
SCIENCE CHINA
Information Sciences

May 2024, Vol. 67, Iss. 5, 152105:1–152105:15

https://doi.org/10.1007/s11432-022-3608-y

c© Science China Press 2024 info.scichina.com link.springer.com

. RESEARCH PAPER .

Span-based joint entity and relation extraction
augmented with sequence tagging mechanism

Bin JI, Shasha LI*, Hao XU*, Jie YU*, Jun MA, Huijun LIU* & Jing YANG

College of Computer, National University of Defense Technology, Changsha 410073, China

Received 21 February 2022/Revised 27 May 2022/Accepted 28 August 2022/Published online 3 April 2024

Abstract Span-based joint extraction simultaneously conducts named entity recognition (NER) and re-

lation extraction (RE) in a text span form. However, since previous span-based models rely on span-level

classifications, they cannot benefit from token-level label information, which has been proven advantageous

for the task. In this paper, we propose a sequence tagging augmented span-based network (STSN), a span-

based joint model that can make use of token-level label information. In STSN, we construct a core neural

architecture by deep stacking multiple attention layers, each of which consists of three basic attention units.

On the one hand, the core architecture enables our model to learn token-level label information via the

sequence tagging mechanism and then uses the information in the span-based joint extraction; on the other

hand, it establishes a bi-directional information interaction between NER and RE. Experimental results on

three benchmark datasets show that STSN consistently outperforms the strongest baselines in terms of F1,

creating new state-of-the-art results.

Keywords joint extraction, named entity recognition, relation extraction, span, sequence tagging mecha-

nism

1 Introduction

The joint entity and relation extraction task extract both entities and semantic relations between entities
from raw texts. It acts as a stepping stone for a variety of downstream natural language processing (NLP)
tasks [1], such as question answering. According to the classification methods, we divide the existing
models for the task into two categories: sequence tagging-based models [2–5] and span-based models
[6–10]. The former is based on the sequence tagging mechanism and performs token-level classifications.
The latter is based on the span-based paradigm and performs span-level classifications. Since the sequence
tagging mechanism and the span-based paradigm are considered to be distinct methodologies, existing
joint extraction models permit the use of just one of them. Specifically, the span-based paradigm consists
of three typical steps: it first splits raw texts into text spans (a.k.a. candidate entities), such as the
“Jack” and “Harvard University” in Figure 1; it then constructs ordered span pairs (a.k.a. candidate
relation tuples), such as the 〈“Jack”, “Harvard University”〉 and 〈“Harvard University”, “Jack”〉; and
finally, it jointly classifies spans and span pairs. For example, it classifies the “Jack” and “Harvard
University” into PER and ORG, respectively. And it classifies the 〈“Jack”, “Harvard University”〉 and
〈“Harvard University”, “Jack”〉 into WORK and NoneType, respectively1).

The majority of span-based models [7,8,10] use pre-trained language models (PLMs) as their encoders
directly, which relies on the encoding ability of PLMs heavily, resulting in insufficient span semantic
representations and poor model performance. To alleviate this problem, some span-based models [11,12]
make attempts to incorporate other related NLP tasks into this task, such as event detection and coref-
erence resolution. By using carefully designed neural architectures, these models enable span semantic
representation to incorporate information shared from the added tasks. However, these additional tasks
require extra data annotations such as event annotations, which are inaccessible in most datasets for
the task, such as SciERC [6], DocRED [13], TACRED [14], NYT [15], WebNLG [16], SemEval [17],
CoNLL04 [18], and ADE [19].

*Corresponding author (email: shashali@nudt.edu.cn, xuhao@nudt.edu.cn, yj@nudt.edu.cn, liuhuijun@nudt.edu.cn)

1) The span-based paradigm assigns the NoneType to spans that are not entities, as well as span pairs that do not hold relations.
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Figure 1 (Color online) A span-based joint extraction example, which contains three gold entities and two gold relations. Tokens

in shade are span examples, PER and ORG are entity types, and WORK is a relation type. We also label the text with token-level labels

via the sequence tagging mechanism, such as B-PER and B-ORG.

Previous sequence tagging-based joint models [2, 4, 20, 21] demonstrate that token-level labels convey
critical information, which can be used to compensate for span-level semantic representations. For ex-
ample, if a span-based model is aware that the “Jack” is a person entity (labeled with the PER label)
and the “Harvard University” is an organization entity (labeled with the ORG label) beforehand, it may
readily infer that they have a WORK relation. Unfortunately, as far as we know, existing span-based models
neglect this critical information due to their inability to produce token-level labels. Additionally, existing
sequence tagging-based models establish a unidirectional information flow from named entity recognition
(NER) to relation extraction (RE) by using the token-level label information in the relation classifica-
tion, hence enhancing information sharing. Due to the lack of token-level labels, previous span-based
models are unable to build such an information flow, let alone a more effective bi-directional information
interaction.

In this paper, we explore using the token-level label information in the span-based joint extraction,
aiming to improve the performance of the span-based joint extraction. To this end, we propose a sequence
tagging augmented span-based network (STSN) where the core module is a carefully designed neural ar-
chitecture, which is achieved by deep stacking multiple attention layers. Specifically, the core architecture
first learns three types of semantic representations: label representations for classifying token-level la-
bels, and token representations for span-based NER and RE, respectively; it then establishes information
interactions among the three learned representations. As a result, the two types of token representations
can fully incorporate label information. Thus, span representations constructed with the above token
representations are also enriched with label information. Additionally, the core architecture enables our
model to build an effective bi-directional information interaction between NER and RE.

For the above purposes, each attention layer of the core architecture consists of three basic attention
units. (1) Entity&relation to label attention (E&R-L-A) enables label representations to attend to the
two types of token representations. The reason for doing this is two-fold: one is that E&R-L-A enables
label representations to incorporate task-specific information effectively; the other is that E&R-L-A is
essential to construct the bi-directional information interaction between NER and RE. (2) Label to
entity attention (L-E-A) enables token representations for NER to attend to label representations with
the goal of enriching the token representations with label information. (3) Label to relation attention
(L-R-A) enables token representations for RE to attend to label representations with the goal of enriching
the token representations with label information. In addition, we establish the bi-directional information
interaction by taking the label representation as a medium, enabling the two types of token representations
to attend to each other. We have validated the effectiveness of the bi-directional information interaction
in Subsection 4.4.2. Moreover, to enable STSN to use token-level label information of overlapping entities,
we extend the BIO tagging scheme and discuss more details in Subsection 4.1.2.

In STSN, aiming to train token-level label information in a supervised way, we add a sequence tagging-
based NER decoder to the span-based model. And we use entities and relations extracted by the span-
based model to evaluate the model performance. Experimental results on ACE05, CoNLL04, and ADE
demonstrate that STSN consistently outperforms the strongest baselines in terms of F1, creating new
state-of-the-art performance2).

In sum, we summarize the contributions as follows. (1) We propose an effective method to augment
the span-based joint entity and relation extraction model with the sequence tagging mechanism. (2) We
carefully design the deep-stacked attention layers, enabling the span-based model to use token-level label
information and establish a bi-directional information interaction between NER and RE. (3) Experimental
results on three datasets demonstrate that STSN creates new state-of-the-art results.

2) For reproducibility, our code for this paper will be publicly available at https://github.com/jibin/STSN.

https://github.com/jibin/STSN
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2 Related work

2.1 Span-based joint extraction

Models for span-based joint entity and relation extraction have been widely studied. Luan et al. [6]
proposed almost the first published span-based model, which is drawn from two models for coreference
resolution [22] and semantic role labeling [23], respectively. With the advent of PLMs, span-based models
directly take PLMs as their encoders, such as Dixit and Al-Onaizan [7] proposed a span-based model which
takes ELMo [24] as the encoder; Eberts and Ulges [8] proposed SpERT, which takes BERT [25] as the
encoder; Zhong and Chen [10] proposed PURE which takes ALBERT [26] as the encoder. However, these
models rely heavily on the encoding ability of PLMs, leading to insufficient span semantic representations
and finally resulting in poor model performance. Some models [11, 12] make attempts to alleviate this
issue by adding additional NLP tasks to the task, such as coreference resolution or event detection. These
models enable span semantic representations to incorporate information derived from the added tasks
through complicated neural architectures. However, the added tasks need extra data annotations (such as
event annotations are required in joint entity-relation extraction datasets), which are unavailable in most
cases. Compared to these models, our model enriches span semantic representations with token-level
label information without additional data annotations.

2.2 Token-level label

Numerous work has demonstrated that token-level label information benefits the joint extraction task a
lot. For example, the models reported in [2–4,20] train fixed-size semantic representations for token-level
labels and use them in relation classification by concatenating them to relation semantic representations,
delivering promising performance gains. However, Zhao et al. [21] demonstrated that the above shallow
semantic concatenation cannot make full use of the label information. Therefore, they carefully design a
deep neural architecture to capture fine-grained token-label interactions and deep infuse token-level label
information into token semantic representations, delivering more promising performance gains. Unfortu-
nately, previous span-based joint extraction models cannot benefit from the token-level label information
since they completely give up the sequence tagging mechanism. In contrast, we propose a sequence tag-
ging augmented span-based joint extraction model, which generates token-level label information via the
sequence tagging mechanism and further infuses the information into token semantic representations via
deep infusion.

3 Approach

In this section, we will describe the STSN in detail. As Figure 2 shows, STSN consists of three components:
a BERT-based embedding layer, an encoder composed of deep-stacked attention layers, and three separate
linear decoders for sequence tagging-based NER, span-based NER, and span-based RE, respectively.

3.1 Embedding layer

In STSN, we use BERT [25] as the default embedding generator. For a given text T = (t1, t2, t3, . . . , tn)
where ti denotes the i-th token, BERT first tokenizes it with the WordPiece vocabulary [27] to obtain
an input sequence. For each element of the sequence, its representation is the element-wise addition of
WordPiece embedding, positional embedding, and segment embedding. Then a list of input embeddings
H ∈ R

len×hid are obtained, where len is the sequence length and hid is the size of hidden units. A series
of pre-trained Transformer [28] blocks are then used to project H into a BERT embedding sequence
(denoted as ET ):

ET = {e1, e2, e3, . . . , elen}. (1)

BERT may tokenize one token into several sub-tokens to alleviate the out-of-vocabulary (OOV) prob-
lem, leading to that T cannot align with ET , i.e., n 6= len. To achieve alignment, we propose an Align
module, which applies the max-pooling function to the BERT embeddings of tokenized sub-tokens to
obtain token embeddings. We define the aligned embedding sequence for T as

ÊT = {ê1, ê2, ê3, . . . , ên}, (2)

where ÊT ∈ R
n×d and d is the BERT embedding dimension. êi denotes the BERT embedding of ti.
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Figure 2 (Color online) The illustration of STSN, which consists of a BERT-based embedding layer, an encoder, and three

separate linear decoders. We solely use the decoder for sequence tagging-based NER to train token-level label semantics (HL)

in a supervised way. And entities and relations decoded by the span-based NER and RE decoders are used to evaluate model

performance.

3.2 Encoder

The encoder is a deep neural architecture, which is achieved by stacking multiple (N) attention layers in
depth.

3.2.1 Deep neural architecture

We deep stack multiple attention layers to build the deep neural architecture, where each layer is composed
of three basic attention units, as shown in Figure 2.

The deep neural architecture learns three types of semantic representations: label representations
(denoted asHL) used to classify token-level labels for sequence tagging-based NER, token representations
(denoted asHE) for span-based NER, and token representations (denoted asHR) for span-based RE. The
three representations have the same embedding dimension d. Additionally, we define the concatenation
of HE and HR as HC and convert its embedding dimension to d via a feed forward network (FFN):

HC = [HE ;HR]WC + bC , (3)

where WC ∈ R
2d×d and bC ∈ R

d are trainable FFN parameters.
We formulate the first attention layer as follows:
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where ÊT is mapped to H0
L, H

0
E , and H0

R, respectively. H1
L, H

1
E , and H1

R are the outputs of the first
layer.

Then H1
L, H

1
E , and H1

R are passed to the next layer. We recursively repeat the above procedure until
we obtain the outputs of the N -th layer, namely HN

L , HN
E , and HN

R . Now we assume that HN
E and HN

R

have fully incorporated token-level label information. And they will be used for span-based NER and
RE, respectively. HN

L will be used to classify token BIO3) labels for sequence tagging-based NER.
As Figure 2 shows, we establish information interactions among the three types of representations in

each attention layer. Specifically, HE andHL can interact with each other directly, as well asHR andHL.
Therefore by taking HL as a medium, HE and HR can also interact with each other, which establishes
a bi-directional information interaction between span-based NER and span-based RE in essence.

3.2.2 Basic attention units

As Figure 3 shows, the three types of basic attention units share a common neural architecture but differ in
model inputs. The common architecture is composed of two sub-layers: multi-head attention and position-
wise FFN. A residual connection is adopted around each sub-layer, followed by layer normalization.

3) ‘B’ denotes ‘Beginning’, ‘I’ denotes ‘Inside’, and ‘O’ denotes ‘Outside’.
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Figure 3 (Color online) Neural architectures of E&R-L-A, L-E-A, and L-R-A. The three units share a common architecture but

differ in inputs.

Multi-head attention has been proven effective in capturing long-range dependencies by explicitly
attending to all positions in various feature spaces. It has a series of h parallel heads and requires three
inputs, i.e., Query (Q), Key (K) and Value (V):

headi = softmax

(

(QW
i
Q)(KW

i
K)T

√

d/h
(VW

i
V )

)

, (5)

I = concat(head1, . . . , headh)WO, (6)

where {Q,K,V} ∈ R
n×d, {W i

Q,W
i
K ,W i

V } ∈ R
d×(d/h), and WO ∈ R

d×d are trainable parameters. I ∈

R
n×d is the output. Multi-head attention learns the pairwise relationship between Q and K and outputs

weighted summation across all instances. Then residual connection conducts element-wise addition of I
and Q.

Position-wise FFN contains two linear transformations with a ReLU activation between them:

FFN(I) = max(0, IW1 + b1)W2 + b2, (7)

where {W1,W2} ∈ R
d×d and {b1, b2} ∈ R

d are trainable FFN parameters.
Figure 3 shows the detailed implementations of the three units. To be specific, (1) E&R-L-A takes

HL as Q, and HC as K and V, respectively. It enables label representations to attend to the two types
of token representations, aiming to make label representations incorporate task-specific information well.
(2) L-E-A takes HE as Q, and HL as K and V, respectively. It enables token representations for
span-based NER to attend to label representations, aiming to infuse label information into the token
representations. (3) L-R-A takes HR as Q, and HL as K and V, respectively. It enables token represen-
tations for span-based RE to attend to label representations, aiming to infuse label information into the
token representations.

3.3 Decoders

We design three separate linear decoders for sequence tagging-based NER, span-based NER and RE,
respectively.

3.3.1 Decoder for sequence tagging-based NER

This encoder aims to train label representations in a supervised way. The decoder first uses an FFN to
convert the embedding space of label representations (d) to the embedding space of BIO labels. It then
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uses the softmax function to calculate probability distributions on the BIO label space:

ŷL = softmax(HN
LWL + bL), (8)

where WL ∈ R
d∗l and bL ∈ R

l are trainable FFN parameters. l is the count of BIO label types.
The training objective is to minimize the following cross-entropy loss:

LL = −
1

ML

ML
∑

i=1

yi
L log ŷiL, (9)

where yL is the one-hot vector of the gold token BIO label. ML is the count of token-label instances.

3.3.2 Decoder for span-based NER

This decoder classifies span representations to obtain entities. These entities will be used for RE and
model performance evaluation. We first add the NoneEntity type to the pre-defined entity types. Our
model will be trained to classify spans into NoneEntity if they are not entities. We formulate the
definition of span as

s = (ti, ti+1, ti+2, . . . , ti+j) s.t. 1 6 i 6 i+ j 6 n, (10)

where span width is restricted by a threshold ǫ and j < ǫ. We obtain the span representation of s
(denoted as Es) by concatenating semantic representations of span head and tail tokens, and the span
width embedding:

Es = [HN
E,i;H

N
E,i+j ;Wj+1], (11)

where HN
E,i and HN

E,i+j are the i-th and (i+ j)-th embeddings in HN
E . Wj+1 is the fixed-size span width

embedding, which is trained during model training.
Es first passes through an FFN and then is fed into the softmax function, yielding a posterior on the

space of entity types (including NoneEntity):

ŷs = softmax(EsWs + bs), (12)

where Ws and bs are trainable FFN parameters. The training objective is to minimize the following
cross-entropy loss:

LE = −
1

ME

ME
∑

i=1

yi
s log ŷ

i
s, (13)

where ys is the one-hot vector of the gold span type. ME is the number of span instances.
We filter spans that are predicted as entities and build an entity set Se.

3.3.3 Decoder for span-based RE

This decoder classifies relation representations to obtain relations. These relations will be used for model
performance evaluation. As relations exist between entities, only spans predicted as entities are used for
the classification. We formulate the definition of ordered entity pairs (a.k.a. candidate relation tuple) as

r = 〈e1, e2〉 s.t. e1, e2 ∈ Se, e1 6= e2, (14)

where e1 and e2 are the head and tail entities, respectively.
We obtain relation representations (denoted as Er) by concatenating semantic representations of head

entity, tail entity, and relation context:

Er = [Ee1 ;Ee2 ;Cr], (15)

where Ee1 and Ee2 are semantics of e1 and e2, respectively. We obtain them using (11) with HN
R .

Following the previous study [8], we obtain Cr by applying the max-pooling function to the embedding
sequence of the relation context.

Er first passes through an FFN and then is fed into the sigmoid function:

ŷr = σ(ErWr + br), (16)
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Figure 4 (Color online) An example of overlapping entities which are tagged by the extended BIO tagging scheme, where

“Codeine” is the overlapping token, and DRUG and AE are entity types.

where σ is the sigmoid. Wr and br are trainable FFN parameters.
Any high response in the sigmoid outputs indicates that a corresponding relation is held between e1

and e2. Given a confidence threshold α, any relation with a score > α is considered activated.
The training objective is to minimize the following binary cross-entropy loss:

LR = −
1

MR

MR
∑

i=1

(yi
r log ŷ

i
r + (1− yi

r) log(1− ŷ
i
r)), (17)

where yr is the one-hot vector of the gold relation type. MR is the number of entity pair instances.

3.3.4 Model training

During model training, we optimize the following joint training objective:

Ljoint(W ; θ) = LL + LE + LR. (18)

4 Experiments

4.1 Experimental setup

4.1.1 Datasets

We evaluate STSN on ACE05 [29], CoNLL04 [18], and ADE [19] and use the same entity and relation
types, data splits, and pre-processing following the established line of study [30]. Moreover, for a fair
comparison with the previous study [8], we maintain a full version of the ADE dataset, which includes
119 instances containing overlapping entities.

4.1.2 Extended BIO tagging scheme

To make STSN use token-level label information of overlapping entities, we extend the BIO tagging
scheme, which cannot tag overlapping entities initially. We begin by establishing two definitions.

• DEFINITION 1. Two-fold overlapping entities. A pair of overlapping entities where the overlapping
tokens are not contained in any other entities.

• DEFINITION 2. Preceding entity. An entity with a preceding head location. If two entities have the
same head location, the entity with a longer length is chosen.

Figure 4 gives a typical example: “Codeine” and “Codeine intoxication” are two-fold overlapping
entities, and “Codeine intoxication” is the preceding entity.

The detailed tagging principle is that we first tag the preceding entity with the BIO tagging scheme.
Then for the overlapping entity, we append its BIO labels to existing labels, separated by “/”. For
example, “Codeine” is tagged with B-AE/B-DRUG. As all overlapping entities in the full ADE dataset are
two-fold, we tag the dataset with the extended BIO tagging scheme. For other datasets, we tag them
with the BIO tagging scheme.

4.1.3 Evaluation metrics

Following the established line of study [9, 10], we use the standard precision (P), recall (R), and F1
to evaluate the model performance. For NER, a predicted entity is considered correct if its type and
boundaries (entity head for ACE05) match the ground truth. For RE, we adopt two evaluation metrics:
(1) A predicted relation is considered correct if the relation type and boundaries of the two entities match
the ground truth. We define this metric as RE. (2) A predicted relation is considered correct if both the
relation type and the two entities match ground truth. We define this metric as RE+. More discussion
of evaluation settings can be found in [30].
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Table 1 Model comparisons on ACE05 using the micro-averaged F1a)

Model PLM
NER RE RE+

P R F1 P R F1 P R F1

Li and Ji [1] – 85.2 76.9 80.8 68.9 41.9 52.1 65.4 39.8 49.5

Katiyar et al. [3] – 84.0 81.3 82.6 57.9 54.0 55.9 55.5 51.8 53.6

Miwa et al. [2] – 82.9 83.9 83.4 – – – 57.2 54.0 55.6

Sun et al. [31] – 83.9 83.2 83.6 – – – 64.9 55.1 59.6

Li et al. [32] BERT 84.7 84.9 84.8 – – – 64.8 56.2 60.2

Dixit and Al-Onaizan [7] ELMo 85.9 86.1 86.0 68.0 58.4 62.8 – – –

Shen et al. [33] BERT 87.7 87.5 87.6 – – – 62.2 63.7 62.8

Luan et al. [11] – – – 88.4 – – – – – 63.2

Wadden et al. [12] BERT – – 88.6 – – – – – 63.4

Lin et al. [5] BERT – – 88.8 – – – – – 67.5

Wang and Lu [30] ALBERT – – 89.5 – – 67.6 – – 64.3

Ji et al. [9] BERT 89.3 89.9 89.6 – – – 71.2 60.2 65.2

Ren et al. [34] ALBERT – – 89.9 – – – – – 68.0

Zhong et al. [10] BERT – – 90.1 – – 67.7 – – 64.8

Zhong et al. [10] ALBERT – – 90.9 – – 69.4 – – 67.0

STSN (ours) BERT 90.9 89.9 90.4 77.8 60.7 68.2 69.4 64.4 66.8

STSN (ours) ALBERT 92.7 90.5 91.6 80.2 64.2 71.3 69.5 68.7 69.1

a) Bold values denote the state-of-the-art results.

4.1.4 Implementation details

We build STSN by deep stacking three attention layers and evaluate it with bert-base-cased [25] and
albert-xxlarge-v1 [26] on a single NVIDIA RTX 3090 GPU. We optimize STSN using AdamW for 100
epochs with a learning rate of 5E−5, a linear scheduler with a warmup ratio of 0.1, and a weight decay
of 1E−2. We set the training batch size to 4, dimension of Wj+1 to 150, h of multi-head attention to 8,
span width threshold ǫ to 10, and relation threshold α to 0.4. Following the established line of study [8,9],
we adopt a negative sampling strategy and set the number of the negative entity and relation samples
per data entry to 100, respectively.

Across all the three datasets, we use the training set to train STSN and use the test set to report
model evaluation performance. For ACE05 and CoNLL04, we run STSN 20 times and report averaged
results of the best 5 runs. For ADE, we adopt the 10-fold cross-validation, run each fold 20 times, and
report averaged results of the best 5 runs.

4.2 Main results

Tables 1–3 [31–42] show the model comparison results. We have the following observations. (1) Our best
model consistently surpasses all the selected baselines in terms of F1. (2) On ACE05, compared to the
strongest baselines [10, 34], our best model obtains +0.7%, +1.9%, and +1.1% F1 gains on NER, RE,
and RE+, respectively. (3) On CoNLL04, compared to the strongest baselines [21, 38], our best model
obtains +1.0% and +1.7% micro-averaged F1 gains on NER and RE+, respectively. And compared to
the strongest baselines [8,30], our model obtains +2.5% and +3.1% macro-averaged F1 gains on NER and
RE, respectively. (4) On ADE (without overlapping entities), compared to the strongest baseline [39],
our best model obtains +1.0% and +1.3% F1 gains on NER and RE, respectively. (5) On the full ADE
(with overlapping entities), compared to the strongest baseline [40], our best model obtains +1.1% and
+2.7% F1 gains on NER and RE, respectively.

We attribute these performance gains to (1) the success of using token-level label information in
span-based joint extraction; (2) the bi-directional information interaction between NER and RE; (3) the
effectiveness of the extended BIO tagging scheme. Additionally, we report concrete positive and negative
case studies to help understand our model, as shown in Subsection 4.5.
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Table 2 Model comparisons on CoNLL04a)

Model PLM
NER RE+

P R F1 P R F1

Bekoulis et al. [20] N – 83.4 84.1 83.9 63.8 60.4 62.0

Nguyen et al. [35] N – – – 86.2 – – 64.4

Eberts et al. [8] N BERT 85.8 86.8 86.3 74.8 71.5 72.9

Wang and Lu [30] N ALBERT – – 86.9 – – 75.4

Miwa et al. [36] △ – 81.2 80.2 80.7 76.0 50.9 61.0

Zhang et al. [37] △ – – – 85.6 – – 67.8

Li et al. [32] △ BERT 89.0 86.6 87.8 69.2 68.2 68.9

Eberts et al. [8] △ BERT 88.3 89.6 88.9 73.0 70.0 71.5

Wang and Lu [30] △ ALBERT – – 90.1 – – 73.6

Ji et al. [9] △ BERT 90.1 90.4 90.2 77.0 71.9 74.3

Shen et al. [33] △ BERT 90.3 90.3 90.3 73.0 71.6 72.4

Zhao et al. [21] △ ELMO – – 90.6 – – 73.0

Huguet et al. [38] △ BART – – – 75.6 75.1 75.4

STSN (Ours) △ BERT 90.6 91.2 90.9 76.1 73.9 75.0

STSN (ours) △ ALBERT 92.4 90.8 91.6 76.8 77.4 77.1

STSN (ours) N BERT 88.5 87.9 88.2 77.5 77.1 77.3

STSN (ours) N ALBERT 89.8 89.0 89.4 79.0 78.0 78.5

a) △ denotes using the micro-averaged F1; N denotes using the macro-averaged F1; bold values denote the state-of-the-art

results.

Table 3 Model comparisons on ADEa)

Model PLM
NER RE+

P R F1 P R F1

Eberts et al. [8] ♠ BERT 89.0 89.6 89.3 77.8 78.0 78.8

Ji et al. [9] ♠ BERT 89.9 91.3 90.6 79.6 81.9 80.7

Lai et al. [40] ♠ BERT – – 90.7 – – 81.7

Li et al. [41] – 79.5 79.6 79.5 64.0 62.9 63.4

Li et al. [42] – 82.7 86.7 84.6 67.5 75.8 71.4

Bekoulis et al. [20] – 84.7 88.2 86.4 72.1 77.2 74.6

Eberts et al. [8] BERT 89.3 89.3 89.3 78.1 80.4 79.2

Zhao et al. [21] ELMo – – 89.4 – – 81.1

Yan et al. [39] BERT – – 89.6 – – 80.0

Wang and Lu [30] ALBERT – – 89.7 – – 80.1

Shen et al. [33] BERT 89.5 91.3 90.4 84.2 83.4 80.7

Huguet et al. [38] BART – – – 81.5 83.1 82.2

Yan et al. [39] ALBERT – – 91.3 – – 83.2

STSN (ours) BERT 91.3 91.9 91.6 82.8 84.6 83.7

STSN (ours) ALBERT 91.5 93.1 92.3 84.8 84.2 84.5

STSN (ours) ♠ BERT 90.8 91.4 91.1 83.3 83.7 83.5

STSN (ours) ♠ ALBERT 91.6 92.0 91.8 85.0 83.8 84.4

a) ♠ denotes evaluating STSN on the full ADE dataset (with overlapping entities); bold values denote the state-of-the-art

results.

4.3 Analysis

We report analysis results on the dev set of ACE05 and the test sets of CoNLL04 and ADE4). And we
take SpERT [8] as the baseline, which is the closest span-based model to ours. SpERT uses BERT as
the encoder and two linear decoders to classify spans and span pairs. For a fair comparison, we use our
BERT-based STSN.

4) Following previous studies [8, 9, 21, 30], we combine the training and dev sets of CoNLL04 to train our STSN. Thus we use

the test set for the analysis. And since ADE does not contain a dev set, we also use the test set for the analysis.
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Figure 5 (Color online) NER performance comparisons under various grouped entity lengths across the three datasets.

(a) ACE05; (b) CoNLL04; (c) ADE.
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Figure 6 (Color online) NER and RE performance comparisons under various grouped text lengths across the three datasets. (a)

ACE05; (b) CoNLL04; (c) ADE.

4.3.1 Performance against entity length

Figure 5 shows performance comparisons on NER under various entity lengths. We divide all entity
lengths, which is restricted by span width threshold ǫ, into [1–2], [3–4], [5–6], [7–8], and [9–10]. We have
the following observations: across all datasets, (1) STSN consistently outperforms the baseline under all
length intervals; (2) performance improvements brought by STSN are generally further enhanced when
the entity length increases. Specifically, STSN obtains much higher F1 gains under [7–8] and [9–10] than
the ones under [1–2] and [3–4], demonstrating that STSN is more effective in terms of long entities.

4.3.2 Performance against text length

We compare STSN with the baseline under grouped text lengths. As Figure 6 shows, we divide text
lengths into [0–19], [20–34], [35–49], and [>50]. We have the following observations: across the three
datasets, (1) STSN performs way better than the baseline under all text lengths on both NER and RE;
(2) performance gains brought by STSN are generally further enhanced when text length increases. In
particular, STSN obtains the best performance gains under [>50] on both NER and RE, demonstrating
that STSN is more effective in terms of long texts.
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Table 4 Ablation study on attention layer numbers. We solely report the F1 scores and consider the averaged score of the 6 F1

scores in each row to be Ave. F1, which is used as an overall evaluation metrica).

STSN + deep stacking
ACE05 CoNLL04 ADE

Ave. F1

NER RE+ NER RE+ NER RE+

1 AttentionLayer 87.6 59.2 87.4 72.1 88.9 81.1 79.4

2 AttentionLayers 88.7 60.5 90.0 73.9 89.5 80.4 80.5

3 AttentionLayers 89.5 62.6 90.9 75.0 91.6 83.7 82.2

4 AttentionLayers 89.2 62.5 91.3 75.2 90.5 83.8 82.1

5 AttentionLayers 88.9 62.6 90.4 74.2 90.7 83.2 81.7

6 AttentionLayers 89.1 62.0 90.4 74.4 90.5 82.9 81.6

a) The bold value denotes the best result.

4.4 Ablation study

We conduct ablation studies on our BERT-based STSN and report ablation results on the dev set of
ACE05 and the test sets of CoNLL04 and ADE.

4.4.1 Ablations on various attention layers

We conduct ablations on attention layer numbers by deep stacking various attention layers in STSN.
Table 4 shows the ablation results, from which we can observe that: across the three datasets, (1) when
deep stacking three attention layers, STSN performs the best (82.2% Ave. F1); (2) STSN with only
one attention layer performs the worst, which we attribute to the fact that one layer cannot fully infuse
token-level label information into token semantic representations; (3) when the number of attention
layers increases, the model performance generally first drastically increases and then slightly decreases.
We attribute this to the fact that deeper models make it easier to fully infuse token-level label information
into token semantic representations, while much deeper models tend to infuse more noisy information,
which harms the model performance.

4.4.2 Ablations on model components

Table 5 reports the ablation results across the three datasets.

(1) “w/o Label” denotes ablating token-level label information. We realize this ablation by removing
the stacked attention layers and the decoder for sequence tagging-based NER from STSN. After doing
this, our model cannot benefit from the token-level label information. The results show that using the
token-level label information boosts the model performance by delivering +2.7% to +3.1% F1 gains on
NER and +4.2% to +6.0% F1 gains on RE+.

(2) “w/o Bi-Interaction†” denotes removing the information flow from RE to NER but keeping the
information flow from NER to RE, as shown in Figure 7(a). We realize this ablation by making K and
V of E&R-L-A be HE and Q of E&R-L-A be HL. Thus HL no longer attends to HR and solely attends
to HE . The results show that the information flow from RE to NER brings +1.1% and +0.8% averaged
F1 gains on NER and RE, respectively.

(3) “w/o Bi-Interaction‡” denotes removing the information flow from NER to RE but keeping the
information flow from RE to NER, as shown in Figure 7(b). We realize this ablation by making K and
V of E&R-L-A be HR and Q of E&R-L-A be HL. Thus HL no longer attends to HE and solely attends
to HR. The results show that the information flow from NER to RE brings +0.4% and +1.3% averaged
F1 gains on NER and RE, respectively.

(4) “w/o Interaction” denotes removing the information interactions between NER and RE, as shown
in Figure 7(c). We realize this ablation by making Q, K, and V of E&R-L-A be HL. In other words,
E&R-L-A is the self-attention in the current scenario, disabling the information interactions between
NER and RE. The results show that the bi-directional information interactions bring +1.2% and +1.5%
averaged F1 gains on NER and RE, respectively.

Based on these observations, we can conclude that the performance gains mainly benefit from using
the token-level label information, revealing that our motivation is sufficient. Moreover, the bi-directional
information interaction is consistently superior to the two unidirectional information flows, validating the
effectiveness of our novel bi-directional design.
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Table 5 Ablation results. We solely report the F1 scores. The values in parentheses denotes the F1 score decreases (compared

to STSN) caused by corresponding ablation settings.

Method
ACE05 CoNLL04 ADE

NER RE+ NER RE+ NER RE+

STSN 89.5 62.6 90.9 75.0 91.6 83.7

w/o Label 86.4 (−3.1) 56.6 (−6.0) 88.1 (−2.7) 70.8 (−4.2) 88.7 (−2.9) 78.5 (−5.2)

w/o Bi-Interaction† 89.0 (−0.5) 61.6 (−1.0) 89.6 (−1.3) 74.4 (−0.6) 90.1 (−1.5) 82.9 (−0.8)

w/o Bi-Interaction‡ 89.2 (−0.3) 61.4 (−1.2) 90.2 (−0.7) 73.5 (−1.5) 91.5 (−0.1) 82.4 (−1.3)

w/o Interaction 88.9 (−0.6) 61.7 (−0.9) 89.5 (−1.4) 73.4 (−1.6) 90.1 (−1.5) 81.6 (−2.1)

4.5 Case study

We conduct qualitative analysis on concrete examples to help understand our model. We take SpERT as
the baseline, which is the closest span-based model to ours. For a fair comparison, we use our BERT-based
STSN.

4.5.1 Positive example

Table 6 reports four positive examples. In Text 1, SpERT mistakenly predicts “House of Delegates” as a
LOC entity, while STSN correctly predicts it as a ORG entity. We attribute it to the fact that STSN enables
span representations to incorporate token-level label information in the case that STSN correctly tags
“House of Delegates” with ORG labels. Moreover, STSN correctly predicts that 〈“House of Delegates”,
“Maryland”〉 holds a OrgBased In relation. Text 2 shows a similar example, where STSN correctly
predicts “La.” as a LOC entity, as well as the Located In relation hold by 〈“Grand Isle”, “La.”〉.

Texts 3 and 4 mainly show the effects of using token-level label information in relation classification.
For example, both SpERT and STSN correctly predict all entities of Text 3, but SpERT mistakenly
predicts that there is no relation between these entities. In contrast, STSN correctly predicts the two
Located In relations. We attribute it to using token-level label information in relation representations,
enabling our model to know detailed entity types beforehand.

4.5.2 Negative example

We also report a negative example, as Table 7 shows. In this example, STSN mistakenly tags a token
label: “president” is tagged with I-ORG, which is supposedly tagged with O. However, STSN still correctly
predicts all entities and relations of this Text. Moreover, we find that STSN successfully tackles most of
the similar cases (97.56%) across the three datasets. We attribute it to the fact that STSN learns only to
incorporate useful label information, enabling our model to avoid suffering from wrong label predictions.

5 Conclusion

In this paper, we propose an STSN for the joint entity and relation extraction task. STSN enables
the span-based joint extraction model to use token-level label information, which is achieved by deep
stacking multiple attention layers. Moreover, STSN establishes bi-directional information interactions
between NER and RE, which is proven effective. Furthermore, we extend the BIO tagging scheme,
allowing STSN to use the label information of overlapping entities. Experiments on three datasets show
that STSN consistently outperforms other competing models in terms of F1. Since STSN only considers
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Table 6 Positive examples regarding using token-level label information in the span-based joint extraction, where all labels,

entities, and relations in the STSN rows are predicted correctlya)

Text 1 Judith Toth says she returned for a fourth term in Maryland’s House of Delegates

SpERT
Entity [Judith Toth]PER [Maryland]LOC [House of Delegates]LOC

Relation 〈House of Delegates, Maryland, Located In〉

STSN

Token label B-PER I-PER O O O O O O O O B-LOC B-ORG I-ORG I-ORG

Entity [Judith Toth]PER [Maryland]LOC [House of Delegates]ORG

Relation 〈House of Delegates, Maryland, OrgBased In〉

Text 2 One man was lost from an oil rig off Grand Isle, La., as the storm moved in

SpERT
Entity [Grand Isle]LOC

Relation No relation

STSN

Token label O O O O O O O O O B-LOC I-LOC B-LOC O O O O O

Entity [Grand Isle]LOC [La.]LOC

Relation 〈Grand Isle, La., Located In〉

Text 3 Seattle has a hour-glass figure, squeezed between Puget Sound and Lake Washington

SpERT
Entity [Seattle]LOC [Puget Sound]LOC [Lake Washington]LOC

Relation No relation

STSN

Token label B-LOC O O O O O O B-LOC I-LOC O B-LOC I-LOC

Entity [Seattle]LOC [Puget Sound]LOC [Lake Washington]LOC

Relation 〈Puget Sound, Seattle, Located In〉 , 〈Lake Washington, Seattle, Located In〉

Text 4 An enraged Khrushchev instructed Soviet ships to ignore Kennedy’s naval blockade

SpERT
Entity [Khrushchev]PER [Soviet]LOC [Kennedy]PER

Relation No relation

STSN

Token label O O B-PER O B-LOC O O O B-PER O O

Entity [Khrushchev]PER [Soviet]LOC [Kennedy]PER

Relation 〈Khrushchev, Soviet, Live In〉

a) The underline denotes that entities or relations are mistakenly predicted, and the bold denotes corresponding entities located

in texts.

Table 7 A negative example, in which STSN mistakenly predicts a token label (i.e., the I-ORG), but it still correctly predicts all

entities and relations

Text But Jack Frazier, Rotary Club president, said volunteers picked up the ducks

SpERT
Entity [Jack Frazier]PER [Rotary Club]ORG

Relation 〈Jack Frazier, Rotary Club, Work For〉

STSN

Token label O B-PER I-PER B-ORG I-ORG I-ORG O O O O O O

Entity [Jack Frazier]PER [Rotary Club]ORG

Relation 〈Jack Frazier, Rotary Club, Work For〉

the two-fold overlapping entities, we will investigate upgrading our model in the future to extract other
overlapping entities.
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