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Abstract Deep reinforcement learning models are vulnerable to adversarial attacks that can decrease the

cumulative expected reward of a victim by manipulating its observations. Despite the efficiency of previous

optimization-based methods for generating adversarial noise in supervised learning, such methods might

not achieve the lowest cumulative reward since they do not generally explore the environmental dynamics.

Herein, a framework is provided to better understand the existing methods by reformulating the problem

of adversarial attacks on reinforcement learning in the function space. The reformulation approach adopted

herein generates an optimal adversary in the function space of targeted attacks, repelling them via a generic

two-stage framework. In the first stage, a deceptive policy is trained by hacking the environment and

discovering a set of trajectories routing to the lowest reward or the worst-case performance. Next, the

adversary misleads the victim to imitate the deceptive policy by perturbing the observations. Compared

to existing approaches, it is theoretically shown that our adversary is strong under an appropriate noise

level. Extensive experiments demonstrate the superiority of the proposed method in terms of efficiency and

effectiveness, achieving state-of-the-art performance in both Atari and MuJoCo environments.

Keywords deep learning, reinforcement learning, adversarial robustness, adversarial attack

1 Introduction

The increasing sophistication and ubiquity of reinforcement learning (RL) have resulted in an impressive
performance in the Atari games [1–3] and numerous other tasks [4,5]. However, the performance remains
vulnerable when an adversary accesses inputs to an RL system and implements malicious attacks to de-
ceive a deep policy [6–9]. Thus, a deep RL (DRL) agent may take suboptimal (or even harmful) actions
to degrade the performance of a trained RL agent. As the RL-based frameworks become increasingly
widely deployed in real-world scenarios, it becomes an indispensable prerequisite to understanding adver-
sarial attacks against the DRL policies, especially for safety-related or life-critical applications, such as
industrial robots and self-driving vehicles. Though adversarial robustness has been extensively studied in
supervised learning [10–14], the adversarial vulnerability of the DRL has been less investigated [6, 9, 15].
Since the seminal work [16], only a few studies have addressed this problem. In the DRL, the adversary
can choose different parts to attack, i.e., observation, transition, and reward. In this work, we mainly
focus on adversarial attacks on observations, i.e., the perturbation only depends on the current state and
does not change the state-action transition. Particularly, most of the previous optimization-based meth-
ods conducted adversarial attacks following a supervised approach that aims to change the behavioral
characteristics of an agent directly [6]. However, as illustrated in Figure 1, for the same observation,
different attacks will mislead the agent to take different actions. Therefore, it may not minimize the
accumulated reward to achieve the optimal attack on the RL since the adversary does not alter the envi-
ronmental dynamics. Recent learning-based methods [9, 17] have tried generating an optimal adversary
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Figure 1 Actions taken by the victim policy under an adversarial attack against Atari. The optimal action for the agent in the

current state is to “stay and shoot” — and get the bonus; while the worst action is to “stay” which can lead to the death of the

agent. Most of the early methods can be categorized into the full-timed or strategically-timed untargeted attacks, which may not

achieve the worst case action since they usually do not infer the MDP’s dynamics. The more recent studies explore the targeted

attacks which lead to the catastrophic consequences. In this paper, we provide a comprehensive understanding for the present

methods with a generic framework in the function space and identify the limitations of these methods.

by learning a global mapping from the original states to the adversarial states, which provides a possible
solution to obtain the worst-case agent reward. However, these methods may suffer from inefficiency due
to the high-dimensional state representations (e.g., the state dimension is > 6000 in Atari). Therefore, it
is imperative to investigate whether we can effectively and efficiently generate adversarial noise by lever-
aging the adversarial attacks to assess the robustness of the RL. Herein, we study the optimization-based
methods due to their efficient implementation and potential to explore the dynamics of the Markov deci-
sion process (MDP). To better understand the pros and cons of these current methods, we first categorize
them by considering the manner of noise generation and their attack frequencies. The first approach is
the full-timed untargeted attack that misleads the agent to a suboptimal action [6, 8], and the second
approach is a more covert and low-frequency strategically-timed attack, which only attacks the agent
at a small subset of time steps [18]. Note that both methods try to mislead the agent to a suboptimal
action rather than the worst-case action, which is referred to as an untargeted attack herein. The third
approach lures the agent to a specified malicious policy using a targeted attack [8, 19, 20] which allows
the adversary to choose when and how to attack by adjusting the target action. Then, we present a
reformulation of these attacks in the function space, where each type corresponds to a particular function
space. Obviously, targeted attacks are much stronger than untargeted attacks, i.e., the space correspond-
ing to targeted attacks exceeds that for untargeted attacks. After close examinations, we further find
that all the previous targeted attacks follow a pessimistic assumption on the adversary, i.e., the perfor-
mance of the attacked policy is close to the victim policy, which may hinder the performance. To address
this issue, we introduce a more reasonable optimistic assumption where the attacked policy performance
should be close to the worst-case agent, which allows the adversary to explore a much larger space and
generate a more powerful adversary. Following the comprehensive analysis of the present methods, we
propose a novel optimization-based method that aims to minimize the expected accumulated reward for
the victim policy under an alternative optimistic assumption. To the best of our knowledge, our method
is the first optimization-based method to consider the dynamics of the MDP by approximately estimat-
ing the attacked policy performance. Specifically, we reformulate the task as a two-stage optimization
problem by introducing an intermediate deceptive policy to explore the environment, which serves as a
targeted policy to achieve the worst-case agent. Instead of maximizing the Q-values of the least preferred
action [20], our method generates adversarial perturbations by minimizing the KL-divergence between
the deceptive and victim policies, which can therefore satisfy our optimistic assumption. Furthermore,
we provide a theoretical analysis and show that the results from our algorithm are in a tighter upper
bound for the performance of the attacked agent than other existing adversaries under an appropriate
noise level. Extensive experiments on both the MuJoCo and Atari environments show that our attacks
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achieve state-of-the-art performance with the lowest rewards in the vast majority of the environments,
compared with strong optimization-based and learning-based baselines. Furthermore, our algorithm is
the first optimization-based method to achieve nearly the lowest reward in several Atari environments by
exploring the MDP dynamics, and is much more efficient than the learning-based methods.

2 Preliminaries

We first briefly review the recent adversarial attack algorithms for DRLs and present the framework of
the state-adversarial MDP (SA-MDP).

2.1 Adversarial attacks in DRL

In DRL, the adversary can choose different parts to attack, like observations and environment dynamics.
Modifying observations and dynamics have structurally different impacts on the agent and some current
work [21] hopes to find the connection between them. Moreover, since the adversary often does not have
the authority to modify the original state in a simulator, in this paper, we mainly focus on the setting
that perturbs the observations. In general, the present methods can be categorized into optimization-
based and learning-based attacks. At each state, the adversary in optimization-based attacks generates a
perturbation with the optimization-based adversarial attack in supervised learning. Based on the manner
of noise generation and attack frequency, we can further classify the optimization-based adversary into
three categories. The first type [6] applies an untargeted attack algorithm to mislead the agent to choose a
sub-optimal action at each time step, while the second type provides heuristic adversaries that attack the
agent on a subset of time steps, using a solver of an untargeted attack [7,18]. The third type of adversaries
misleads the agent to some heuristic target actions by leveraging the Q-value functions [8, 19, 20]. In a
learning-based attack, the adversary learns a mapping and directly generates a perturbation with this
mapping. A recent example is [9], which provides a function approximator to learn the perturbation under
the framework [8] with superior performance over optimization-based methods in MuJoCo environments.
However, the previous learning-based methods can be inefficient in high-dimensional environments.

2.2 State-adversarial Markov decision process

Zhang et al. [8, 9] presented a unified framework of an SA-MDP, which is a modified MDP for the
perturbation on state observations. Formally, let S be the state set and F(S) be the set of all distributions
on S. SA-MDP has an attacker set G, and any attacker g : S → F(S) can perturb the state observation
which is configured as s to s̄ ∼ g(·|s), where g(·|s) is the distribution of the perturbed state. In particular,
SA-MDP can be represented as a 6-tuple asM = (S,A, B, Pa,R, γ), where A is the action set, and B(s) is
the disturbed state set (usually small) around state s; Pa is a transition function, R is a reward function,
and γ is a discount factor. An agent acts following a policy π. In SA-MDP, the agent takes the action as

πg(a|s) ≡
∑

s̄∈S

g(s̄|s)π(a|s̄), (1)

where π is the victim policy to be attacked and g(s̄|s) is the mapping for the original state to the
adversarial state. The adversary aims to minimize the expected total reward of π by applying the
perturbations as

g∗ = argmin
g∈G

Eat∼πg(·|st)

[

∞
∑

t=0

γtrt

]

. (2)

For notation simplicity, we omit the initial state distribution, and denote a ∼ πg instead of at ∼ πg(·|st)
in this paper.

3 Understanding adversarial attacks in function spaces

We first provide a reformulation of the SA-MDP in the function space, and then show that the existing
three types of optimization-based adversarial algorithm can be characterized as different subspaces; finally,
we provide a comprehensive analysis of the function space which motivates us to find a better adversary.
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Figure 2 Adversarial attacks on the victim’s observation. Given an agent with policy π, the attacker applies an adversarial

function h to the observation. The victim’s observation state is perturbed to h(st) = st + δst , yielding a sub-optimal action. The

victim agent consequentially behaves as at ∼ π(a|h(st)) which can be recognized as an agent with adversarial policy at ∼ πh(a|st).

Table 1 The typical existing optimization-based attacks in DRL are categorized into three types based on algorithm for noise

generation and the attack frequency, which are corresponding to three function spaces

Function space Attack manner Attack frequency Methods

H1 Untargeted attack Full-timed Huang et al. [6]; Zhang et al. [8]

H2 Untargeted attack Strategically-timed
Kos and Song [7]; Lin et al. [18];

Sun et al. [22]; Yang et al. [23]; Inkawhich et al. [24]

H3 Targeted attack Full-timed
Pattanaik et al. [19]; Lin et al. [20];

Zhang et al. [8]

3.1 Reformulating SA-MDP in function spaces

In order to provide an in-depth understanding of the current methods, we reformulate SA-MDP in the
function space of H by classifying the existing optimization-based attack algorithms into different types.
As illustrated in Figure 2, given a pre-trained policy π as the victim policy, the adversary aims to minimize
the expected total reward of π by applying the perturbations δst to state st as h(st) = st + δst . Let H
be the space of the adversary’s function as

H = {h
∣

∣‖h(s)− s‖p 6 ǫ, ∀s ∈ S}, (3)

where the constant ǫ is the level of the lp-norm adversarial noise that measures the ability of an adversary.
We can reformulate problem (2) by solving the optimal function in the function space as h∗ ∈ H. Suppose
a function as πh : S → F(A) such that

πh(a|s) ≡ π(a|h(s)), (4)

which means an agent with policy πh(a|s) behaves similarly to the victim agent with policy π when the
observed state is perturbed to h(s). With our setting of attacker h and function space H, we can derive
the optimal function set H∗ to generate the adversarial perturbation by rewriting problem (2):

H∗ =

{

h∗

∣

∣

∣

∣

h∗ = argmin
h∈H

[

R(πh) , Ea∼πh

∞
∑

t=0

γtrt

]}

, (5)

where R(πh) is the expected total reward.

3.2 Categorizing adversaries in function spaces

In this part, we classify the existing optimization-based methods with three subspaces in the function
space H as in Table 1 [6–8, 18–20, 22–24]. The first two types of subspaces refer to the untargeted
adversaries that generate adversarial noise by only considering the current states. In the third subspace,
we consider an adversary that is able to generate adversarial noise by specifying the targeted action or
policy at each time step.
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Figure 3 An example in Grid World with two obstacles for (a) H1 and (b) H2.

3.2.1 The function space of full-timed untargeted attack of H1

We start by introducing the adversary set H1, which misleads the agent to take sub-optimal actions at
each state s by using untargeted adversaries as follows.

Definition 1. Assume Φu is the set of the untargeted attack algorithms, for ∀φ ∈ Φu; H1 is the function
space to represent the adversary h ∈ H which generates the perturbed state for each φ ∈ Φu as

H1 = {h ∈ H|h(s) ≡ φǫ
π(s), ∃φ ∈ Φu, ∀s ∈ S},

where φǫ
π is an instantiated mapping from the original state space S to the adversarial state space S

parameterized by the noise level ǫ and the victim policy π, i.e., ‖φǫ
π(s)− s‖p 6 ǫ holds for any state s.

As an untargeted attack algorithm, φ ∈ Φu maximizes the divergence between the victim policy π
and the attacked policy πh at state s. For instance, as a representative work in H1 [6], the distance is
evaluated by the cross-entropy loss between the attacked policy and the policy that takes the action a
with the maximum probability of the victim policy. Ref. [8] further improve the methods by maximizing
the KL divergence between the victim policy and the attacked policy with projected gradient descent
(PGD) [13] or convex relaxations [25] of neural networks for each state. However, in some environments,
any adversary in H1 may not be in H∗, i.e., one cannot achieve the worst case of expected accumulated
reward. We present Proposition 1 to show the weakness of H1.

Proposition 1 (Weakness of H1). There exists an MDP such that ∀π ∈ Π∗, the optimal function h∗ is
not included in the space of H1, i.e., H∗ ∩H1 = ∅, where Π∗ is the optimal policy set that can maximize
the accumulated reward for an agent.

Proposition 1 is apparent and we provide a constructed example in Figure 3(a) for illustration. The
agent gains reward −1 in the grey state, gains reward +1 in the red state, and 0 in other states. The
grey state and the red state are the terminal states. The agent can only move right or down in the left
part. Then the optimal policy (red arrow) π∗ ∈ Π∗ must reach the green state sg and move right with
a∗. By Definition 1, the full-timed untargeted attacks aim to change the original actions as

∀h1 ∈ H1, πh1(a
∗|sg) < 1,

which prevents the victim from taking the minimum reward (reach the grey state). However, every
worst-case policy with the flipped reward (black arrow) also reach the green state and move right, which
means

∀h∗ ∈ H∗, πh∗(a∗|sg) = 1.

Then V πh1 (sg) > V πh∗ (sg). From this example, we can illustrate that H∗ ∩H1 = ∅. From Proposition 1,
we can see that it is not always necessary to generate noise at each time step to minimize the expected
reward of the attacked policy. The second type of strategically-timed untargeted attacks can be more
effective in this aspect, though they also suffer some limitations, as detailed below.

3.2.2 The function space of strategically-timed untargeted attack of H2

We characterize the second type of strategically-timed untargeted attack which can choose either to
perturb the observation or to maintain the origin observation. Formally, we characterize this type as the
second function space H2 as follows.
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Definition 2. H2 is the function space to represent the adversary h ∈ H which only attacks the agent
at a small subset of time steps strategically as

H2 =
{

h ∈ H|h(s) ≡ Ia(s)φ
ǫ
π(s) + (1− Ia(s))s, ∃φ ∈ Φu, ∀s ∈ S

}

,

where φǫ
π(s) is an instantiated mapping of φ parameterized by ǫ and π as in Definition 1, and Ia(s)

indicates whether the adversary attack at state s or not, i.e., Ia(s) = 1 when the adversary attacks at
state s, otherwise Ia(s) = 0.

There exist a few attempts in this direction [7, 18, 22, 23], which aim at reducing the frequency of
attacks rather than enhancing the attacker’s capabilities. These algorithms heuristically control whether
to attack based on the current state s. Although the attacked policy in H2 has one more option at
each state, i.e., it can act as the victim policy, this adversary may still not be in H∗. We also present
Proposition 2 to show the weakness of H2, which is similar to Proposition 1.

Proposition 2 (Weakness of H2). There exists an MDP such that ∀π ∈ Π∗, the optimal function h∗ is
not included in the space of H2, i.e., H∗ ∩H2 = ∅, where Π∗ is the optimal policy set that can maximize
the accumulated reward for an agent.

Proof. Suppose there exist |Φu| attack algorithms. We provide a constructed example in Figure 3(b)
for |Φu| = 1, without losing generality. Since strategically-timed attacked policy (in Definition 2) is
not related to the worst state in the environment, there exists an MDP in Proposition 2. According to
Definition 6, there are three possible strategically-timed attacked policy at green state sg: {right, down},
{up, down}, or {left, down}. In Figure 3(b), we suppose that the strategically-timed attacked policy
moves right or down in green state sg. The agent gains reward +1 in the red state and 0 in other states.
The agent gains reward −1 in the grey state. The grey state and the red state are the terminal states.
Then the optimal policy (red arrow) π∗ ∈ Π∗ must reach the green state sg and move right with a∗, i.e.,
V πh2 (sg) > 0. However, every worst-case policy with the adversarial reward (black arrow) also reaches
the grey state, i.e., V πh2 (sg) > V πh∗ (sg) = −1. From this example, we can illustrate that H∗ ∩H2 = ∅.
When the strategically-timed attacked policy at sg is {top, down} or {left, down}, we can give another
example by simply setting the yellow state as the worst case with reward −1.

3.2.3 The function space of targeted attack of H3

Compared to the untargeted attack algorithms, the targeted attack algorithms allows flexibility in spec-
ifying the target action or the target policy, which is categorized as the third function space H3.

Definition 3. Assume Φt is the set of all targeted attack algorithms, for ∀φ ∈ Φt, H3 is the function
space to represent the adversary which generates the perturbed state φǫ

π,π′(s) at each state s as

H3 = {h ∈ H|h(s) ≡ φǫ
π,π′(s), ∃π′ ∈ Πadv, ∀s ∈ S},

where φǫ
π,π′ is an instantiated mapping of φ parameterized by the noise level ǫ, the victim policy π and

the target policy π′ as in Definition 1, and Πadv is a policy set that is accessible to the adversary.

As a targeted attack, the algorithm φ aims at finding an adversarial example with the adversarial noise
level ǫ to minimize the distance between π′(·|s) and πh(·|s). π′ belongs to Πadv, and Πadv is accessible to
the adversary without the adversarial optimizer. For example, ∃π∗ ∈ Π∗, the optimal policy π∗ satisfies:
π∗ ∈ Πadv when the environment is accessible to the adversary. Theoretically, it is also worth noting that
the adversary can access a worst policy π− ∈ Π− when the adversary can explore the environment with
the flipped reward.

3.3 Discussion on the function spaces

In this subsection, we make a comprehensive analysis by finding the limitations of the present methods
and providing insights on where and how to find optimal adversary h∗ as follows.

3.3.1 The function space H3 is generally larger than the function space H1 and H2

We first investigate the advantages of the targeted adversaries. If πH1 , πH2 , and πH3 are the policies set
in the corresponding function space, we find the advantage of H3 as follows.

Theorem 3 (The advantage of H3). With an appropriate noise level ǫ and policy set Πadv, the policy
set satisfy πH1 ⊆ πH2 ⊆ πH3 .
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Figure 4 Relationship among the policy sets πH, πH1 , πH2 , and πH3 with different noise levels ǫ. (a) ǫ = 0, ∀Πadv ⊆ Π;

(b) ǫ → ∞, Πadv = Π.

Proof. Figure 4 shows the relationship among these policy sets. Obviously, as H1 ⊆ H2, we always have
πH1 ⊆ πH2 . Without the limitation on noise level ǫ and policy set Πadv, πH3 is equal to Πadv = Π = πH.
Therefore, we can get πH2 ⊆ Π = πH3 .

Therefore, we solve the where-to-find problem by finding the optimal solution h∗ in H3, and next we
will show how to solve it.

3.3.2 Assumptions on the adversary in the function space H3

After careful examinations on the present targeted attacks in the function space of H3, we find that the
existing methods [8, 19, 20] implicitly follow a “pessimistic” assumption as follows.

Assumption 1. For the adversary h ∈ H3 and the victim policy π, the pessimistic assumption states:

Qπh(s, a) ≈ Qπ(s, a), (6)

where Qπh(s, a) is the the Q-value function of the attacked policy πh.

We call this assumption as the pessimistic assumption because it assumes that the performance of
the attacked policy is close to the victim policy. In other words, we pessimistically assume the effect of
the adversary. The objective function of existing approaches [19] is exactly the same as the elementary
function in (5) by substituting Qπh with Qπ; and the objective function in [8] can be obtained by
substituted Qπh into the elementary function in (5) with a robust Q-values function QRS.

However, the pessimistic assumption may be inappropriate since practically, the performance of the
adversarial attack [8, 19] is close to the worst policy π− rather than the victim policy π. Therefore, we
present another reasonable “optimistic” assumption as follows.

Assumption 2. For the adversary h ∈ H3 and π− is the worst policy, the optimistic assumption states

Qπh(s, a) ≈ Qπ−

(s, a), (7)

where Qπh and Qπ−

areQ-value functions for the attacked policy πh and the worst policy π−, respectively.

We call this assumption as the optimistic assumption because we assume that the performance of the
attacked policy is close to the performance of the worst policy, which means we are optimistic to the
effect of the adversary. We follow this optimistic assumption and further design a two-stage optimization
method to solve this problem in the following, which is the first attempt following this assumption to the
best of our knowledge.

4 Methodology

Following previous discussions, we now present an adversarial attack to obtain the adversarial policy in
function space H3 under the optimistic assumption and the pseudo code is outlined in Algorithm 1.
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Algorithm 1 Two-stage attack

Require: Victim policy π.

1: Stage 1: learn the deceptive policy π− using RL algorithm (like proximal policy optimization (PPO)) to solve

π
− ∈ argmin

π∈Π
R(π). (8)

2: Stage 2: when observe current state s, calculate the adversarial noise via the deceptive policy

ĥ
∗(s) = argmin

h∈H3

DKL(πh(·|s)‖π
−(·|s)), (9)

and apply it to current observation.

4.1 Two-stage optimization

The original problem (5) is intractable to solve since the attacker is required to infer the environmental
dynamics and the exploration mechanism in DRL, which inevitably leads to a shift in the distribution
of the state. To address this issue, we first introduce a deceptive policy to explore the worst case in the
environment that can minimize the accumulated reward. Moreover, we denote Πd as the set of deceptive
policies, which is formally defined as follows.

Definition 4 (The deceptive policy set of Πd). Πd is a set of deceptive policies which can minimize the
accumulated reward on an MDP as

Πd =

{

π|π = argmin
π ∈Π

R(π)

}

.

Theoretically, it is noted that if the adversary can interact with the environment then the adversary
can learn a deceptive policy, i.e., Πd ∩ Πadv 6= ∅. Moreover, the deceptive policy can also be specified if
the adversary has some expert knowledge that can help the adversary to minimize the victim’s reward.
Following the optimistic assumption, we useQ-valuesQπ−

(s, a) of another deceptive policy π− ∈ Πd∩Πadv

to estimate Qπh(s, a). As policy π− ∈ Πd such that π− = argminπ∈Π Ea∼π [Q
π(s, a)], an optimal solution

of πh = argminπ∈Π Ea∼π[Q
π−

(s, a)] is πh = π−. Therefore, we reformulate problem (5) as minimizing
the distance between πh and π− on a trajectory determined by policy π−:

h∗ = argmin
h∈H3

E
s∼dπ−

[

DTV(πh(·|s)‖π−(·|s))
]

, (10)

where π− ∈ Πd ∩ Πadv is the targeted policy to explore the worst case in the MDPs. Here, DTV(·‖·) is
the total variation (TV) distance between two policy distributions. Specifically, dπ is the distribution
for future state under the policy as dπ(s) = (1 − γ)

∑∞
t=0 γ

tP (st = s|π). Since the deceptive policy set
Πd is a subset of Π, we can reduce the search space by only considering the policies trained with the
flipped reward for the victim, yielding a more efficient optimization. Considering that the TV distance
does not admit a closed-form expression for the statistical mixture distributions (e.g., GMM models) [26],
it often is necessary to conduct Monte Carlo approximations or a numerical integration. Nevertheless,
these operations do not guarantee the deterministic lower and upper bounds. To address this issue, we
propose to use KL-divergence which can be used to upper bound the TV distance [27] and is widely used
in the constraint for trust regions in RL algorithms [28]. In particular, we introduce a new objective with
KL-divergence instead of problem (10) as

h∗ = argmin
h∈H3

E
s∼dπ−

[

DKL(πh(·|s)‖π−(·|s))
]

. (11)

The problem is also intractable because the state-distribution is generated by πh which is in a complex
function space. Therefore, we reformulate it as: (1) A two-stage optimization problem. By inferring the
deceptive policy as an intermediate step:

ĥ∗(s) = argmin
h∈H3

DKL(πh(·|s)‖π−(·|s)), ∀s ∈ S, (12)

where π− ∈ Πd∩Πadv is the intermediate deceptive policy. Afterwards, we directly solve problem (12) in
function space H3 by defining the target policy as π−. (2) Solving the two-stage optimization problem.
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Note that when the policy π− is given, problem (12) can be seen as a typical targeted attack in supervised
learning. The adversary independently adds perturbation on each state s and treats π−(·|s) as a target
function. This is different from previous work [6], which is an untargeted attack. In this paper, we
propose to use the PGD [13], which is a popular method for targeted attacks. The adversary iteratively
updates the observation as

sk+1 = sk − η,

where k is the number of iterations, s0 = s is the original observation, and η is the perturbation. The
perturbation is based on the type of norm. For the commonly used l2-norm, the perturbation can be
computed by the PGD on the negative loss of (12) as

η =
ǫ′
√

|s|∇s(DKL(π(·|sk)‖π−(s)))

||∇s(DKL(π(·|sk)‖π−(·|s)))||2
,

where ǫ′ is the step size to control the distance between the resultant and the original observations.

4.2 Theoretical analysis

We now present a theoretical analysis in a practical setting that provides a performance bound for our
algorithm. First, we define the α-deceptive policy set Π−(α) to express a class of policies, after which we
use this set to measure the adversary’s capability.

Definition 5 (The α-deceptive policy set Π−(α)). An α-deceptive policy set Π−(α) corresponds to the
policies that are α-close to the performance of π− ∈ Πd as

Π−(α) = {π|R(π) 6 R(π−) + α, π ∈ Π}.

With the definition of α-deceptive policy set Π−(α), we further define the ability of an adversary with
parameter α̂.

Definition 6 (The α̂-adversary). Let Πadv be a policy set that is accessible to the adversary, an
adversary is an α̂-adversary if

α̂ = inf{α|Πadv ∩ Π−(α) 6= ∅}.
It is noted that the adversary is a 0-adversary when it can minimize the reward (or reach the worst case

state) by exploring the environments or obtaining the environmental dynamics from an expert. With the
definition of the adversary’s capability α̂, we further provide an upper bound of the performance after
an attack by an α̂-adversary.

Lemma 1 (Upper bound of the α̂-adversary’s performance). Let the adversary be an α̂-adversary, the
performance of the perturbed policy πh satisfies

R(πh) 6 α̂+
Cβ1

1− γ
+

2γC
√

β0/2

(1− γ)2
+R(π−),

where β0 = maxs∈S ‖DKL(πh(·|s)‖π−(·|s))‖, C = maxs |Ea∼πh
[Aπ−

(s, a)]| and β1 = maxs,a ‖ πh(a|s)
π−(a|s) −1‖,

A is the advantage function.

The complete derivation is provided in Appendix A. Lemma 1 implies that the performance of the
adversarial attack decreases as the adversary’s capability α̂ and the distance between policy πh and π−

decrease. We further show that under an appropriate noise level, our attacked method can be stronger
than the existing sub-optimal adversary, as summarized in Theorem 4.

Theorem 4 (α̂-adversary is stronger than other adversary under some conditions). Let e be an arbitrary

adversarial attack algorithm, and we set αe = R(πe)−R(π−) and β1 = maxs,a ‖ πh(a|s)
π−(a|s)−1‖. If β1 satisfies

β1 <
−
√
2γC +

√

2γ2C2 + 4(αe − α̂)(1− γ)3

2(1− γ)C
,

then the performance of the victim policy after perturbed by our algorithm satisfies R(πh) < R(πe). Here
C follows the definition in Lemma 1.

The proof of Theorem 4 is provided in Appendix A. Based on this analysis, we reduced β1 by targeted
attacks in our experiments and obtained promising results in both Atari and MuJoCo environments.
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5 Experiments

In this section, we conduct extensive experiments to evaluate and show the effectiveness of our method.

5.1 Experimental setup

Implementation details for MuJoCo. First, we evaluate the effectiveness of the adversarial attacks on
four OpenAI Gym MuJoCo continuous environments, namely Ant, Hopper, Walker2d, and HalfCheetah,
using the implementation and pretrained models in [9].

Implementation details for Atari. Further, we conduct experiments to evaluate the adversarial
attacks on four Atari games: Pong, BeamRider, Qbert, and SpaceInvaders. The victim policies are
mainly trained by three classic RL algorithms, namely deep Q-network (DQN) [1, 29], advantage actor-
critic (A2C) [30], and PPO [31]. We use DQN and A2C implementations in [32] and PPO implementation
in [33]. All these policies achieve competitive performance in the Atari environments.

Details of deceptive policies. We train five deceptive policies to evaluate the two-stage adversarial
attacks. For PPO victims, we train the deceptive policy by PPO, while for A2C and DQN victims,
we train the deceptive policies by A2C. To reduce the variance of the two-stage attack performance,
we evaluate the two-stage attacks by choosing the policy with the median reward in the five deceptive
policies. All deceptive policies are trained with the same hyper-parameters as their victims.

Additional details. In MuJoCo environments, we use the released victim policies in [9]. In Atari
environments, the victim policy is trained with GeForce GTX 1080Ti 11G and Intel(R) Xeon(R) CPU
E5-2680 v4 @ 2.40 GHz. We train 10 M steps for DQN, which needs fewer than three days each. We also
train 40 M steps for A2C, which needs no more than one day each. Furthermore, we train 10 M steps
for PPO, which needs no more than one day each. The deceptive policy is trained for 1 M steps each in
Atari environments and 1000 steps each in MuJoCo environments, which are significantly fewer than the
number of steps required for the victim policy. It takes less than a minute to generate the adversarial
observation in all Atari environments by the two-stage attack (fast gradient sign method, FGSM) and
less than two minutes to generate the adversarial observation in Pong, SpaceInvaders, and Qbert, as well
as less than 10 min in BeamRider by the two-stage attack (PGD). In MuJoCo environments, it takes less
than a minute for the two-stage attack (PGD) for each trajectory. Note that we use the KL-divergence
between the attacked and deceptive policies plus the entropy of the attacked policy to generate a smoother
attacked policy.

Evaluation on MuJoCo environments. For comparison sake, we evaluate our methods against
SOTA representative works following [9], including random attacks, the stochastic maximal action differ-
ence (MAD) attack [8], and snooping attack [31] for untargeted attacks, along with the critic attack [19]
and robust Sarsa (RS) attack [8] for targeted attacks. As deterministic MAD does not apply to the con-
tinuous action space environment, we follow previous work [8] and just evaluate stochastic MAD. We also
compare our method with a SOTA learning-based attack, the optimal attack [9]. For fair comparisons,
we choose a similar setup in [9]. Particularly, we consider the perturbation in l∞-norm and run the agents
without attacks, as well as under attacks for 50 episodes, and report the mean and standard deviation of
the episode reward.

Evaluation on Atari environments. As learning-based methods are inefficient in the Atari environ-
ment, we evaluate the vulnerability of the victim policy with random attacks and three optimization-based
attacks, including the deterministic MAD attack [6] and stochastic MAD attack [8] for untargeted at-
tacks, as well as the critic attack targeted attacks [19]. For fair comparisons, we consider a similar setup
as the previous work. Particularly, we use perturbation of l2-norm as in [6, 9, 19], and run the agents
without attacks, as well as under attacks for five episodes during testing.

5.2 Experimental results

In this experiment, we study the vulnerability of the victim policy to the proposed two-stage attack.
We generate adversarial perturbations with the deceptive policy by two common adversarial optimizers:
the FGSM [12] and the PGD [13]. Specifically, we generate adversarial perturbations with the deceptive
policy by PGD with ten iterations.

Results in MuJoCo environments. Table 2 presents the results on the attacking PPO agents in
MuJoCo environments. In most tasks, the two-stage approach markedly outperforms all other baselines.
First, as a targeted attack, the two-stage attack achieves a lower reward than two untargeted attacks,
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Table 2 The average reward of the victim policy (PPO) under adversarial attack on MuJoCoa)

Adversary Ant Hopper Walker2d HalfCheetah

Noise level of ǫ 0.15 0.07 0.15 0.15

No noise 5861.10 ± 609.63 3290.41 ± 397.13 4491.23 ± 674.98 7102.41 ± 121.03

Random 5528.39 ± 609.63 2850.41 ± 797.75 4275.17 ± 871.11 5336.31 ± 1574.15

Critic 5071.47 ± 970.93 2090.47 ± 1025.50 4131.07 ± 639.36 5584.03 ± 879.24

Stochastic MAD 1648.23 ± 820.80 1868.66 ± 686.15 901.84 ± 475.67 1798.58 ± 1014.83

RS 412.87 ± 247.87 2808.47± 871.20 1299.01 ± 307.40 338.81 ± 526.71

Snooping 3978.19 ± 658.76 1832.97 ± 562.45 1265.88 ± 782.60 1967.98 ± 1077.90

“Optimal” attack −493.22 ± 40.49 637.30 ± 3.32 879.85 ± 36.14 −657.60 ± 288.10

Our two-stage −841.01 ± 494.88 112.49 ± 148.64 −29.93 ± 7.35 −314.65 ± 54.75

a) We bold the best attack reward (the lowest attacked policy’s reward) over all attacks.
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Figure 5 Attacking PPO agents in MuJoCo environments under different ǫ noise level. Each color in this figure represents the

results of 50 episodes. The shadowed area is the variance of the return of episodes. In the remaining part, we omit the description of

the shadowed area as they all represent the variance of the return of episodes. (a) Ant; (b) Hopper; (c) HalfCheetah; (d) Walker2d.

Table 3 The average reward of the victim policy (DQN) under adversarial attack on Ataria)

Adversary Optimizer Qbert Pong SpaceInvaders BeamRider

Noise level of ǫ – 0.007 0.004 0.012 0.014

No noise – 9402.1 ± 1719.2 20.5 ± 0.6 509.0 ± 135.3 2251.5 ± 198.6

Random – 7380.0 ± 542.8 19.9 ± 1.2 216.8 ± 61.9 976.2 ± 440.3

Critic
FGSM 192.5 ± 110.1 −19.0 ± 2.8 101.0 ± 46.3 134.2 ± 81.5

PGD(10) 157.5 ± 60.5 −19.7 ± 1.6 96.0 ± 86.9 149.6 ± 76.0

Deterministic FGSM 275.0 ± 169.4 −20.6 ± 0.3 79.5 ± 33.7 189.2 ± 59.8

MAD PGD(10) 210.0 ± 206.3 −21.0 ± 0.0 171.8 ± 23.1 211.2 ± 33.5

Stochastic FGSM 246.3 ± 82.3 −18.3 ± 3.3 111.3 ± 59.9 451.0 ± 118.0

MAD PGD(10) 237.5 ± 110.1 −20.9 ± 0.1 189.5 ± 33.4 525.8 ± 83.2

Our two-stage
FGSM 193.8 ± 85.1 −21.0 ± 0.0 47.0 ± 26.5 308.0 ± 121.1

PGD(10) 13.8 ± 13.9 −21.0 ± 0.0 0.0 ± 0.0 6.6 ± 7.3

a) We bold the best attack reward (the lowest attacked policy’s reward) over all attacks.

the stochastic MAD and snooping attacks. It indicates that targeted attacks are much stronger than
untargeted attacks in optimization-based algorithms. Besides, compared to targeted attacks such as the
critic and RS attacks following the pessimistic assumption, our two-stage attack under the optimistic
assumption can significantly reduce the reward of the attacked policy. It indicates that we can find a
more effective adversary with the optimistic assumption. Additionally, our optimization-based two-stage
attack outperforms the learning-based optimal attack in most environments, indicating that we can design
an effective attack by leveraging an efficient optimizer. Figure 5 shows that the lowest performance of the
attacked victim policy achieves a lower reward than other attacked policies. Additionally, our algorithm
misleads the agent to the opposite direction (reward < 0) in Walker2d, indicating that our attack is
stronger than all previous attacks.

Results in Atari environments. Tables 3–5 present the results on the attacking DQN, A2C, and
PPO agents, indicating that our two-stage attack significantly outperforms the alternative methods in
the Atari environments. Particularly, for the Atari environments SpaceInvaders and BeamRider, as a
targeted attack, our two-stage attack achieves significantly lower reward than two untargeted attacks of
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Table 4 The average reward of the victim policy (A2C) under adversarial attack on Ataria)

Adversary Optimizer Qbert Pong SpaceInvaders BeamRider

Noise level of ǫ – 0.006 0.008 0.014 0.014

No noise – 13564.0 ± 1716.7 21.0 ± 0.0 634.2 ± 148.3 15222.1 ± 2797.3

Random – 14394.0 ± 1085.6 21.0 ± 0.0 459.2 ± 129.0 14938.8 ± 1813.5

Critic
FGSM 168.0 ± 108.7 −21.0 ± 0.0 150.0 ± 79.2 207.7 ± 76.2

PGD(10) 437.0 ± 103.6 −21.0 ± 0.0 148.4 ± 97.8 248.2 ± 48.3

Deterministic FGSM 193.0 ± 132.3 −21.0 ± 0.0 109.4 ± 25.0 279.8 ± 25.7

MAD PGD(10) 412.0 ± 168.9 −21.0 ± 0.1 140.4 ± 76.3 416.3 ± 102.2

Stochastic FGSM 156.0 ± 75.6 −21.0 ± 0.0 183.0 ±98.6 529.3 ± 75.5

MAD PGD(10) 341.0 ± 107.4 −20.8 ± 0.3 132.8 ± 70.8 586.4 ± 62.4

Our two-stage
FGSM 47.0 ± 39.7 −21.0 ± 0.0 80.4 ± 60.6 455.4 ± 130.3

PGD(10) 301.0 ± 88.4 −21.0 ± 0.0 26.6 ± 34.4 188.3 ± 127.0

a) We bold the best attack reward (the lowest attacked policy’s reward) over all attacks.

Table 5 The average reward of the victim policy (PPO) under adversarial attack on Ataria)

Adversary Optimizer Qbert Pong SpaceInvaders BeamRider

Noise level of ǫ – 0.002 0.001 0.014 0.008

No noise – 16999.0 ± 2008.7 20.6 ± 0.3 952.2 ± 229.4 1873.4 ± 771.1

Random – 16275.0 ± 1002.5 20.7 ± 0.4 768.6 ± 186.3 1788.2 ± 368.7

Stochastic FGSM 331.0 ± 122.3 −18.5 ± 0.6 209.4 ± 135.5 526.0 ± 43.8

MAD PGD(10) 340.0 ± 130.8 −19.0 ± 1.0 172.4 ± 31.6 508.0 ± 74.0

Our two-stage
FGSM 127.0 ± 90.3 −21.0 ± 0.0 173.0 ± 34.9 364.5 ± 153.7

PGD(10) 271.0 ± 67.0 −21.0 ± 0.0 166.0 ± 38.4 371.4 ± 162.6

a) In each line we bold the best attack reward (the lowest attacked policy’s reward) over all attacks.

the stochastic MAD and deterministic MAD attacks. These results show that it is better to use the
targeted attack algorithm to generate the perturbation. Also, despite the fact that the critic attack
and our two-stage attack are all targeted attacks, our two-stage attack under the optimistic assumption
significantly outperforms the critic attack with the same optimizer on the attacking DRL agents in most
environments. It indicates that we can adopt the optimistic assumption rather than the pessimistic
assumption. Generally, adversaries with PGD are stronger than those with FGSM, indicating that a
more powerful optimizer leads to a more powerful adversary. Figures 6–8 show that the performance of
the attacked victim policy trained by DQN, A2C, and PPO is lower than other attacked policies under
most of the noise level. This trend indicates that our approach highly applies to different noise levels.
Besides, the lowest performance of the attacked policy under the two-stage attack is lower than all other
adversaries in all settings. This result indicates the adversary follows the optimistic assumption and is
stronger than other adversaries. Additionally, the deceptive policy is trained for 1 M steps each in the
Atari environments and 1000 steps each in MuJoCo environments, which is significantly fewer than the
number of steps required for the victim policy (e.g., 40 M steps for the A2C and 10 M steps for the PPO
in Atari). Our optimization-based attacks generate the adversarial noise efficiently in Atari, which is a
high-dimensional space, indicating the efficiency of our methods. However, the learning-based attacks
are required to learn a high-dimensional mapping in the MDP over the state and action space described
(e.g., the dimension is > 6000 in Atari), which is intractable to generally solve.

Nearly lowest reward in Atari environments. Our attack achieves nearly optimal performance on
the attacking DQN agents in Table 3, which demonstrates the rationality of our optimistic assumption
on the effectiveness of our adversary. Figures 9–11 show the rewards of the attacked policy under a
two-stage attack and the best performance under other attacks with different noise levels. Besides, we
show the lowest reward for each task. Evidently, our adversary achieves nearly the lowest reward when
attacking DQN and A2C agents. Besides, it achieves competitive performance when attacking the PPO
agents. These results also demonstrate the rationality of our optimistic assumption.

6 Conclusion

We reformulate the SA-MDP in the function space and provide a framework to categorize and understand
the existing optimization-based adversarial attacks on RL. We show that the adversary should be solved in
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Figure 6 Attacking DQN agents in Atari environments under different ǫ noise level. Each color in this figure represents the

results of 50 episodes. (a) BeamRider; (b) Pong; (c) Qbert; (d) SpaceInvaders.
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Figure 8 Attacking PPO agents in Atari environments under different ǫ noise level. Each color in this figure represents the results

of 50 episodes. (a) BeamRider; (b) Pong; (c) Qbert; (d) SpaceInvaders.
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Figure 10 Attacking A2C agents in Atari environments under different ǫ noise level. The attacked policy under our two-stage

attack achieves the nearly lowest reward. Each color in this figure represents the results of 50 episodes. (a) BeamRider; (b) Pong;
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Figure 11 Attacking PPO agents in Atari environments under different ǫ noise level. Comparing to the other baselines, the

reward of the attacked policy under our two-stage attack is closer to the lowest reward in each task. Each color in this figure

represents the results of 50 episodes. (a) BeamRider; (b) Pong; (c) Qbert; (d) SpaceInvaders.

the function space of targeted attacks following the optimistic assumption. Based on our understanding,
we propose a two-stage method that can effectively and efficiently generate adversarial noise on the RL
observation. Extensive experiments in both Atari and MuJoCo environments show the superiority of our
method, which provides a possible way to assess the adversarial robustness of RL.
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