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Appendix A Optimization Algorithm for Finding the Hardest Sv

This section discusses the details of the optimization algorithm for solving the problem of Eqn. (9) in Sect. 3.2 of the paper. To

solve the problem

max
Sv,A

∑
(x,y)∈Sv

l (fw(x), y) − α ⟨∇wl(fw(x), y), A⟩

s.t. A = g
t
w, Sv ∈ Γξ,

(A1)

for optimizing the train/val (St/Sv) subsets splitting to increase the domain shift, we alternately update Sv and A by fixing the

other one as known.

Initialization. We first initialize A with the gradient of a sample randomly selected from S.

After initialization, we alternately update Sv and A as follows.

Updating Sv. Given A, Sv is updated by solving

max
Sv

∑
(x,y)∈Sv

l (fw(x), y) − α ⟨∇wl(fw(x), y), A⟩

s.t. Sv ⊂ S, |Sv| / |S| = ξ,

(A2)

where the constraints are derived from the definition of Γξ (i.e., Γξ = {Sv ⊂ S, |Sv| / |S| = ξ}). Equation (A2) indicates that the

optimal Sv consists of ξ |S| samples that have the largest values of l (fw(x), y)−α ⟨∇wl(fw(x), y), A⟩. Thus, given A, we compute

and rank the values of l (fw(x), y)−α ⟨∇wl(fw(x), y), A⟩ for all (x, y) ∈ S and select the largest ξ|S| samples to constitute the Sv .

Updating A. Given Sv (St = S − Sv is then given), we update A to satisfy the constraint A = gt
w in Eqn. (A1). Then, A is

updated by

A = g
t
w =

1

|St|
∑

(x,y)∈St

∇wl(fw(x), y). (A3)

Equation (A3) is based on the definition of gt
w that

g
t
w =∇θL(θ;St, w)

=
1

|St|
∑

(x,y)∈St

∇θl(f(x, θ), y)|θ=w

=
1

|St|
∑

(x,y)∈St

∇wl(f(x,w), y),

(A4)

where the second equation utilizes the fact that w is the initialization of θ.

We show empirically the convergence of this alternate iteration algorithm in Fig. A1, with the values of the objective function

in Eqn. (A1). Figure A1 shows that the values of the objective function converge after only a few iterations. For the theoretical

analysis of the convergence, we take it as our future work.

Appendix B Proof of Theorem 1

This section proves Theorem 1 in Sect. 4.2 of the paper. We first introduce the VC-dimension-based generalization bound and the

domain adaptation theory, then present two lemmas that will be used in the proof, and finally give the proof of Theorem 1.
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(a) Run 1
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(b) Run 2

Figure A1 Convergence of the alternate iteration for finding the hardest Sv. (a) and (b) respectively show the values of objective

function in Eqn. (A1) in two different runs with different initializations.

Appendix B.1 Preliminary

VC-dimension-based generalization bound [1].

Theorem A-1. Let S be the set of training data i.i.d. sampled for distribution P. For any δ ∈ (0, 1), with probability at least

1 − δ, we have ∀h (h : X → {0, 1}) in hypothesis space H,

|ϵP(h) − ϵ̂S(h)| ⩽

√
8

|S|

(
V C(H) log

2e |S|
V C(H)

+
4

δ

)
. (B1)

where ϵP(h) = E(x,y)∼P [I{(h(x)) ̸=y}] and ϵ̂S(h) = 1
|S|
∑

(x,y)∈S I{(h(x))̸=y}.

Domain adaptation theory [2, 3].

Theorem A-2. For any h in hypothesis space H, we have

ϵQ(h) ⩽ ϵP(h) +
1

2
dH(P,Q) + λ

∗
, (B2)

where λ∗ ⩾ infh′∈H{ϵP(h′) + ϵQ(h′)} and

dH(P,Q) = 2 sup
h∈H

|EP [h = 1] − EQ[h = 1]| (B3)

is the H-divergence.

Appendix B.2 Lemmas

Lemma A-1. For any Sv ∈ Γξ and St = S − Sv , ∀δ ∈ (0, 1), with probability at least 1 − δ, we have ∀f ∈ HSt ,

|ϵΨP(f) − ϵ̂
Ψ
Sv

(f)| ⩽

√√√√ 8

|Sv|

(
V C(HΨ

St
) log

2e |Sv|
V C(HΨ

St
)
+

4

δ

)
, (B4)

where ϵΨP(f) = E(x,y)∼P [I{Ψ(f(x))̸=y}] is the generalization error on distribution P, ϵ̂ΨSv
(f) = 1

|Sv|
∑

(x,y)∈Sv
I{Ψ(f(x))̸=y} is the

empirical error, HΨ
St

= {Ψ ◦ f : f ∈ HSt}, HSt is defined in Sect. 4.2 of the paper, V C(HΨ
St

) is the VC-dimension of HΨ
St

, and

Ψ(·) is the prediction rule such as the Bayes Optimal Predictor, i.e., Ψ(f(x)) = I{f(x)⩾ 1
2
}.

Proof:

From the definition of HΨ
St

, for any f ∈ HSt , there exists a hf ∈ HΨ
St

such that hf = Ψ ◦ f . Applying Theorem A-1, with

probability at least 1 − δ, we have ∀f ∈ HSt ,

|ϵΨP(f) − ϵ̂
Ψ
Sv

(f)|

=|ϵP(hf ) − ϵ̂Sv (hf )|

⩽

√√√√ 8

|Sv|

(
V C(HΨ

St
) log

2e |Sv|
V C(HΨ

St
)
+

4

δ

)
.

(B5)

Lemma A-2. For any Sv ∈ Γξ and St = S − Sv, let g = arg inff∈HSt
ϵΨP(f) and h = arg inff∈HSt

ϵ̂ΨSv
(f), then ∀δ ∈ (0, 1),

with probability at least 1 − δ, we have

ϵ
Ψ
P(g) ⩾ ϵ̂

Ψ
Sv

(h) −

√√√√ 8

|Sv|

(
V C(HΨ

St
) log

2e |Sv|
V C(HΨ

St
)
+

4

δ

)
. (B6)
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Proof:

From the definition of g and h, we have ϵ̂ΨSv
(g) ⩾ ϵ̂ΨSv

(h). ∀δ ∈ (0, 1), with probability at least 1 − δ, we have

ϵ
Ψ
P(g) − ϵ̂

Ψ
Sv

(h)

=ϵ
Ψ
P(g) − ϵ̂

Ψ
Sv

(g) + ϵ̂
Ψ
Sv

(g) − ϵ̂
Ψ
Sv

(h)

⩾ϵ
Ψ
P(g) − ϵ̂

Ψ
Sv

(g)

⩾ −

√√√√ 8

|Sv|

(
V C(HΨ

St
) log

2e |Sv|
V C(HΨ

St
)
+

4

δ

)
.

(B7)

In the last inequality, we utilize Lemma A-1. Thus, Eqn. (B6) holds.

Appendix B.3 Proof of Theorem 1

Proof:

We denote HΨl as the hypothesis space such that ∀h ∈ HΨl ,

h(x) = Ψl(f(x)) =

{
1 if l(f(x), y) > γ,

0 otherwise ,
(B8)

for f ∈ H. Then

dHΨl
(P,Q) =2 sup

h∈HΨl

∣∣EP [h = 1] − EQ[h = 1]
∣∣

=2 sup
f∈H

∣∣EP [Ψl(f(x)) = 1] − EQ[Ψl(f(x)) = 1]
∣∣

=2 sup
f∈H

∣∣∣EP [I{l(f(x),y)>γ}] − EQ[I{l(f(x),y)>γ}]
∣∣∣

=2 sup
f∈H

{
EQ[I{l(f(x),y)>γ}] − EP [I{l(f(x),y)>γ}]

}
⩽2 sup

f∈H
EQ[I{l(f(x),y)>γ}] − 2 inf

f∈H
EP [I{l(f(x),y)>γ}].

(B9)

In the fourth equation, we utilize the assumption that EQ[I{l(f(x),y)>γ}] ⩾ EP [I{l(f(x),y)>γ}]. Given any Sv ∈ Γξ and St = S−Sv ,

we replace H by HSt , then

d
H

Ψl
St

(P,Q) ⩽2 sup
f∈HSt

EQ[I{l(f(x),y)>γ}] − 2 inf
f∈HSt

EP [I{l(f(x),y)>γ}]

=2C1(Q, St) − 2 inf
f∈HSt

EP [I{l(f(x),y)>γ}]
(B10)

where C1(Q, St) = supf∈HSt
EQ[I{l(f(x),y)>γ}]. Applying Theorem A-2, for any f ∈ HSt , we have

ϵ
Ψl
Q (f) ⩽ ϵ

Ψl
P (f) + C1(Q, St) − inf

f′∈HSt

EP [I{l(f′(x),y)>γ}] + λ
∗
(St), (B11)

where λ∗(St) ⩾ inff′∈HSt
{ϵΨl

P (f ′) + ϵ
Ψl
Q (f ′)}. We let C∗(Q, St) = C1(Q, St) + λ∗(St), then

ϵ
Ψl
Q (f) ⩽ ϵ

Ψl
P (f) − inf

f′∈HSt

EP [I{l(f′(x),y)>γ}] + C
∗
(Q, St). (B12)

Applying Lemma A-1 to the first term of the right side in Eqn. (B12), ∀δ ∈ (0, 1), with probability at least 1−δ, we have ∀f ∈ HSt ,

ϵ
Ψl
P (f) ⩽ ϵ̂

Ψl
Sv

(f) +

√√√√√ 8

|Sv|

V C(HΨl
St

) log
2e |Sv|

V C(HΨl
St

)
+

4

δ

. (B13)

Applying Lemma A-2 to the third term of the right side in Eqn. (B12), ∀δ ∈ (0, 1), with probability at least 1 − δ, we have

inf
f′∈HSt

EP [I{l(f′(x),y)>γ}] ⩾ inf
f′∈HSt

1

|Sv|
∑

(x,y)∈Sv

I{l(f′(x),y)>γ} −

√√√√√ 8

|Sv|

V C(HΨl
St

) log
2e |Sv|

V C(HΨl
St

)
+

4

δ

. (B14)

Combining Eqns. (B12), (B13), and (B14) and using the union bound, for any δ ∈ (0, 1), with probability at least 1 − 2δ, we have

∀f ∈ HSt ,

ϵ
Ψl
Q (f) ⩽ ϵ̂

Ψl
Sv

(f) + B(Sv) + 2

√√√√√ 8

|Sv|

V C(HΨl
St

) log
2e |Sv|

V C(HΨl
St

)
+

4

δ

+ C
∗
(Q, St), (B15)
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where

B(Sv) = − inf
f′∈HSt

1

|Sv|
∑

(x,y)∈Sv

I{l(f′(x),y)>γ}. (B16)

Using the fact that |Sv| = ξ|S| and let CH = supS′
v∈Γξ

V C(HΨl
S−S′

v
) log

2eξ|S|

V C(H
Ψl
S−S′

v
)
, we have

ϵ
Ψl
Q (f) ⩽ ϵ̂

Ψl
Sv

(f) + B(Sv) + 2

√
8

ξ |S|

(
CH +

4

δ

)
+ C

∗
(Q, St). (B17)

Appendix C Analysis of L2-normalization Mitigating Gradient Explosion
Meta-learning approaches for DG [4,5] often suffer from gradient explosion, i.e., the norm of gradient of loss w.r.t. the parameters

of model is infinite. We find experimentally that the gradient explosion can be mitigated in our approach by introducing the

L2-normalization, as in Sect. 5.2 of the paper. We next theoretically analyze the reasons for this finding.

For the sake of simplicity, we analyze the gradient norm of loss w.r.t. parameters of the classifier in the meta-learning process

for DG, with feature extractor as a fixed function. Without loss of generality, we consider the case that K = 2 (i.e., binary

classification), s = 1 and m = 0. Then we have the following proposition.

Proposition A-1. Under the above setting, if the input feature of the classifier is L2-normalized, the gradient norm of the

generalization loss w.r.t. parameters of the classifier in the meta-learning process of DG is bounded.

Proof:

Given feature z, the loss of binary classification is

L(w; z) = −y log(σ(w
T
z)) − (1 − y) log(1 − σ(w

T
z)), (C1)

where σ is the sigmoid function. Let w′ = w − α∇wL(w; z), then

∇wL(w
′
; z) = (I − αH)∇w′L(w

′
; z), (C2)

where H is the Hessian matrix. The gradient norm

∥∥∇wL(w
′
; z)
∥∥ ⩽ ∥I − αH∥

∥∥∇w′L(w
′
; z)
∥∥ ⩽ (1 + |α| ∥H∥)

∥∥∇w′L(w
′
; z)
∥∥ . (C3)

Since ∇w′L(w′; z) = (p − y)z and H = p(1 − p)zzT where p = σ(wT z),

∥H∥ = sup
u:∥u∥=1

∥Hu∥ ⩽ sup
u:∥u∥=1

∥∥∥zzT
u
∥∥∥ ⩽ ∥z∥2

(C4)

and ∥∥∇w′L(w
′
; z)
∥∥ ⩽ ∥z∥ . (C5)

If ∥z∥ = 1, combining Eqns. (C3), (C4) and (C5), we have

∥∥∇wL(w
′
; z)
∥∥ ⩽ 1 + |α| . (C6)

Hence the norm of gradient is bounded.

According to Proposition A-1, L2-normalization can mitigate gradient explosion under the above setting. The analysis of

gradient norm of loss w.r.t. parameters of both classifier and feature extractor in the meta-learning process is much more complex,

left for our future work.

Appendix D Applying ADS to Large-Scale Datasets
In this section, we discuss how to apply our method of ADS to large-scale datasets. The main bottleneck of ADS to scale up is

that the computing of gradients on all data for learning the splitting is time-consuming for large-scale datasets. To implement our

ADS on large-scale datasets, we can randomly sample a subset of training data to learn the splitting and train the model on it, in

each iteration of the alternate training algorithm in Sect. 3.2 of the paper.
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