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Ternary content-addressable memory (TCAM) is an indis-

pensable component of lookup tables in switches or routers.

However, it suffers from expensive and inflexible update op-

erations and cannot fulfill the demand for rule updates in

switches enabling software-defined networking (SDN). The

main reason is that TCAM stores rules from top to bottom

in decreasing order of priority for disambiguation. Updating

a TCAM is similar to the insertion sort that takes O(n) time,

where n is the number of inserted rules. This study proposed

a constant-time alteration ternary CAM (CATCAM) that

can accomplish both lookup queries and update requests

in nanoseconds. It decouples rule priorities from physical

addresses by encoding the priority ordering between rules

separately in an 8T SRAM array. The traversal is enabled

by the computing-in-memory technique by writing incoming

rules to empty rows without shuffling existing entries.

Architecture. Figure 1(a) shows the overall architecture

of the proposed CATCAM. It is composed of three main

components, several match segments (16 in this design), the

arbiter for search operations, and the scheduler along with

the metadata register for update operations. Each match

segment consists of a 256 × 320 static random access mem-

ory (SRAM) array named the match matrix and a 256 ×

256 SRAM array named the local priority matrix as well as

the control logic for normal SRAM interfaces and in-memory

operations. The match matrix functions as a conventional

TCAM that can accommodate 256 entries of 160 ternary

bits while the priority matrix replaces the priority encoder

for priority decision. The prototype chip has a capacity of

4K entries (640 Kb). According to the type of lookup table

tasks, a task allocator dispatches them to different compo-

nents. Lookup queries are broadcast to all match segments

with valid entries. The search results are collected and arbi-

trated by the arbiter which is made up of a 16 × 16 SRAM

array named the global priority matrix and a multiplexer of

16 channels associated with each match segment. Update

requests go to the scheduler. According to the metadata of

each match segment, memory commands are issued to corre-

sponding match matrices and priority matrices; meanwhile,

the metadata is updated. A necessity of the metadata reg-

ister is the priority store where all the priorities of existing

rules are maintained. Finally, the output would be the po-

sition of the single highest priority match for lookup or the

position of the inserted rule for update.

Methods. To decouple rule priorities from physical ad-

dresses for rule insertion, the priority matrix encodes the

priority ordering between rules separately in an 8T SRAM

array. As shown in Figure 1(b), each row and column in the

priority matrix is associated with a rule in the match ma-

trix of its match segment, and each intersection represents

the binary relation of the priority ordering between them.

A Boolean value Pij = 1 indicates the corresponding rule

of row i has a higher priority than the corresponding rule

of column j, and “0” indicates the opposite. Each Boolean

value is therefore stored in a bit-cell of an SRAM array; the

mapping is shown in Figure 1(c).

During lookup, the priority matrix is traversed to filter

out the entry with the highest priority. After comparing

against the valid entries in the match matrix, the match

vector indicates those matched entries. We leverage the idea

that if the ith entry has the highest priority, its priority has

to be higher than any other matched entry. That is to say,

any other matched rule has a lower priority than it, i.e., for

any matched entry j, Pji = 0. With this idea, according

to the match vector, the matched rows and columns are se-

lected, as shown in the shaded part of Figure 1(b). Then

each column conducts bit-wise NORs iteratively on selected

rows. If any matched entry has a higher priority, which sug-

gests there exists a “1” in the column, the result of NOR is

“0”. Therefore, the resulting one-hot report vector, whose

ith bit is “1”, indicates that the ith entry in the match ma-

trix is the matched entry with the highest priority. We lever-

age the computing-in-memory technique to facilitate such a

process. To allow bit-parallel NORs, the match vector is

applied to the read bit-lines (RBL) and the read word-lines

(RWL) of the priority matrix. Given that rules in the pri-

ority matrix are arranged in the same order as the match

matrix, there is no need for the regular row or column de-

coder. As shown in Figure 1(c), if the ith bit in the match

vector is “1”, the ith RBL is pre-charged while the rest is

grounded. Then the ith RWL is activated. If any of the

bit-cells connected to a pre-charged RBL carries a “1”, the
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Figure 1 (Color online) (a) CATCAM architecture. (b) The priority relation of rules is encoded in the priority matrix. (c) The

priority matrix is mapped to an 8T SRAM array. (d) The priority matrix is updated according to the rule priority and the allocated

address. (e) The dual-voltage scheme supports column-wise write. (f) Die photo. (g) Comparison of TCAM update time.

RBL discharges. The RBL stays high only if all the cor-

responding bit-cells carry “0”s. The results are detected

through sense amplifiers (SA) and stored in the report vec-

tor. The priority decision is therefore performed in situ and

can be finished in a single cycle.

Since the priority ordering is no longer subject to physi-

cal addresses, a new rule can be inserted into any available

entry. The scheduler then stores and compares its priority

against those of existing rules from the priority store using

up to 256 comparators to encode the priority ordering in the

priority matrix. According to the address allocated for the

new rule, the corresponding pair of rows and columns in the

priority matrix is to be updated, as shown in Figure 1(d).

The row update can use the normal SRAM interface to write

the array row-wise. However, the column update requires

writing data column-wise, which has to write all bits sequen-

tially under row-wise write. To meet the update time con-

straint, we adopt a dual-voltage scheme to support column-

wise write. The idea is that all “1”s or “0”s in the data can

be written to the column concurrently. An additional col-

umn decoder selects the column to be written. The data is

applied to the write word-line (WWL) instead of the conven-

tional write bit-line (WBL), as shown in Figure 1(e). The

WWLs for bit-cells where “1”s (“0”s) have to be written are

enabled, and the WBLs and write bit-line bars (WBLBs)

for the selected column are driven accordingly to write “1”s

(“0”s). Column-wise write takes two cycles to write “1”s and

“0”s, respectively. Counting one cycle for row-wise write,

updating the priority matrix takes three cycles.

Results. The prototype chip of CATCAM is implemented

in the 28 nm CMOS technology and the die photograph is

shown in Figure 1(f). The form factor is 2.1 by 2.7 mm. Fig-

ure 1(g) [1–4] shows the evaluation performed with Class-

Bench and various types of rulesets with different sizes. The

experimental results show that the rule update time of CAT-

CAM varies from 4 to 40 ns depending on specific tasks,

which outperforms the state-of-the-art (SOTA) TCAM up-

date methods by four to six orders of magnitude. With a

capacity of 640 Kb, it achieves 470 MHz at 0.9 V and con-

sumes 1.14 fJ/bit per search, which is comparable to the lat-

est TCAM designs. The reason is that SOTA TCAM works

still prioritize rules by physical addresses. Constructing and

maintaining the dependency relationship with a graph is

complicated and time-consuming especially for large rule-

sets. On the contrary, CATCAM schedules newly inserted

rules based on priorities rather than dependencies, elimi-

nates the firmware overhead, and guarantees deterministic

update latency that is not subject to the number of existing

rules or ruleset characteristics. To our knowledge, CAT-

CAM is the first implementation to fulfill constant time up-

dates and lookup at the same time, making it a promising

candidate for future SDN switches.
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