
SCIENCE CHINA
Information Sciences

. Supplementary File .

CATCAM: A 28 nm Constant-time Alteration
TCAM Enabling Less than 50 ns Update Latency

Chenchen DENG1, Tianzhu XIONG2, Zhaoshi LI3, Zhiwei LIU3, Yao WANG3,

Jianfeng ZHU3, Jun YANG2, Shaojun WEI3 & Leibo LIU3*

1Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, 100084, China;
2National ASIC Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China;

3School of Integrated Circuits, Tsinghua University, Beijing 100084, China

Appendix A Motivation
Ternary Content-Addressable Memory(TCAM) is an indispensable component of lookup tables in switches or routers due to its

matching flexibility and parallel search capability [1]. However, TCAM in today’s hardware switches only supports around 40 to

50 rule updates per second [2], and network packets may drop or be forwarded incorrectly during rule installation latency up to

hundreds of milliseconds [3]. The main reason is that TCAM stores rules from top to bottom in decreasing order of priority for

disambiguation [4], i.e., a rule located at a higher physical address has higher priority. Figure A1(a) shows how rules (R0 ∼ R3)

are arranged physically. Therefore, when multiple matches occur and a single highest priority match is required, the entry with

the highest address is selected (R2 in our example). However, per-rule update time in a TCAM grows linearly with the number of

inserted rules. As shown in Figure A1(b), rule insertion could lead to a substantial amount of moves for existing entries in TCAM

to maintain priority ordering [5]. Thus, updating a TCAM is similar to the insertion sort that takes O(n) time, where n is the

number of inserted rules. Meanwhile, it considerably increases the energy consumption by several write operations. In this paper, a

Constant-time Alteration Ternary CAM (CATCAM) that can accomplish both lookup queries and update requests in nanoseconds

is proposed. It decouples rule priorities from physical addresses by augmenting traditional TCAM with a priority matrix which

encodes the priority ordering between entries separately in an 8T SRAM array. To filter out the entry with the highest priority

during lookup, logical operations required by traversal of the priority matrix is realized through Computing-In-Memory technique

happened in-situ on bit-lines. Therefore, incoming rules can be written to any empty row in a conventional TCAM without the

shuffles of existing entries.

Rule ID Entry Priority

R2 1010 4

R1 1111 2

R3 1*** 1

R0 **** 0

(a)

P
ri

o
ri

ty

E
n

c
o

d
e
r

R21010

Rule ID Entry Priority

R2 1010 4

R4 101* 3

R1 1111 2

R3 1*** 1

R0 **** 0

(b)

Figure A1 (a) The wildcard rules are prioritized in a TCAM for lookup. Note that only the entry field is stored. (b) The

insertion of a new rule causes existing entries to shuffle.

Appendix B Hierarchical Scalability
CATCAM features a hierarchical architecture to scale out. Lookup queries can be fully pipelined and the scheduling logic guarantees

deterministic update latency, not subject to the number of existing rules or ruleset characteristics. To scale out, large lookup tables

are partitioned into multiple sub tables so that each of them can be fitted into a match segment. Since the rule priority is generally

specified as a finite integer, the entire range of rule priorities can be segmented into non-overlapping intervals. Each match matrix

stores rules whose priority belongs to a certain interval to establish the priority ordering between match matrices because all the

rules stored in one of them have higher (or lower) priority than another. It is encoded in a global priority matrix using the same

scheme and in-memory implementation (16 × 16 array) as the local priority matrix. Similarly, the priority ordering is not related

to the physical positions of match matrices. Search is performed hierarchically with the arbiter and is composed of three stages:

*Corresponding author (email: liulb@tsinghua.edu.cn)

Deng C, et al. Sci China Inf Sci 2

×16

Search

String

B
u
ff
e
r

Entry Matching Global Priority Matching

R
e
p

o
rt

 V
e

c
to

r

×16

M
u
lt
ip

le
x
e
r

Local Priority Decision

M
a

tc
h
 V

e
c
to

r

Match

Matrix

Global

Priority

Matrix Local

Priority

Matrix

Result

Reduce

Figure B1 The three-stage pipeline for lookup queries.

Rule ID Priority

R1 320

R3 240

Rule ID Priority

R4 900

R5 750

Rule ID Priority

R2 660

T1 T2 T3

90 320 660 900T2T1 T3

R5

Rule ID Priority

R6 180

R3 240

Rule ID Priority

R4 900

R5 750

Rule ID Priority

R2 660

R1 320

T1 T2 T3

90 240 660 900T2T1 T3

R6

Rule ID Priority

R6 180

R3 240

Rule ID Priority

R4 900

R5 750

Rule ID Priority

R7 480

R1 320

T1 T2 T3

90 480 660 900T2T1 T3

R7

（a） （b）

（c）

Rule ID Priority

R2 660

T4

T4240

TID T1 T2 T3 T4

T1 0 0 0 0

T2 1 0 1 1

T3 1 0 0 0

T4 1 0 1 0

Global Priority Matrix

Figure C1 The demonstration of interval-based rule insertion.

entry matching, global priority decision, and local priority decision. The idea is that the highest priority matched entry must be

among the highest priority match matrix with matched entries. Upon receiving a lookup query, the task allocator broadcasts the

search string to each match matrix to obtain the local match vector. These local results undergo reduction OR gates to form the

global match vector whose ith bit is “1” indicates there exist match entries in the ith match matrix. At the second stage, the global

match vector is fed to the global priority matrix to generate the one-hot global report vector which indicates the match matrix

holding the target entry. The third stage proceeds with the local priority decision process in the chosen match segment and the

multiplexer selects the corresponding report vector to output.

Entry matching for the current search string can be overlapped with global priority decision for the preceding global match

vector which can be further overlapped with local priority decision for the previous local match vector. A three-stage pipeline

is therefore designed, as shown Figure B1. Although in theory the local priority matrix and the global priority matrix can be

traversed simultaneously, it leads to redundant local priority decision since only one match segment needs to report. In favor of

energy consumption, only one local priority matrix is traversed after global arbitration and does not affect the overall throughput

due to the pipeline. Meanwhile, the local match vector is buffered to make room for the following entry matching.

Appendix C Interval-based Rule Insertion
Lookup tables are not static. To maintain the priority ordering between match matrices while updating the lookup table, the

scheduling logic inserts rules based on dynamic intervals. These non-overlapping intervals are segmented by the highest priority

rule in each match matrix and recorded in the metadata register. It also keeps the availability flag indicating the vacancies in each

match matrix and the successor pointer to the match matrix whose priority interval follows. Upon receiving an update request,

if it is an insertion, the priority of the new rule is extracted and compared against all priority intervals to locate its position, the

associated match matrix is the one to be inserted. If the availability flag of the current match matrix is true, the first available entry

according to its valid vector is allocated for the new rule, as shown in Figure C1(a). Writes to the match matrix and the priority

matrix can be performed concurrently since they are two separate memory arrays. The valid vector is modified and undergoes

reduction OR to update the availability flag.

If the availability flag is false, the highest priority rule in the current match matrix is relocated to make room for the new rule,

whose address is maintained in the metadata register. To maintain the priority ordering between match matrices, it should be

relocated to the match matrix whose priority interval follows assuming it is available. To this end, this entry is read from the match

matrix along with its priority from the priority store and reinserted into the following match matrix designated by the successor

pointer. The new rule can thus be inserted into the current match matrix and replace the relocated rule, as shown in Figure C1(b).

Deng C, et al. Sci China Inf Sci 3

Table D1 Prototype chip specifications.

Technology 28nm

Supply Voltage(Vdd Low) 0.6-1V(0.3-0.6V)

Frequency 470MHz@0.9V

Die Size 2.1 × 2.7mm2

Matrix Size
Match: 0.17×0.39mm2

Priority: 0.13×0.34mm2

Configuration 256×160b×16(640Kb)

Power Consumption 0.35W@0.9V

Table D2 Prototype chip specifications.

Task Cycles Latency Throughput Energy

Search 7 14.9 ns 470 MOPS 752 pJ

Insertion w/o Relocation 11 23.4 ns 43 MOPS 271 pJ

Insertion w/ Relocation 16 34 ns 29 MOPS 414 pJ

Insertion New Match Segment 19 40.3 ns 25 MOPS 477 pJ

Deletion 2 4.3 ns 235 MOPS 42 pJ

To locate the new highest priority rule, the valid vector is applied to the priority matrix as if all valid entries are matched so that

the output report vector indicates the one with the highest priority. Its address and associated priority intervals in the metadata

register are updated accordingly.

However, if the availability flag of the successor match matrix is false, when the priority ordering between match matrices is

fixed, the above situation may iterate between neighboring match matrices until an available entry is found. Similar to rule insertion

in a single TCAM, such overhead can be reduced with the flexibility of the global priority matrix. To accommodate the relocated

rule, a new match segment is assigned with available memory resources. Its priority ordering should be between the current match

matrix and its following match matrix. To generate updates to the global priority matrix, the priority of the relocated rule (which

would become the highest priority rule after insertion since the match matrix is empty) is compared against those of other match

matrices from the metadata register. In addition, the successor pointer of the current match matrix is redirected to the new match

matrix and the successor pointer of the new match matrix is directed to the original successor of the current match matrix. The

priority interval of the current match matrix is therefore segmented into two and the boundary is determined by the new highest

priority rule of the current match matrix, as shown in Figure C1(c). The new match segment would accommodate future rule

relocations as well as rule insertions and further adjust the boundary in-between.

Appendix D Measurement results

The prototype chip of CATCAM is implemented in the 28 nm CMOS technology as a proof of concept. The chip specifications are

listed in Table D1. A single match matrix is 170× 390 µm2 with 86% area efficiency and a single priority matrix is 130× 340 µm2

with 80% area efficiency. The peripheral logic accounts for 22% area (excluding test circuitry) and the priority store contributes

to 80% of it due to the register files. Table D2 summarizes the performance of various lookup table tasks ranging from lookup,

deletion to all three types of insertion. Since memory operations dominate the latency of each task, the set operating frequency of

470 MHz leaves enough margin for peripherals and interconnection. Figure D1 shows the measured frequency and energy efficiency

of the priority matrix and the search operation across different supply voltages. At 0.9 V, the average frequency of 470 MHz results

in 1.14 fJ/bit per search. The best energy efficiency is achieved at 0.6 V and 118 MHz, resulting in 0.5 fJ/bit per search. Compared

to the match matrices, the priority matrices and the peripheral logic incur 16% energy overhead and 75% area overhead. Note that

the overhead is associated with the number of entries in a match matrix, not the width of the entry, which means it could be further

lowered with wider rules. Although the prototype chip only implements 160b width, it could be extended to 640b comparable to

a commercial off-the-shelf TCAM, and is estimated to incur 4% energy overhead and 20% area overhead. The capacity of the

prototype chip is limited by the die size, and if the area permits, the number of match segments can be scaled up to 256. In this

way, the CATCAM may have a capacity of 10Mb similar to a commercial off-the-shelf TCAM [6]. The simulated results of this

design show the number of compare operations could reach 31 TOPS while consuming 5.6W. Figure D2 shows the shmoo plot

and frequency of the column-wise write for the priority matrix with Vdd and Vdd Low swept. The column-wise write achieves a

maximum frequency of 480 MHz when Vdd Low = 0.5 V, with an operational margin of 200 mV.

Experimental results show that the proposed approach outperforms state-of-the-art TCAM update methods by four to six orders

of magnitude. Current methods to incremental TCAM updates (RuleTris [7], FastRule [8], COLA [9], FastUp [10]) exploit the

minimum dependency graph to decrease entry movements for rule insertion. Although they manage to minimize the number of

TCAM moves, their performance is hindered by the prohibitive time spent on the firmware to calculate the update sequence.

The reason is that they are still based on the premise that a TCAM prioritizes rules by physical addresses. Constructing and

maintaining the dependency relationship with a graph is complicated and time-consuming, especially for large rulesets. Besides,

the average latency of a TCAM move is relatively slow (approx. 0.6 ms). On the contrary, CATCAM schedules newly inserted

rules based on priorities rather than dependencies, eliminates the firmware overhead and guarantees deterministic update latency

that is not subject to the number of existing rules or ruleset characteristics. Since there is no hardware implementation of above

mentioned TCAM update scheme, Table D3 compares the proposed CATCAM with conventional TCAM designs. Note that the

match matrix is our in-house alternative to the conventional TCAM which is comparable to existing TCAM designs [6,11,12]. The

proposed CATCAM trades some certain area and energy overhead for flexible updates without affecting search performance and

achieves a speedup by several orders of magnitude in update time. More importantly, the concept of CATCAM is also compatible

with existing TCAMs, more area/energy-efficient TCAM designs could be utilized to further reduce such overhead.

Deng C, et al. Sci China Inf Sci 4

Figure D1 Measurement results.

Figure D2 Shmoo plot of the column-wise write with Vdd and Vdd Low swept.

Table D3 Comparisons with existing TCAM designs.

[6] [11] [12] This work

Technology 28nm 28nm 28nm 28nm

Bit cell 16T 12T 32T 16T

Area/cell 0.625 µm2 0.304µm2 2.65µm2 0.79 µm2

Frequency 400MHz 370MHz 2560MHz 470MHz

Energy/search 2.02fJ/bit 0.74fJ/bit 0.42fJ/bit 1.14fJ/bit

Array size 4k× 80 32× 64 32× 64 256× 160

References

1 Pagiamtzis K,Sheikholeslami A. Content-addressable memory (CAM) circuits and architectures: A tutorial and survey. IEEE

Journal of Solid-State Circuits, 2006, 41:712–727.

2 Katta N, Alipourfard O, Rexford J, et al. Cacheflow: Dependency-aware rule-caching for software-defined networks. In:

Proceedings of the Symposium on SDN Research, 2016.1–12.

3 Kuzniar M,Peresini P, Kostic D. What you need to know about SDN flow tables. In: Proceedings of International Conference

on Passive and Active Network Measurement, 2015. 347–359.

4 Shah D, Gupta P. Fast updating algorithms for TCAM. IEEE Micro, 2001,21:36–47.

5 Song H, Turner J. Nxg05-2: Fast filter updates for packet classification using TCAM. In: Proceedings of IEEE Globecom,

2006.1–5.

6 Nii K, Amano T, Watanabe N, et al. A 28nm 400MHz 4-parallel 1.6 Gsearch/s 80MB ternary CAM. In: Proceedings of IEEE

International Solid-State Circuits Conference(ISSCC), 2014. 240–241.

7 Wen X, Yang B, Chen Y, el al. Ruletris: Minimizing rule update latency for TCAM-based SDN switches. In: Proceeding of

IEEE 36th International Conference on Distributed Computing Systems (ICDCS). 2016. 179–188.

8 Qiu K, Yuan J, Zhao J, et al. Fastrule: Efficient flow entry updates for TCAM-based openflow switches. IEEE Journal on

Selected Areas in Communications, 2019, 37:484–498.

9 Zhao B, Li R, Zhao J. Efficient and Consistent TCAM Updates. In: Proceeding of IEEE INFOCOM 2020 - IEEE Conference

on Computer Communications, 2020. 1241-1250

10 Wan Y, Song H, Che H, et al. FastUp: Fast TCAM Update for SDN Switches in Datacenter Networks. In: Proceeding of

Deng C, et al. Sci China Inf Sci 5

IEEE 41st International Conference on Distributed Computing Systems (ICDCS). 2021. 887–897.

11 Jeloka S, Akesh N, Sylvester D, et al. A 28 nm configurable memory (TCAM/BCAM/SRAM) using push-rule 6t bit cell

enabling logic-in-memory. IEEE Journal of Solid-State Circuits,2016, 51: 1009–1021.

12 Fan X, Meyer N and Gemmeke T. Compiling all-digital-embedded content addressable memories on chip for edge application.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 2022,41:2560-2572.

	Motivation
	Hierarchical Scalability
	Interval-based Rule Insertion
	Measurement results

