP 0.691 0.640 0.437 0.467 0.683 0.633 0.451 0.475

IRT+AD 0.694 0.645 0.431 0.445 0.697 0.644 0.433 0.472

IRT+FairCD (θb) 0.589 0.593 0.479 0.494 0.583 0.576 0.478 0.483

IRT+FairCD (θf) 0.704 0.651 0.428 0.465 0.713 0.659 0.420 0.463

MIRT 0.737 0.668 0.3663 0.452 0.754 0.694 0.362 0.449

MIRT+REG 0.701 0.646 0.423 0.467 0.721 0.660 0.413 0.460

MIRT+DP 0.726 0.665 0.403 0.463 0.711 0.653 0.423 0.463

MIRT+AD 0.719 0.656 0.413 0.461 0.723 0.663 0.411 0.459

MIRT+FairCD (θb) 0.598 0.613 0.456 0.478 0.596 0.606 0.448 0.487

MIRT+FairCD (θf ) 0.727 0.667 0.394 0.462 0.739 0.674 0.384 0.458

NCD 0.772 0.702 0.344 0.447 0.761 0.704 0.345 0.446

NCD+REG 0.723 0.660 0.462 0.471 0.718 0.660 0.449 0.467

NCD+DP 0.711 0.667 0.490 0.491 0.715 0.653 0.452 0.470

NCD+AD 0.725 0.671 0.460 0.474 0.721 0.663 0.446 0.466

NCD+FairCD (θb) 0.612 0.621 0.497 0.499 0.607 0.613 0.471 0.493

NCD+FairCD (θf) 0.729 0.688 0.354 0.466 0.729 0.676 0.351 0.460

a) Underline represents the best results, and bold represents the runner-up results.

Data partition. We conduct tests on two tasks: students’ performance prediction and exercise
recommendation. For each task, we perform an 80%/20% train/test split of each student’s response log
for each dataset (i.e., PISA-OECD, PISA-GENDER). For the exercise recommendation task, we observe
students’ actual performance on exercises that they have practiced in test sets.

6.2 Experimental results

Performance on utility and fairness (RQ1). In this section, we investigate FairCD efficacy by
contrasting its performance with that of other baselines. For generalization purposes, we integrate FairCD
with different CD benchmarks (i.e., IRT, MIRT, and NCD). The utility and fairness results are revealed
in Table 5 and Figure 3. We can make the following observations from them.

• From the perspective of fairness (i.e., Figure 3), our findings reveal that all original CD models
are unfair, suggesting the need to explore fairness in CD. We first discover that among fairness-aware
approaches, CD+DP does not achieve adequate performance in some instances. This may be attributed
to the fact that the CD+DP baseline improves the demographic parity fairness definition and does not
improve |FCD| directly. Second, in every situation, our framework surpasses all baseline techniques. This
validates the effectiveness of our proposed framework’s fairness promotion. Meanwhile, we notice that
the fairness promotion on MIRT and NCD is higher than that on IRT. We hypothesize that this is due
in part to the fact that the proficiency variable on MIRT and NCD is multidimensional, as opposed to
being confined to a single dimension on IRT.

• From the perspective of model utility (i.e., Table 5), we first discover that all fairness-aware baselines
diminish the original model utility. This phenomenon is the same as other domains, such as recommender
systems [15, 59]. This is appropriate as fairness-aware algorithms tend to filter out knowledge of certain
sensitive features from the proficiency of students, which will limit the information included and hence
the utility performance to some extent. Second, we find that adversarial learning-based approaches (i.e.,
CD+AD, FairCD) outperform regularization-based methods in most circumstances, demonstrating the
usefulness of adversarial learning-based methods. Most importantly, FairCD achieves the best perfor-
mance among these fairness-aware methods.

• From the perspective of balancing the model utility and fairness, FairCD achieves both superior
utility performance and fairness promotion in all cases. Based on such observations, we argue that our
framework achieves superior performance in balancing the model utility and fairness.

Fairness improvement on CD application (RQ2). Numerous educational applications, such
as educational recommender systems [60], have employed cognitive diagnostics. In this subsection, in
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Figure 3 (Color online) Fairness results of different models in datasets (the lower, the better). (a) PISA-OECD; (b) PISA-
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Figure 4 (Color online) UGF of different models in datasets (the lower, the better). (a) PISA-OECD; (b) PISA-GENDER.

an effort to validate a more realistic implication of FairCD, we explore the impact of FairCD on the
fairness of educational recommender systems. Following [7], we focus on the most prevalent scenario:
the system recommends non-mastered exercises to students based on the results of CD. As for fairness
evaluation, following [46], we hope that the recommendation quality is identical across different groups.
The user-oriented group fairness (UGF) statistic is as follows:

UGF = |M(A)−M(B)|, (11)

where M(A), M(B) represent recommendation qualities for groups A, B. Here we adopt HR@10. The
result is shown in Figure 4. We first discover that the original recommender results based on CD models
are unfair and that almost all FairCD methods can improve the fairness of educational recommendation
systems, demonstrating the importance of enhancing cognitive diagnostic fairness. Then we can find the
regularization-based methods (i.e., CD+REG, CD+AD) get unstable results compared with adversar-
ial learning-based methods. We believe the reason is that regularization-based methods are proposed
to optimize the specific fairness metric and do not achieve adequate performance in CD applications.
Adversarial learning-based methods directly eliminate the effect of sensory qualities and can directly
improve the fairness of cognitive diagnosis-based applications. Furthermore, among these methods, we
demonstrate that FairCD exhibits superior results in all cases, demonstrating the effectiveness of FairCD.

Effectiveness of our proposed tasks (RQ3). To minimize sensitive attributes from student pro-
ficiency, we offer an adversarial learning task and a prediction task in FairCD. As discussed before, λB

and λF defined in (10) control the effectiveness of these two tasks. Theoretically, the larger λB and λF,
the greater the influence of the discriminator and predictor losses, implying that we observe a stricter
demand for fairness and may have to sacrifice more CD utility performance to meet the requirement. We
explore their usefulness in this part by altering the hyperparameters λB and λF on PISA-OECD. Because
there are two hyperparameters, their influence is evaluated independently. We begin by varying the value
of λF with λB = 0. As revealed in Figure 5, we reveal that adversarial training tasks can help enhance
fairness when λF increases from 0. When it is greater than 0.4, however, the fairness increase is minimal,
and the utility performance drops more rapidly. Thus, when λF is approximately 0.4, it achieves the
optimal utility-fairness balance. Subsequently, we vary the value of λB with λF = 0.4. According to the
data in Figure 6, fairness improves with the increase of λB, and the utility may decrease when λB is too
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Figure 6 (Color online) Performance of FairCD with different λB. (a) Fairness; (b) utility.

large. Thus, a proper range of λB (0.1–0.3) can achieve an optimal tradeoff between fairness and utility.
Performance of bias proficiency (RQ4). In this paper, we divide student proficiency (θu) into bias

proficiency (θb) and fair proficiency (θf). The goal of fair proficiency θ
b is to acquire as much meaningful

and unbiased student information as possible, while the goal of fair proficiency θ
f is to capture as much

useful and unbiased student information as possible, which we consider as the final proficiency estimate.
However, θb may also include insightful and objective student data. To evaluate the effectiveness of
FairCD, we examine whether θ

b includes useful information in this subsection. To do so, we use θ
b as

the input for the final students’ performance prediction task. If the prediction task produces disappointing
results, we can conclude that the bias proficiency has limited usable information, which also suggests that
θ

f captures as much useful student information as possible. FairCD (θb) consistently generates the worst
outcomes across all CD benchmarks, according to the results shown in Table 5. This demonstrates that
the bias proficiency contains minimal useful information, indicating the effectiveness of FairCD.

Case study. Further, we conduct a case study to better demonstrate the effectiveness of our method.
We choose two students from each of the two categories (i.e., OECD/Non-OECD) who have answered
the same questions and have answered more than 30 questions. In the meantime, they provide the same
responses. The only distinction between them is their geographical location. We employ NCD to diagnose
the proficiency of two students. In an ideal situation, the diagnosed difference between these two students
would be 0. The case result is shown in Figure 7. As a result of NCD, the difference between them is
expanded, demonstrating the unfairness of NCD. But after FairCD, the gap between these two students
is closer to 0, showing that FairCD indeed can help CD maintain the gap.

7 Discussion

We now discuss the significance of fairness in cognitive diagnosis, which can be summarized from the
following perspectives.

• Educational fairness: the results of CD serve as an essential reference for several high-stakes tests,
such as the GRE and GMAT. Unfair cognitive diagnosing practices may unintentionally favor select
groups, resulting in discrepancies in educational access and outcomes. We can establish a level playing
field by promoting fairness, allowing every student to reach their full potential.

• Societal impact: advocating for fairness in cognitive diagnostics guarantees that kids receive equitable
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widens the gap, and FairCD-NCD improves the fairness of NCD.

educational practices. This has the potential to break cycles and increase social mobility for historically
marginalized groups, resulting in a more equal future for everybody.

In conclusion, the significance and societal impact of fairness in CD extends far and wide. We may
contribute to the establishment of a more inclusive and just educational system that benefits all learners,
ultimately leading to a more equitable society by encouraging equitable practices and addressing the
potential harm caused by unfairness.

8 Conclusion and future work

We presented a concentrated investigation on the fairness issue in cognitive diagnostics in this paper
and attempted to address two questions: (1) Are the results of existing CD models affected by sensitive
attributes? (2) If so, how can we mitigate the impact of sensitive attributes to ensure fair diagnosis
results? First, we discovered that unfairness exists in CD models, with varying degrees of unfairness. To
explain this phenomenon, we conducted a theoretical analysis and found that model complexity leads
to varying degrees of unfair performance. Then, we introduced FairCD, a framework for fairness-aware
cognitive diagnostics that divides student performance into two components: bias proficiency and fair
proficiency. We devised two orthogonal tasks for each of them to achieve fair proficiency regardless of
sensitive traits, and we used this as the final diagnosed outcome. Finally, extensive experimental results
on PISA clearly showed the effectiveness of our proposed framework.

In the future, we would like to analyze the fairness of more CD models and explore fairness in more
educational tasks (e.g., knowledge tracing). Furthermore, we discovered that nearly all fairness-aware
approaches were based on the well-known sensitive attribute labels situation. However, due to privacy
concerns, students are not always willing to reveal sensitive information in real-world circumstances.
Thus, the approaches via which fairness can be achieved without sensitive attributes are another crucial
topic to be considered.
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