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Appendix A Proof of Theorem 3
In this part, we first begin with several lemmas and then provide a proof of Thm. 3. With the notations in Sec. 4, the following

lemma connects the difference in discounted total reward between two arbitrary policies to an expected divergence between them.

Lemma 1 (Upper bound for the performance gap between the attacked policy and the deceptive policy). Let

β = E
s∼dπ

−
[
DTV (πh(·|s)∥π−(·|s))

]
, C = maxs

∣∣∣Ea∼πh

[
Aπ−

(s, a)
]∣∣∣ and β1 = maxs,a ∥ πh(a|s)

π−(a|s)
− 1∥. We have an upper bound

on the performance gap between πh(s) and π−(s):

R(πh) − R(π
−
) ⩽

Cβ1

1 − γ
+

2γCβ

(1 − γ)2
.

Proof. Based on theorem 1 in [1], the performance of the attacked policy holds by the following bound:

R(πh) − R(π
−
) ⩽

1

1 − γ
E
s∼dπ

−
, a∼πh

[
A

π−
(s, a)

]
+

2γC

(1 − γ)2
E
s∼dπ

−

[
DTV (π

−
(s)∥πh(s))

]
.

(A1)

By the definition of β1 in Lemma 1:

E
s∼dπ

−
, a∼πh

[
A

π−
(s, a)

]
=E

s∼dπ
−

, a∼π−

[
(
πh(a|s)
π−(a|s)

− 1)A
π−

(s, a)

]
⩽β1E

s∼dπ
−

, a∼π−

[
A

π−
(s, a)

]
⩽ β1C

Combining this and the definition of C and β with inequality (A1), we get the bound in Lemma 1.

In [1], the authors prove the relation between the expected KL-divergence and the expected TV-divergence of the distribution

p and q on state s satisfies:

Es∼f(s)DTV (p(·|s)∥q(·|s)) ⩽ Es∼f(s)

√
DKL(p(·|s)∥q(·|s))/2,

where f(s) is the distribution on state s. Therefore the expected TV-divergence can be bounded by KL-divergence.

Lemma 2 (The adversary is stronger with a stronger adversarial optimizer). We can bound the objective of the original

problem (8):

E
s∼dπ

−

[
DTV (πh(·|s)∥π−

(·|s))
]
⩽

√
β0/2,

here β0 = maxs∈S

∥∥DKL(πh(·|s)∥π−(·|s))
∥∥.

Lemma 2 shows that the bound of the objective in problem (9) is closely related to the optimization method solving problem (10).

With Lemma 1 and Lemma 2, we further provide an upper bound of the performance after attack by α̂-adversary.

Lemma 3 (Upper bound of the α̂-adversary’s performance). Let the adversary be an α̂-adversary. The performance of

the perturbed policy πh satisfies:

R(πh) ⩽ α̂ +
Cβ1

1 − γ
+

2γC
√

β0/2

(1 − γ)2
+ R(π

−
),

where C, β0 and β1 are defined in Lemma 1 and Lemma 2.
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Lemma 3 implies that the performance of the adversarial attack is bounded by the ability α of α-adversary and the distance

from policy πh and π−.

Theorem 1 (α̂-adversary is stronger than other adversary under some conditions). Let e be an arbitrary adversarial

attack algorithm, set αe = R(πe) − R(π−) and β1 = maxs,a ∥ πh(a|s)
π−(a|s)

− 1∥. If β1 satisfies:

β1 <
−
√
2γC +

√
2γ2C2 + 4(αe − α̂)(1 − γ)3

2(1 − γ)C
,

then the performance of the victim policy after our algorithm attack satisfies: R(πh) < R(πe). In other words, our attack is

stronger than adversarial attack e.

Proof. Let p(a) = πh(a|s), q(a) = π−(a|s). then:

∑
a

p(a) ln(
p(a)

q(a)
) ⩽

∑
a

p(a) ln(1 + β1) ⩽ β1,

with the inequality ln(1 + x) ⩽ x when x ⩾ 0. Therefore, β0 ⩽ β1, which bounds the performance of policy πh:

R(πh) ⩽ α̂ +
Cβ1

1 − γ
+

2γC
√

β0/2

(1 − γ)2

⩽ α̂ +
Cβ1

1 − γ
+

2Cγ
√

β1/2

(1 − γ)2
.

(A2)
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