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Abstract Discovering causality from multivariate time series is an important but challenging problem.

Most existing methods focus on estimating the Granger causal structures among multivariate time series,

while ignoring the prior knowledge of these time series, e.g., the group of the time series. Focusing on discov-

ering the Granger causal structures among groups of time series, we propose a Granger causal representation

learning method to solve this problem. First, we use the multiset canonical correlation analysis method to

learn the Granger causal representation of each group of time series. Then, we model the Granger causal

relationships among the learned Granger causal representations using a recurrent neural network with tem-

poral information. Finally, we formulate the above two stages into one unified optimization problem, which

is efficiently solved using the augmented Lagrangian method. We conduct extensive experiments on synthetic

and real-world datasets to validate the correctness and effectiveness of the proposed method.

Keywords Granger causal discovery, Granger causal representation learning, time series data, recurrent

neural network, multiset canonical correlation analysis

1 Introduction

Discovering causality from multivariate time series has attracted much attention in many fields, such as
social network analysis [1], biology [2], and neuroscience [3]. Such time series data contain multiple time
series over measured variables. In some cases, these time series in the low level are usually clustered
into high-level groups according to certain rules, and researchers are interested in recovering causal
relationships among groups of time series. For example, in computer vision, researchers care more about
the causal relationship among the objects (high-level variables) in an image than that among pixels (low-
level variables). In neuroscience, researchers are more interested in recovering the Granger causal graphs
among regions of interest (ROIs) than that among voxels.

The typical methods for discovering the causal structure from time series are the non-Gaussian struc-
tural vector autoregressive model [4], time series models with independent noise (TiMINo) algorithm [5],
Granger causality [6] and its nonlinear extensions [7, 8]. These methods focus only on the causal rela-
tionships between time series (i.e., measured variables). If these time series are collected from multiple
groups, and the time series in the same group are highly correlated and high-dimensional, then researchers
are more interested in the causal relationships among the representations of the group. In such cases,
applying existing methods to that type of data will probably lead to high computational complexity and
result in a dense causal graph. For example, in neuroscience, the number of BOLD signal data of voxels
(measured time series) obtained using functional magnetic resonance imaging (fMRI) is more than thou-
sands, and the relationships between different voxels are too dense to understand how the brain works.
Instead, researchers are more interested in grouping multiple voxels into ROIs as representations and
recovering the Granger causal graphs among ROIs. Based on the above discussions, if we only learn the
dense causal graphs among measured variables, then not only is the meaning of these many measured
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Figure 1 (Color online) Example of learning the Granger causal graph among groups of time series. (a) Multi-group time series

from fMRI; (b) causal graph among variable groups.

variables and the learned relationships between the variables from the same group difficult to explain
but also the rich hierarchical information between the representations and the measured variables is ig-
nored. Thus, in this study, we aim to estimate the Granger causal graph among the representations from
multigroup time-series data, such as Figure 1(b).

However, causal discovery among groups of time series is nontrivial task because of the following two
challenges: (1) how to properly represent the rich temporal information from the measured variables and
the variable group mapping information; and (2) how to accurately estimate the causal structure among
representations from information carried by these measured variables. Aiming at these challenges, two
types of methods have been proposed to learn the Granger causal structure among representations from
low-level measured variables. One type of method takes the mean value of measured variables belonging
to the same group as representations and then estimates the causal structure [9]. The rich temporal
information in the raw time series data can be largely underused by taking an average, hence leading
to inaccurate causal structure estimation [10]. The other type of method, in a different manner, first
estimates the causal structure among all the measured variables regardless of which group they belong
to, and further refines the causal structure according to the variable group mapping relationship [11].
This type of method has a potential defect because the estimated causal structure among all measured
variables in the first step can be very dense. Even after refinement in the second step, the resulting causal
structure may still be a fully connected graph, which is unwanted.

In this study, we aim to tackle these problems by proposing a Granger causal representation learn-
ing method based on the hierarchical Granger causal representation model (HGCRM) to discover the
Granger causal structure among representations from multigroup time series. In detail, we learn the
Granger causal representation of each group of time series using multiset canonical correlation analy-
sis (MCCA). Meanwhile, we estimate the Granger causal relationships among representations using a
recurrent neural network with temporal information. Subsequently, these two steps are nested into an
optimization objective function and solved simultaneously using the augmented Lagrangian method.

The contributions of this paper are summarized below.

• We propose a hierarchical Granger causal model to learn Granger causal structures among groups of
variables from multigroup time series.

• To formalize a Granger causal model for multiple variable groups, we introduce the MCCA with the
causal relationship weight to learn the Granger causal representations from the groups of variables.

• We provide a unified objective function as well as an effective optimization method to learn the
causal representation and the causal structures simultaneously.

• We conduct experiments to validate the correctness and effectiveness of our method on synthetic and
real-world datasets.

2 Related work

Three kinds of methods are used to discover causality from time series data. The first type of method
is constraint-based. Many researchers tried to generalize the Peter-Clark (PC) algorithm [12] to time
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series data. Zhang et al. [13] extended the constraint-based causal discovery method to time series data.
Chu et al. [14] proposed an independence-based procedure for learning nonlinear time series structures.
Runge et al. [15] proposed the PCMCI (PC with momentary conditional independence) method, which
comprises two stages similar to PC and uses the momentary conditional independence test to determine
whether causal independence holds, which can be used in linear or nonlinear cases. However, this type of
method is still affected by the Markov equivalent class problem. The second type of method is Granger
causality-based. Granger causality [6] is used to predict whether time series X is the cause of another
time series Y based on the autoregressive model, which can only be used in linear systems. Recently,
many existing studies [16,17] have extended the Granger causality to the multivariable case in a nonlinear
system. Ashrafulla et al. [16] proposed a canonical Granger causality to determine the causal relationship
between two measured variable sets for the corresponding ROIs, but it only applies to the case of two sets
of variables. Leveraging the acyclicity constraint, the DYNOTEARS method [17] was proposed to solve
the structure learning from time series data, which can handle the case of high-dimensional variables.
The last type of method is the noise independence-based, which leverages the independence between
noise and causes to identify causes and effects among the given measured variables. Sanchez-Romero et
al. [3] used the non-Gaussian property of the BOLD signal and provided two approaches, fast adjacency
skewness (FASK) and two-step, to recover the cyclic causal network of ROIs from the preprocessed data.
However, the preprocessing phase easily leads to distortions in the distributions, thus eliminating some or
sometimes all of the non-Gaussianity of variables [18]. For nonlinear systems on time series, the TiMINo
algorithm [5] was proposed as a typical additive noise model and can be used to discover the instantaneous
effects.

The existing methods were designed for only addressing multiple time series without considering the
grouping information and learning the representations. Hence, they poorly reveal the true Granger causal
structure among representations. Moreover, simply clustering variables in different groups cannot use the
dependence between some variable pairs belonging to the same group, which leads to poor performance
on accurate Granger causal discovery. Motivated by these flaws, in this paper, we propose the HGCRM,
a new methodology for tackling these challenges. It is designed to handle multiple time series and fully
use variable grouping information as well as the rich hierarchical information carried by the raw input
time series data.

3 Problem formulation

Let X denote the multigroup time series, and Xi denote the i-th variable group containing pi measured
variables, i.e., {Xi,1, Xi,2, . . . , Xi,pi

}. Suppose that the number of variable groups is m, and the length of
each time series is T . The representation of the i-th variable group is denoted as Yi ∈ R

1×T . Note that
Yi can be a multi-dimensional variable. But in this paper, we consider that from the low-level variables
to the high-level representation, the dimension is reduced. This assumption is also consistent with many
real-world applications. For example, in neuroscience, an ROI contains many voxels; in computer vision,
an object in the image consists of many pixels.

Based on the above notations, we assume that there is no direct edge between Xi,1 and Xj,1, and
Xi,1 and Xj,1 are independent conditional on Yi and Yj . We focus on the Granger causal relationships
between groups without instantaneous effect, which is defined as follows.

Definition 1. Suppose there are multiple groups of time series, each time series {Xi,1, Xi,2, . . . , Xi,pi
}

within a group can be represented as a high-level causal variable Yi, then the Granger causality between
groups is that between high-level causal variables Yi and Yj .

According to the definition, all Granger causal relationships can be represented as a directed Granger
causal graph as shown in Figure 1(b). In the Granger causal graph, each node is a Granger causal variable
that represents a variable group and each edge indicates the Granger causal relationship between two
causal variables. The goal is to discover the Granger causal relationships among all the m groups from
X. The problem can be formalized as Definition 2.

Definition 2. Problem definition: given m groups of time series data and group labels of each time
series, where the i-th variable group containing pi time series, we aim to learn the representations for
groups of time series and further discover the Granger causal structure among the representations.
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(a) (b) (c)

Figure 2 (Color online) Overview of the proposed model. (a) Representation of variable groups; (b) architecture of solution;

(c) learned causal graph.

4 HGCRM

In this section, we will introduce an HGCRM. First, we propose a Granger causal representation learn-
ing method for measured multigroup time series. Then, we devise a Granger causal discovery on the
representations. Finally, we summarize the above two steps into a unified model.

4.1 Granger causal representation learning on variable groups

In this subsection, we dive into the learning of the representations from multigroup time series. In-
spired by [19], we try to connect the latent representation Yi to the corresponding group of variables
{Xi,1, Xi,2, . . . , Xi,pi

} as
Yi = F (Xi,1, Xi,2, . . . , Xi,pi

) (i = 1, 2, . . . ,m), (1)

where F is a mapping function. An example is given in Figure 2(a), where the high-level representation
is extracted from the low-level observations for each group.

The traditional methods [3,9,20] are to use the mean of the variables in the group as the representation
of this group, i.e., if the representation of the i-th group containing pi measured variables at the time t

is denoted by Y
(t)
i , then Y

(t)
i can be obtained by the following equation:

Y
(t)
i =

1

pi

pi
∑

k=1

X
(t)
i,k , (2)

where X
(t)
i,k is the k-th measured variables in i-th group at the time t. However, it can be shown that

the rich hierarchical information may be lost by averaging [10], which also makes subsequent steps in
estimating the Granger causal graph infeasible.

In contrast to the above simple method, we investigate another Granger causal representation method
to represent multigroup variables. This is related to the idea of the MCCA [21]. The MCCA represents

each group with the corresponding canonical variable Y
(t)
i at the time t defined as follows:

Y
(t)
i = A∗

i
TX

(t)
i , (3)

where X
(t)
i are the measured variables in the i-th group at the time t, and A∗

i is the optimal vector that
is obtained by solving the following optimization problem:

A∗
1, A

∗
2, . . . , A

∗
m = argmax

m
∑

i=1

m
∑

j=i+1

AT
i ΣXiXj

Aj ,

s.t. ‖ Ai ‖2= 1, i = 1, 2, . . . ,m,

(4)

where ‖ . ‖2 denotes the L2 norm and ΣXiXj
is the correlation matrix between two variable groups Xi

and Xj . For clarity, we denote A = {A1, . . . , Am} as the parameters to be optimized.
The intuition behind using MCCA to learn the representation is that we want the representations

to distill the causal relations through maximizing the correlation (a relaxation of causality) between
two groups. Intuitively, if group Yj is Granger causally related to group Yi, then these two groups are
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supposed to be highly correlated. Note that if two groups Yi and Yj are affected by the same common
causes but no directly connected in the graph, there will be a spurious causal relationship between Yi

and Yj . In order to avoid this kind of spurious causal relationship, we introduce the causal structure as
a mask to guide the model to focus on the correlation between causal pairs. Then, we further have the
following objective function:

A∗
1, A

∗
2, . . . , A

∗
m = argmax

m
∑

i=1

m
∑

j=i+1

Wi,jA
T
i ΣXiXj

Aj ,

s.t. ‖ Ai ‖2= 1, i = 1, 2, . . . ,m,

(5)

where Wi,j is a binary variable, implying whether Xi is directly connected with Xj .
One may be concerned with the linearity of the presentation, the availability of the causal structure,

the identifiability of the representation, and so on issues. Regarding the linearity, the first reason is that
we mainly follow the existing work [3,9,20] which simply uses the mean of the variables in a group as the
representation; the second reason is that we want to use a relatively simple but explainable method to
learn the representation; the third reason is that an overly complex nonlinear model (e.g., long short term
memory (LSTM)) may lead to unreasonable high correlations between any two groups in the maximizing
of the correlation. Regarding the availability of the causal structure and the identifiability, we tend to
take the representation learning as a part of the overall model and will be jointly learned with the causal
structure in Subsection 4.2.

4.2 Granger causal structure learning among representations

To learn the representations, we need to discover the Granger causal relationships among them. With

the data generating process assumption, for each causal representation Yi at time t, denoted as Y
(t)
i ,

i ∈ {1, . . . ,m}, we can construct a Granger causal model for representations as

Y
(t)
i = gi(PA

(t)
i ) + E

(t)
i (i = 1, 2, . . . ,m), (6)

where gi is a continuous function that specifies how the variable sets PA
(t)
i are mapped to Y

(t)
i , and E

(t)
i

is the noise term. If Yj is not the Granger cause of Yi, then the function gi does not depend on Yj . Based
on this, we can derive the definition of Granger non-causality as the Definition 3.

Definition 3. Let Y = Y1, Y2, . . . , Ym denote m-th time series, which are generated by (6). Then Yj is
not the Granger cause of Yi if for all (Y1, Y2, . . . , Ym) and all Y ′

j 6= Yj ,

gi(Y1, Y2, . . . , Yj , . . . , Ym) = gi(Y1, Y2, . . . , Y
′
j , . . . , Ym), (7)

that is, gi is invariant to Yj .

To explicitly formalize the Granger (non-)causal relationship among representations, the model (6) is
formalized as

Y
(t)
i = gi(qi(Y

(<t))) + E
(t)
i

= gi(qi1(Y
(<t)
1 ), . . . , qim(Y (<t)

m )) + E
(t)
i ,

(8)

qij(Y
(<t)
j ) =

{

Y
(<t)
j , if Yj is the cause of Yi,

0, otherwise,
(9)

where qij is the indicator function that indicates if Yj is the Granger cause of Yi, j ∈ {1, . . . ,m}, Y
(<t)
j =

(. . . , Y
(t−2)
j , Y

(t−1)
j ) denotes the time series of Yj up to time t, and Y (<t) = ((Y

(<t)
1 )T, . . . , (Y

(<t)
m )T)T.

Considering the data is temporal and the LSTM [22] compresses the entire past time series using the
recursive updates of the hidden state, we utilize the LSTM to model the dependence on the past time
series Y (<t), similar to [7].

To make the model clear, we consider the indicator function qij to be in the linear form, but note that
the indicator function can be generalized to a more complicated form. In particular, we have

qij(Y
(<t)
j ) = Wi,:jY

(<t)
j , (10)
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where Wi,:j is the j-th column of Wi.
Based on the definition of Granger non-causality and the above formalization, we can derive Propo-

sition 1.

Proposition 1. Assume that Granger causal representations Y are generated by (8). Give the Granger
causal structure G(Y ,EY ), where EY denotes all Granger causal edges in G. Then Yj → Yi /∈ EY , if
and only if Wi,:j = 0.

Proof. (1) “If ” part. If Wi,:j = 0, then for any Yj 6= Y ′
j for all time series, we have

qij(Y
(<t)
j ) = Wi,:jY

(<t)
j = 0,

qij(Y
′(<t)
j ) = Wi,:jY

′(<t)
j = 0.

(11)

Therefore, according to (9), Yj is not the Granger cause of Yi.
(2) “Only if ” part. If Yj → Yi /∈ EY , then according to Definition 3, there must be Yi 6= Y ′

i for all
time series, and

gi(Y1, Y2, . . . , Yj , . . . , Ym) = gi(Y1, Y2, . . . , Y
′
j , . . . , Ym). (12)

Then according to (8), we have

gi(qi,1(Y
(<t)
1 ), qi,2(Y

(<t)
2 ), . . . , qij(Y

(<t)
j ), . . . , qi,m(Y (<t)

m ))

= gi(qi,1(Y
(<t)
1 ), qi,2(Y

(<t)
2 ), . . . , qij(Y

′(<t)
j ), . . . , qi,m(Y (<t)

m )). (13)

According to (10), we can obtain

qij(Y
(<t)
j ) = qij(Y

′(<t)
j ),

Wi,:jY
(<t)
j = Wi,:jY

′(<t)
j .

(14)

Thus there must be Wi,:j = 0.

Under Proposition 1, we can minimize the prediction error of the Y
(t)
i by applying the LSTM model.

Using the least squares method to estimate the prediction error of the Y
(t)
i , we can derive the following

objective function:

min
θi

T
∑

t=2

(Y
(t)
i − gi(qi(Y

(<t))))2 + λ
m
∑

j=1

‖ Wi,:j ‖1, (15)

where θi denotes the trainable parameter set {Wi,Ui,W
out
i }, λ is a hyper-parameter, and ‖ Wi,:j ‖1 is a

lasso penalty across columns of Wi that is added to select for which variables Granger cause Y
(t)
i . Many

columns of Wi will be zero with a large enough λ, leading to a sparse Granger causal graph.
For all m variables, Eq. (15) can be extended as

m
∑

i=1



min
θi

T
∑

t=2

(Y
(t)
i − gi(qi(Y

(<t))))2 + λ

m
∑

j=1

‖ Wi,:j ‖1





= min
θ

T
∑

t=2

m
∑

i=1

(Y
(t)
i − gi(qi(Y

(<t))))2 + λ

m
∑

i=1

m
∑

j=1

‖ Wi,:j ‖1,

(16)

where θ = {θ1, . . . , θm} are parameters to be optimized.
In summary, for i ∈ {1, . . . ,m}, the Granger causes of variables Yi can be interpreted by the parameters

Wi,:j , and the numerical values of Wi,:j can be derived by solving the optimization problem, Eq. (16).
The architecture of this solution for Granger causal discovery is illustrated as Figure 2(b).

4.3 Model summarization

Till this end, we can combine the Granger causal model and its LSTM representation discussed in
Subsection 4.2, with the Granger causal representation introduced in Subsection 4.1. We propose an
HGCRM for learning the representation and Granger causal structure for the Group of time series, which
is outlined in Figure 2. Specifically, the HGCRM is a two-level model. The first level is identifying group
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variables and learning representations, and the second level is identifying the Granger causal relationships
among representations. Given multiple groups of time series, the proposed model can be formalized as
the following optimization setting:

min
θ

T
∑

t=2

m
∑

i=1

(Y
(t)
i − gi(qi(Y

(<t))))2 + λ
m
∑

i=1

m
∑

j=1

‖ Wi,:j ‖1 −
m
∑

i=1

m
∑

j=i+1

Wi,:jA
T
i ΣXiXj

Aj ,

s.t. ‖ Ai ‖2= 1, i = 1, 2, . . . ,m,

(17)

where θ,A are the decision variables and Y
(t)
i = AT

i X
(t)
i .

With the formalization of the model, it is worth noting that:

(1) Minimizing the prediction error on Y
(t)
i by applying the Granger causal model with LSTM presen-

tation, and finding the optimal vector A∗
i , can be optimized simultaneously;

(2) When the number of measured variables in each group is equal to 1, we have Ai = 1 to satisfy the

constraint and hence Y
(t)
i = X

(t)
i . Meaning that the problem formulation we proposed in (17), is general

enough that it contains which de facto falls back to the simple and most common case;
(3) The above optimization problem can be solved by numerical-based approaches, e.g., the Lagrangian

method, which will be discussed shortly.
Once we solve the optimization setting in (17), we can obtain the Granger causes of each group and

the Granger causal graph among groups.

5 Augmented-Lagrangian-based model training

The objective function listed in (17) can be solved by applying the augmented Lagrangian method, which
redefines the original problem as follows:

L(θ,A, α) =

T
∑

t=2

m
∑

i=1

(Y
(t)
i − gi(qi(Y

(<t))))2

+ λ

m
∑

i=1

m
∑

j=1

‖ Wi,:j ‖1 −

m
∑

i=1

m
∑

j=i+1

Wi,:jA
T
i ΣXiXj

Aj

+

m
∑

i=1

αih(Ai) +
µ

2

m
∑

i=1

|h(Ai)|
2,

(18)

where h(Ai) :=‖ Ai ‖2 −1, αi is the Lagrange multiplier, and µ > 0 is the penalty parameter.
We apply the following update rules for the (n+ 1)-th step to search for the optimal solution to (18),

An+1 = argmin
A

Ln(θ,A, α), (19)

θn+1 = argmin
θ

Ln(θ,A, α), (20)

αn+1
i = αn

i + µnh(An+1
i ), for i = 1, 2, . . . ,m, (21)

µn+1 =











βµn, if

m
∑

i=1

|h(An+1
i )| > γ

m
∑

i=1

|h(Ai)|,

µn, otherwise,

(22)

where β > 1 and γ < 1 are two tuning parameters, similar to [23]. Eq. (19) is a first-order differentiable
and can be solved by applying a gradient descent method. We use proximal gradient descent to deal with
(20) for the sake of the lasso penalty, which can ultimately lead to exact zero by Proximal optimization [24]
and it is critical for interpreting causality in our context.

Based on the above update rules, we can simultaneously train A and θ. In detail, we restrict the
observed data to the Granger causal representation by A, and learn the parameter θ. After obtaining
the parameters {θn,An, αn}, we calculate Ln(θ,A, α) as (18). Then those parameters are updated
according to (19)–(22), and iterate the above two steps until convergence.
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6 Experiments

In order to evaluate the effectiveness of our proposed approach, we compare our method together with
the baseline methods on synthetic data and real-world data. In all the experimental settings, multivariate
Granger causality (MVGC) [25], PCMCI [15], DYNOTEARS [17], and TiMINo [5] are used as the baseline
methods, and the implementations of MVGC1) and TiMINo2) are publicly accessible.

6.1 Synthetic data

In this subsection, we conduct a set of experiments to evaluate the performance of our method on synthetic
data. Because these baseline methods are not suitable for estimating directly the causal structure from
multigroup time series, we make appropriate modifications to these methods accordingly while ensuring
that the basic ideas behind them remain unchanged. Specificity, all modified methods perform two stages
separately, which first learn the representation and then estimate the causal structure. We use “Mean-”
to denote the method that applies the baseline method to the representations that are token mean values
of the measured variables; and use “MCCA-” to denote the method that applies the baseline to the
canonical variable for each variable group learned by MCCA. All the baseline methods are implemented
based on their original source codes with the default parameters.

To make sure that the simulated multigroup time series are Granger causally connected at the group
granularity, we first generate Y with the Lorenz-96 model [26]. The Lorenz-96 model is a typical nonlinear
model for capturing the essence of a problem, which can be used to represent the causal dynamic systems.
A m-dimensional Lorenz model is

dY
(t)
i

dt
= (Yi+1 − Yi−2)Yi−1 − Yi + F, (23)

where Y−1 = Ym−1, Y0 = Ym, Ym+1 = Y1 and F is a forcing constant (we set F = 10) which determines the
level of nonlinearity and chaos of the time series. The above generating process results in a multivariate,
nonlinear time series with sparse causal connections, similar to [27]. Then we decompose Yi ∈ R

1×T into
pi time series with the following equation:

Xi = BiYi, for i = 1, 2, . . . ,m, (24)

where Bi is a pi × 1 dimensional weighting vector.
We generate simulated time series data with the varying number of groups (denoted as m), the average

number of variables in each group (i.e., 1
m

∑m

i=1 pi, and pi is set randomly), the length of time series,
respectively. In detail, we conduct experiments on three cases as follows.

(1) The number of groups = {8, 10, 12, 14, 16}, the average number of variables in a group is 4 and the
length of the time series is 1500.

(2) The average number of measured variables in each group = {2, 3, 4, 5, 6}, the number of groups is
12 and the length of the time series is 1500.

(3) The length of time series = {500, 1000, 1500, 2000, 2500}, the average number of variables in each
group is 4 and the number of groups is 12.

We count the number of true positives (TP, the number of edges in the estimated graph also present
in the ground-truth), false positives (FP, the number of edges in the estimated graph not present in the
ground-truth), and false negatives (FN, the number of edges not in the estimated graph but present in
the ground-truth), and report the Precision = TP

TP+FP , Recall =
TP

TP+FN , and F1 = 2×Precision×Recall
Precision+Recall as

the evaluation indicators for all algorithms, averaged over 10 times simulation results for each case.
For the proposed model, we simply set β = 1.1, γ = 0.9 and only fine-tune the hyper-parameter λ,

to make sure that the lasso penalty is not too small in different cases. After we run Mean-TiMINo
and MCCA-TiMINo on the simulated data, both Mean-TiMINo and MCCA-TiMINo do not work and
return no result. Because the TiMINo algorithm needs a large sample size to perform the regression and
independence test, which are not satisfied in the experiments. In all simulations, both Mean-TiMINo
and MCCA-TiMINo reject all independence tests with the p-value threshold 0.05 or 0.01, because the
sample size is not large enough and the regression method may not remove all influence on the assumed
leaf variable. Thus, we only show the experimental results of our method, Mean-GC, MCCA-GC, Mean-
PCMCI, MCCA-PCMCI, Mean-DYNOTEARS, and MCCA-DYNOTEARS as given in Figures 3–5.

1) Multivariate Granger causality. http://users.sussex.ac.uk/∼lionelb/MVGC.

2) TiMINo. http://web.math.ku.dk/∼peters/code.html.

http://users.sussex.ac.uk/~lionelb/MVGC
http://web.math.ku.dk/~peters/code.html
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Figure 3 (Color online) Sensitivity to the number of groups. (a) Precision, (b) recall, and (c) F1 score of the recovered causal

structure.
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Figure 4 (Color online) Sensitivity to the average number of variables in each group. (a) Precision, (b) recall, and (c) F1 score

of the recovered causal structure.

Sensitivity to the number of groups. As shown in Figure 3, both the precision and F1 scores of our
method are the highest among the compared methods and all methods have almost the same recall rate.
Because the learned causal representations help reduce the redundancy edges among observed variables
and the powerful fitting ability of the neural network, our method removes most of the false edges and
thus achieves higher precision and F1 scores than others. Figure 3 further illustrates that our method
performs more robustly and has a steady F1 score when the number of sets increases, while the F1 scores
of other compared methods decrease.

Sensitivity to the average number of variables in each group. As shown in Figure 4, the
precision of our method is higher than the others in all cases. When the average number of variables
in each group increases, the precision of our method decreases slightly. This is because the number of
the measured variables increases, the complexity of learning the causal structure becomes higher. On
the contrary, the precision of MCCA-GC and Mean-GC stay close to 0.72 in all cases. It illustrates that
the results of MCCA-GC and Mean-GC contain some false causal relationships. These two methods
obtain the group variables first, so they, in fact, learn the causal structure from the fixed group variables
while the group variables may be spurious correlated. And our method obtains the canonical variables
dynamically and has a better chance to learn the correct causal relationships. The recall of all methods is
very high and close to 1. Comparing the F1 score of these methods, we can find that our method obtains
the best performance.

Sensitivity to the length of time series. Figure 5 illustrates the performance of the algorithms
with a different length of time series. As shown in Figure 5, the precision and F1 scores of our method
not only grow much faster than the compared methods but also get higher values when the length of the
time series increases in most cases. The only exception happens when the length of the time series is
500. This is because our method utilizes the recurrent neural network (RNN)-based approach to search
for the nonlinear causal relation of variables and inherently requires more data to correctly estimate the
parameters of the model. In real-world scenarios, the sample size is usually larger than 500, therefore our
method can be applied to obtain better results.

Ablation study. To measure the effectiveness of each component of our proposed method, we intro-
duce three variants of our model as follows.

• MCCA-HGCRM. We remove the Granger causal constraint on learning the representations and
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Figure 5 (Color online) Sensitivity to the length of time series. (a) Precision, (b) recall, and (c) F1 score of the recovered causal

structure.
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change the objective function as

L(θ,A, α) =

T
∑

t=2

m
∑

i=1

(Y
(t)
i − gi(qi(Y

(<t))))2

+ λ

m
∑
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∑
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‖ Wi,:j ‖1 −

m
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i=1
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j=i+1

AT
i ΣXiXj

Aj

+

m
∑

i=1

αih(Ai) +
µ

2

m
∑

i=1

|h(Ai)|
2. (25)

Then, we obtain the result by minimizing (25).
• Mean-HGCRM. In this variant, we change the learning representation method with MCCA to

taking the average values of measured variables as the representations. Similar to the modification of
the baselines, Mean-HGCRM is a two-stage method, which first learns the representations first by taking
mean values and then estimates the Granger causality among representations.

The results of HGCRM and the above variants are given in Figures 6–8, From the results, the perfor-
mance of HGCRM is best in recall and F1 score, which shows that both the Granger causal relationships
weight restriction and the MCCA idea help to learn the representations and the Granger causal relation-
ships among representations. Comparing the results of Mean-HGCRM with that of two MCCA-related
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recovered causal structure.

methods (including MCCA-HGCRM and HGCRM), the recalls show that using the mean value as the
representation loses information on recovering the Granger causal relationships. Although the precision of
Mean-HGCRM is higher than the other two methods, the reason is that the learned causal relationships
by Mean-HGCRM are mostly their own influence relationships, which shows that the causal relationships
between different representations are lost.

6.2 Real-world dataset

To further assess the performance of our model, we carry out experiments for performance comparison
among these methods on the real resting-state functional magnetic resonance imaging (rs-fMRI) dataset,
which is a subset of the enhanced NKI Rockland sample [28]. In this dataset, the BOLD signals are
measured and collected at the voxel level from fMRI. Thus, the voxel-level time series data are taken as
input and different ROIs are regarded as different groups. Each voxel-level time series belongs to one
ROI, which is determined by the anatomical parcellation.

In this experiment, resting-state fMRI scans (TR = 645 ms) are preprocessed and projected onto the
Freesurfer fsaverage5 template [29, 30] using a python package NiLearn [31]. The Destrieux parcella-
tion [32] in fsaverage5 space as distributed with Freesurfer is used to select the seed regions. We consider
the following seven ROIs: posterior cingulate cortex (PCC), anterior cingulate cortex, middle temporal
gyrus and angular gyrus in the left hemisphere (LACC, LMTG, LAG, respectively), and anterior cingu-
late cortex, middle temporal gyrus, and angular gyrus in the right hemisphere (RACC, RMTG, RAG,
respectively). These regions are commonly studied and some of them are correlated during the resting
state [33–35].

In short, this dataset consists of 1258 voxels (measured time series) comprising seven different ROIs:
PCC (116 voxels), LACC (167 voxels), LMTG (183 voxels), LAG (171 voxels), RACC (191 voxels),
RMTG (188 voxels) and RAG (242 voxels) with the length of time series 895 and the dataset is public
available3).

In practice, most ROI-based Granger causal connectivity studies [3, 20] are based on the baseline
algorithm Mean-GC, which first takes average values of the voxel time series within each ROI as the
representation (which is an individual time series in this context) of the corresponding ROI, and then
applies Granger causality to the ROI level time series to obtain the causal connections of ROIs. Therefore,
these two methods, Mean-GC and MCCA-GC, are typical representatives for performance comparison.
Besides, we also modified DYNOTEARS and PCMCI algorithms with representations obtained by mean
values or MCCA as the baseline methods. The results estimated by our method and modified baseline
methods are shown in Figure 9.

According to Figure 9(a), our method outputs a compact, clear, and interpretable result that the
PCC is the main cortical hub, and PCC is the cause of AG, MTG, and LACC. Comparing with the
background knowledge, we find that this result is consistent with previous studies where the work on [35]
found a striking positive correlation between the ACC and PCC, and the work on [34] found the PCC
was positively correlated with the RAG and the bilateral MTG. With the sparse constraint, the results
of MCCA-DYNOTEARS and Mean-DYNOTEARS are slightly sparse. In contrast, as illustrated in
Figures 9(b), (f), and (g), more edges are found and connected massively which is difficult to extract the
main causal connectivities. In our causal graph, the bi-directional edges like LAG ↔ LMTG mean the
LAG affects the LMTG with a time lag and the LMTG also affects the LAG with a time lag. Figure 9(c)

3) An example to process and acquire the dataset. http://nilearn.github.io/auto examples/01 plotting/plot surf stat map.html.

http://nilearn.github.io/auto_examples/01_plotting/plot_surf_stat_map.html
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(g) Mean-PCMCI.

shows the result of the Mean-GC and edges like LMTG → LAG is consistent with [36], but the PCC
is only connected with the RMTG and becomes less significant than other brain regions. The PCC has
been suggested to be a cortical hub during the resting state [35] while the Mean-GC failed to report this
important result. Moreover, these results also confirm that our method successfully removes most of the
false edges and further explain why our method earns higher precision in the synthetic datasets.

7 Conclusion

Learning the Granger causal structure among groups of variables from multigroup time series is an
important problem and has many practical applications. In this paper, we explore a hierarchical Granger
causal model for Granger causal discovery from multiple groups of time series. First, we discuss a new
Granger causal representation for groups of time series. Second, we introduce a nonlinear Granger causal
model to estimate the Granger causal relationships among the representations. Third, we propose to
formulate an optimization objective by simultaneously considering the nonlinear Granger causal model,
LSTM representation, and MCCA approach. Next, we show that this optimization problem can be solved
using the augmented Lagrangian method. Finally, we conduct several experiments based on synthetic
and real-world datasets for performance evaluation. The experimental results show that strengthening
the correlations of variables may introduce false edges; however, our method can remove these false edges
and discover meaningful causal relations with the highest precision among all baseline methods.

As a final note, in this study, we assume that the groups of the variables are given. If this assumption
is invalid, we must consider how to cluster variables into different groups and then learn the Granger
causal relationships among variable groups, which will be considered in our future work.
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8 Löwe S, Madras D, Zemel R, et al. Amortized causal discovery: learning to infer causal graphs from time-series data.

In: Proceedings of Conference on Causal Learning and Reasoning, 2022. 509–525

9 Huang B W, Zhang K, Sanchez-Romero R, et al. Diagnosis of autism spectrum disorder by causal influence strength learned

from resting-state fMRI data. 2019. ArXiv:1902.10073

10 Entner D, Hoyer P O. Estimating a causal order among groups of variables in linear models. In: Proceedings of International

Conference on Artificial Neural Networks, 2012. 84–91

11 Parviainen P, Kaski S. Learning structures of Bayesian networks for variable groups. Int J Approximate Reason, 2017, 88:

110–127

12 Spirtes P, Glymour C N, Scheines R, et al. Causation, Prediction, and Search. Cambridge: MIT Press, 2000

13 Zhang K, Huang B W, Schölkopf B, et al. Towards robust and specific causal discovery from FMRI. 2015. ArXiv:1509.08056

14 Chu T J, Glymour C. Search for additive nonlinear time series causal models. J Mach Learn Res, 2008, 9: 967–991

15 Runge J, Nowack P, Kretschmer M, et al. Detecting and quantifying causal associations in large nonlinear time series datasets.

Sci Adv, 2019, 5: 4996

16 Ashrafulla S, Haldar J P, Joshi A A, et al. Canonical Granger causality between regions of interest. NeuroImage, 2013, 83:

189–199

17 Pamfil R, Sriwattanaworachai N, Desai S, et al. Dynotears: structure learning from time-series data. In: Proceedings of

International Conference on Artificial Intelligence and Statistics, 2020. 1595–1605

18 Glymour C, Zhang K, Spirtes P. Review of causal discovery methods based on graphical models. Front Genet, 2019, 10: 524

19 Scholkopf B, Locatello F, Bauer S, et al. Toward causal representation learning. Proc IEEE, 2021, 109: 612–634

20 Marinazzo D, Liao W, Chen H F, et al. Nonlinear connectivity by Granger causality. NeuroImage, 2011, 58: 330–338

21 Li Y O, Adali T, Wang W, et al. Joint blind source separation by multiset canonical correlation analysis. IEEE Trans Signal

Process, 2009, 57: 3918–3929

22 Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput, 1997, 9: 1735–1780

23 Ng I, Zhu S Y, Chen Z T, et al. A graph autoencoder approach to causal structure learning. 2019. ArXiv:1911.07420

24 Gong P H, Zhang C S, Lu Z S, et al. A general iterative shrinkage and thresholding algorithm for non-convex regularized

optimization problems. In: Proceedings of International Conference on Machine Learning, 2013. 37–45

25 Barnett L, Seth A K. The MVGC multivariate Granger causality toolbox: a new approach to Granger-causal inference. J

Neurosci Methods, 2014, 223: 50–68

26 Karimi A, Paul M R. Extensive chaos in the Lorenz-96 model. Chaos-An Interdisc J Nonlinear Sci, 2010, 20: 043105

27 Tank A, Cover I, Foti N J, et al. An interpretable and sparse neural network model for nonlinear Granger causality discovery.

2017. ArXiv:1711.08160

28 Nooner K B, Colcombe S J, Tobe R H, et al. The NKI-rockland sample: a model for accelerating the pace of discovery science

in psychiatry. Front Neurosci, 2012, 6: 152

29 Dale A M, Fischl B, Sereno M I. Cortical surface-based analysis: I. segmentation and surface reconstruction. NeuroImage,

1999, 9: 179–194

30 Fischl B, Sereno M I, Dale A M. Cortical surface-based analysis: II. ination, attening, and a surface-based coordinate system.

NeuroImage, 1999, 9: 195–207

31 Abraham A, Pedregosa F, Eickenberg M, et al. Machine learning for neuroimaging with scikit-learn. Front Neuroinform, 2014,

8: 14

32 Destrieux C, Fischl B, Dale A, et al. Automatic parcellation of human cortical gyri and sulci using standard anatomical

nomenclature. NeuroImage, 2010, 53: 1–15

33 Garza-Villarreal E A, Jiang Z, Vuust P, et al. Music reduces pain and increases resting state fMRI BOLD signal amplitude

in the left angular gyrus in fibromyalgia patients. Front Psychol, 2015, 6: 1051

34 Tan X, Liang Y, Zeng H, et al. Altered functional connectivity of the posterior cingulate cortex in type 2 diabetes with

cognitive impairment. Brain Imag Behav, 2019, 13: 1699–1707

35 Cao W F, Luo C, Zhu B, et al. Resting-state functional connectivity in anterior cingulate cortex in normal aging. Front Aging

Neurosci, 2014, 6: 280

36 Guo W B, Liu F, Xiao C Q, et al. Increased causal connectivity related to anatomical alterations as potential endophenotypes

for schizophrenia. Medicine, 2015, 94: 1493

https://doi.org/10.1162/netn_a_00061
https://doi.org/10.2307/1912791
https://doi.org/10.1109/TPAMI.2021.3065601
https://arxiv.org/abs/1902.10073
https://doi.org/10.1016/j.ijar.2017.05.006
https://arxiv.org/abs/1509.08056
https://doi.org/10.1126/sciadv.aau4996
https://doi.org/10.1016/j.neuroimage.2013.06.056
https://doi.org/10.3389/fgene.2019.00524
https://doi.org/10.1109/JPROC.2021.3058954
https://doi.org/10.1016/j.neuroimage.2010.01.099
https://doi.org/10.1109/TSP.2009.2021636
https://doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/1911.07420
https://doi.org/10.1016/j.jneumeth.2013.10.018
https://doi.org/10.1063/1.3496397
https://arxiv.org/abs/1711.08160
https://doi.org/10.3389/fnins.2012.00152
https://doi.org/10.1006/nimg.1998.0395
https://doi.org/10.1006/nimg.1998.0396
https://doi.org/10.3389/fninf.2014.00014
https://doi.org/10.1016/j.neuroimage.2010.06.010
https://doi.org/10.3389/fpsyg.2015.01051
https://doi.org/10.1007/s11682-018-0017-8
https://doi.org/10.3389/fnagi.2014.00280
https://doi.org/10.1097/MD.0000000000001493

	Introduction
	Related work
	Problem formulation
	HGCRM
	Granger causal representation learning on variable groups
	Granger causal structure learning among representations
	Model summarization

	Augmented-Lagrangian-based model training
	Experiments
	Synthetic data
	Real-world dataset

	Conclusion

