
SCIENCE CHINA
Information Sciences

. Supplementary File .

FUSE: A Federated Learning and U-shape Split
Learning-based Electricity Theft Detection

Framework

Xuan LI1, Naiyu WANG1, Liehuang ZHU2, Shuai YUAN3 & Zhitao GUAN1*

1School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China;
2School af Cyberspace Science and Technology, Beijing Institute of Technology, Beijing 100081, China;

3Department of Finance, Operations, and Information Systems (FOIS), Brock University, St.Catharines L2S 3A1, Canada

Appendix A Preliminary

Appendix A.1 Federated Learning

Federated learning is a method of distributed machine learning where a global model is trained collaboratively across multiple

clients, coordinated by a central server [1]. A vanilla federated learning typically consists of four steps: Initialization, Local

Training, Model Aggregation, and Model Update.

• Initialization: During this phase, participating clients (e.g., user devices) reach a consensus on training a high-performing

model using data distributed across the clients. An initial global model is created on the server, which serves as the beginning of

the federated learning cycle. Each client then downloads the initial global model as their local model for the first round.

• Local Training: Each client trains their local model using their own data following the predefined hyperparameters and

training procedures. Then after a set number of iterations, either the local model parameters or the model updates are sent to the

server by the clients.

• Model Aggregation: Upon receiving all local model parameters or updates, the server aggregates them to generate an

updated global model for the next round of global communication.

• Model Update: All clients download the newly aggregated global model to update their local models. The cycle of Local

Training, Model Aggregation, and Model Update repeats iteratively until the global model achieves convergence or meets the

predefined number of communication rounds.

Based upon the aggregation strategy on the server, federated learning can be categorized into synchronous, asynchronous, and

semi-asynchronous federated learning [2]. In synchronous federated learning, the server waits to aggregate the global model until it

has received all local models from the clients, as discussed above [1]. To improve efficiency, asynchronous federated learning enables

the clients to submit their local models asynchronously, with the server updating the global model upon each receipt [3]. However,

the high communication overhead in the asynchronous aggregation strategy and the extended waiting periods in the synchronous

aggregation strategy have led to the development of semi-asynchronous federated learning [4–6]. This approach stores early-arriving

local models and aggregates them within a specific timeframe. Furthermore, local models collected within this timeframe may come

from different communication rounds and are aggregated with variable weights. Thus it effectively combines the advantages of both

synchronous and asynchronous aggregation strategies.

Appendix A.2 Split Learning

Split learning is designed to minimize the substantial computational overhead while preserving the privacy of the raw data [7–9]. In

this context, two distinct roles are involved: the client, typically with limited computational capability, and the server, introduced

to alleviate the computational burden of the client. Specifically, in a basic split learning configuration, a neural network with a

large number of parameters is partitioned into two sections. The lower layers, closer to input, are assigned to the client, while

the remaining layers are managed by the server. This division occurs at a designated ”cut layer”. The client trains the lower

layers using its data and submits the output from the cut layer to the server. The server then completes the forward propagation

process without needing to access the raw data of the client. Backpropagation begins at the server, with the gradients of the cut

layer transmitted back to the client for subsequent steps. This process repeats until the model achieves the desired performance

level. Through split learning, the bulk of the model training computation is performed by the server with sufficient computational

resources. Meanwhile, the client retains the raw data locally, ensuring its privacy throughout the entire training process.

Appendix B Problem Formulation & Threat Model

Appendix B.1 Problem Formulation

Consider M transformer districts TD = {TDi|i ∈ [1,M]} in different energy service providers (ESP) are involved in the federated

learning process to train a theft detection model jointly. For each TD, there are N smart meters SMj
i , where j is from 1 to N. SMj

i

maintains the daily consumption data xj
i of a given consumer. yj

i represents the consumer label of xj
i , denoting whether or not the

theft behavior exists on SMj
i . Thus, it is assigned and managed by TDi. The local dataset of TDi, therefore, can be represented

*Corresponding author (email: guan@ncepu.edu.cn)

Sci China Inf Sci 2

as Di =
{(

xj
i , y

j
i

)
| i ∈ [1,M], j ∈ [1, N]

}
with the size of |Di|. The theft detection model is then defined as ŷ = f (w, x), where

ŷ denotes the prediction of the model, w denotes the global model parameter, and x denotes the model input, i.e. electricity

consumption data. Accordingly, the loss function of TDi is represented as Li = 1

|Di|
∑

j∈[1,N] ℓ
(
ŷj
i , y

j
i

)
, where ℓ

(
ŷj
i , y

j
i

)
is the

loss function for data point
(
xj
i , y

j
i

)
and ℓ(·) ∈ (0,+∞). As a result, the global loss function is defined as:

F (w) =
M∑
i=1

|Di|
S
Li (B1)

where S =
∑
|Di|.

Therefore, the final objective of the framework is to solve the optimization problem as follows:

w
∗
= argminF (w) . (B2)

where w∗ denotes the optima of the global parameter.

Meanwhile, the straggler issue arises due to variations in computation and communication resources among TDs from different

ESPs. Consequently, TDs send their local models asynchronously, resulting in the global model being updated based on the

aggregation of local models trained in different rounds. Note that wk
i denotes the local model trained by TDi based on the global

model in round k, wr denotes the global model in round r, and A denotes an aggregation algorithm. Thus the update of the global

model in round r can be expressed as wr = wr−1 +A(wk
i |i ∈ [1,M], k ∈ [0, r− 1]). We also define the staleness of wk

i as τ = r−k.

Appendix B.2 Threat Model and Objectives

The threat model considered in this paper addresses both internal and external issues as follows:

Internal Threats: We assume that the assisted cloud server and federated learning aggregator are honest-but-curious, i.e.,

they will perform their tasks honestly but may attempt to infer sensitive information from the raw data through model updates.

External Threats: The adversary may attempt to obtain sensitive data, such as the consumer consumption data or information

regarding electricity theft, either directly or indirectly by eavesdropping on the communication link between the entities in our

framework.

Therefore, our framework is designed with the following objectives in mind:

(1) Lightweight model training on TDs and SMs.

(2) Accommodation of asynchronous model submissions from heterogeneous clients without compromising model performance.

(3) Preservation of training data, including the consumption data as input in SMs and the consumer labels in TDs, at the

location where it is generated to the greatest extent possible.

(4) Prevention of the assisted cloud, aggregator, and eavesdropper from inferring sensitive information throughout the entire

process.

Appendix C The Proposed Framework

Appendix C.1 Entities in FUSE

Four entities participate in the FUSE framework:

• Smart Meter (SM): The SM collects and stores the electricity consumption data, i.e., the input of the model. Due to the

constrained computational capacity and communication bandwidth, only the Feature Extractor is allocated to a given SM and the

forward propagation of Feature Extractor is executed by SM. In each local iteration, the output of Feature Extractor is sent to the

associated TD.

• Transformer District (TD): The TD stores the label on whether or not the theft behavior exists on a given SM in the region.

Thus, the Feature Classifier is allocated to each TD in the training process. Meanwhile, to reduce the computational requirements

of SM, Feature Extractor is also assigned to each TD such that backpropagation and parameter updates can also be performed.

• Cloud Server (CS): The CS is assumed to have sufficient computational capacity and communication bandwidth. Note that

there is a 1:1 mapping of each TD to a CS logically, where the main component of the detection framework, i.e., Feature Learner,

is allocated to perform local model training. As a result, a local theft detection model in federated learning consists of the Feature

Extractor in the TD (or SM), the Feature Classifier in the TD, and the Feature Learner in the TD’s corresponding CS.

• Aggregator: To address additional privacy concerns, the ciphertext of the serialized model parameters is submitted such that

the global model is securely aggregated by the Aggregator. This aggregation process can be performed by the parent company of

ESPs.

Appendix C.2 Table C1: Key Notations

Table C1 Key Notations

Notation Definition

TDi The ith Transformer District

SMj
i The jth Smart Meter in the ith Transformer District

CSi The Cloud Server which completes the local model training for TDi

xj
i The electric consumption data collected by SMj

i

yj
i The consumer label of xj

i which is assigned and managed by TDi

Di The dataset on TDi

w
FE

,w
FL

,w
FC

The parameter of the Feature Extractor, the Feature Learner, and the Feature Classifier

vk

TDi
, vk

CSi
The serialized local model parameter of TDi and CSi in round k

Sci China Inf Sci 3

vk

TD
, vk

CS
The serialized global model parameter in round k

pk
TD

, sk
TD

The public key and the private key of all TDs

pk
CS

, sk
CS

The public key and the private key of all CSs

Buff
TD

The buffer of serialized Feature Extractors and Feature Classifiers

Buff
CS

The buffer of serialized Feature Learners

T The maximum waiting time for a communication round

E The number of local iterations

Appendix C.3 Algorithm C1: FUSE

Algorithm C1 FUSE

Input: TDi ∈ TD, CSi ∈ CS, global communication round R, max waiting time T

Output: [[v
TD

]]pk
TD

, [[v
CS

]]pk
CS

▷ initialize the global model

1: Select TDi from TD = {TD1,TD2, . . . } at random.

2: TDi generates (pk
TD

, sk
TD

) and broadcasts to TDi ∈ TD.

3: TDi initializes w0

FE
, w0

FC
and sends [[v0

TD
]]pk

TD
= encrypt(Serialized(w

FE
, w

FC
), pk

TD
) to the Aggregator.

4: Select CSi from CS = {CS1,CS2, . . . } at random.

5: CSi generates (pk
CS

, sk
CS

) and broadcasts to CSi ∈ CS.

6: CSi initializes w0

FL
and sends [[v0

CS
]]pk

CS
= encrypt(Serialized(w

FL
), pk

CS
) to the Aggregator.

▷ global training process

7: for round r = 1, 2, 3, . . . , R do

8: The Aggregator broadcasts [[vr−1

TD
]]pk

TD
to TDi ∈ TD, [[vr−1

CS
]]pk

CS
to CSi ∈ CS.

▷ local training process

9: for each (TDi,CSi) in parallel do

10: LocalSplitTraining([[vr−1

TD
]]pk

TD
,[[vr−1

CS
]]pk

CS
)

11: end for

▷ initialize the local model buffer

12: BuffTD = ∅, BuffCS = ∅, j = 0

13: while not reaching the max waiting time T do

14: The Aggregator retrieves [[vk

TDi
]]pk

TD
and [[vk′

CSi
]]pk

CS

15: cosj
TD

=
[[vk

TDi
]]pk

TD
·[[vr−1

TD
]]pk

TD∥∥∥∥[[vk
TDi

]]pk
TD

∥∥∥∥∥∥∥∥[[vr−1
TD

]]pk
TD

∥∥∥∥ ▷ calculate the cosine similarity of the model from TD

16: cosj
CS

=
[[vk′

CSi
]]pk

CS
·[[vr−1

CS
]]pk

CS∥∥∥∥[[vk′
CSi

]]pk
CS

∥∥∥∥∥∥∥∥[[vr−1
CS

]]pk
CS

∥∥∥∥ ▷ calculate the cosine similarity of the model from CS

17: BuffTD = BuffTD ∪ ([[vk

TDi
]]pk

TD
, cosj

TD
, i, k, j) ▷ add the model from TD to the buffer

18: BuffCS = BuffCS ∪ ([[vk′

CSi
]]pk

CS
, cosj

CS
, i, k′, j) ▷ add the model from CS to the buffer

19: j = j + 1

20: end while

▷ perform aggregation process to obtain the new global model

21: [[vr

CS
]]pk

CS
= Two-StageAggregation(BuffCS, [[v

r−1

CS
]]pk

CS
, r)

22: [[vr

TD
]]pk

TD
= Two-StageAggregation(BuffTD, [[vr−1

TD
]]pk

TD
, r)

23: end for

24: [[v
TD

]]pk
TD

= [[vr

TD
]]pk

TD
, [[v

CS
]]pk

CS
= [[vr

CS
]]pk

CS

25: return [[v
TD

]]pk
TD

, [[v
CS

]]pk
CS

Appendix C.4 Initialization

At the commencement of the training, an arbitrary TDi ∈ TD is selected to initialize the global parameter of the Feature Extractor

w0

FE
, the global parameter of the Feature Classifier w0

FC
, and the public-private key pair (pk

TD
, sk

TD
) for homomorphic encryption.

Then, (pk
TD

, sk
TD

) is broadcasted to all TDi ∈ TD through secure channels. Meanwhile, an arbitrary CSi ∈ CS is also selected

to initialize the global parameter of the Feature Learner w0

FL
and the public-private key pair (pk

CS
, sk

CS
). Then (pk

CS
, sk

CS
) is

Sci China Inf Sci 4

broadcasted to all CSi ∈ CS through secure channels. To ensure that the model parameters and structure are not disclosed to the

Aggregator, each local update is submitted after the encryption by the public key of TD or CS and serialized. The serialization

operation refers to the transformation from the origin parameter w ∈ RM×N to v ∈ R1×MN , such that the structure of the model

remains unknown. Furthermore, at the beginning of each communication round r, the serialized and encrypted model parameters

[[vr−1

TD
]]pk

TD
and [[vr−1

CS
]]pk

CS
are broadcasted to all TDi and CSi respectively.

Appendix C.5 Three-tier U-shape Split Learning-based Local Training

Each local model is spilt and trained by different entities in our framework following Algorithm C2. In this section, we elaborate

on the three-tier U-shape split learning-based local model training from the perspective of a given TDi and its corresponding CSi

as follows.

Algorithm C2 LocalSplitTraining

Input: [[v
TD

]]pk
TD

,[[v
CS

]]pk
CS

Output: [[v
TDi

]]pk
TD

,[[v
CSi

]]pk
CS

▷ initialize the local model

1: TDi: v
TD

= decrypt([[v
TD

]]pk
TD

, sk
TD

) , w
FE

, w
FC

= Deserialize(v
TD

)

2: CSi: v
CS

= decrypt([[v
CS

]]pk
CS

, sk
CS

), w
FL

= Deserialize(v
CS

)

3: w0

FE
← w

FE
, w0

FL
← w

FL
w0

FC
← w

FC

▷ three-tier U-shape split learning process

4: for e ∈ [1, 2, . . . , E] do

5: TDi broadcasts we−1

FE
to SMj

i ∈ SMi

▷ forward propagation process

6: for SMj
i ∈ SMi in parallel do

7: outpute−1

FEj
← ForwardPropagation(we−1

FE
, xj

i)

8: send outpute−1

FEj
to TDi

9: end for

10: TDi: outpute−1

FE
= Concatenate(outpute−1

FEj
), j ∈ [1, . . . , n], send outpute−1

FE
to CSi.

11: CSi: outpute−1

FL
← ForwardPropagation(we−1

FL
, outpute−1

FE
)

12: CSi: send outpute−1

FL
to TDi

13: TDi: ŷ ← ForwardPropagation(we−1

FC
, outpute−1

FL
), L = ℓ(ŷ, y) ▷ calculate the loss of the data

▷ backpropagation and local model update process

14: TDi: g
FC
← BackPropagation(▽L,we−1

FC
) ▷ calculate the gradient of the FC’s parameters

15: TDi: update Feature Classifier by we

FC
← we−1

FC
− ηg

FC
, send g∗

FC
, the gradient of the first layer of we

FC
, to CSi

16: CSi: g
FL
← BackPropagation(g∗

FC
, we−1

FL
) ▷ calculate the gradient of the FL’s parameters

17: CSi: update Feature Learner by we

FL
← we−1

FL
− ηg

FL
, send g∗

FL
, the gradient of the first layer of we

FL
, to TDi

18: TDi: g
FE
← BackPropagation(g∗

FL
, we−1

FE
) ▷ calculate the gradient of the FE’s parameters

19: TDi: update Feature Extractor by we

FE
← we−1

FE
− ηg

FE

20: end for

21: TDi: send [[v
TDi

]]pk
TD

= encrypt(Serialize(w
FE

, w
FC

), pk
TD

) to the Aggregator

22: CSi: send [[v
CSi

]]pk
CS

= encrypt(Serialize(w
FL

), pk
CS

) to the Aggregator

Once [[v
TD

]]pk
TD

is received, TDi decrypts it by the private key sk
TD

. And v
TD
∈ R1×MN is deserialized to obtain parameters

w
FE

and w
FC

. Similarly, [[v
CS

]]pk
CS

is decrypted by sk
CS

in CSi and w
FL

is obtained through deserialization on the vector.

In a given local iteration, TDi first distributes w
FE

to all SMj
i in its region. Then for each SMj

i , the consumption data is fed

into the Feature Extractor where the forward propagation is carried out. Accordingly, the outputs of all Feature Extractors from

the last layer are collected by TDi and concatenated as the input to the Feature Learner in CSi such that the forward propagation

can be performed. The output of the Feature Learner is then fed into the Feature Classifier in TDi where the predicted label is

derived. In addition, the backpropagation is performed by feeding the gradient of the first layer of the partitioned model into the

prior one. For instance, the gradient of the first layer of the Feature Classifier is sent from TDi to CSi. Hence, the parameters are

updated once the gradients are calculated as follows:

w
e ← w

e−1 − ηg (C1)

where we denotes the updated parameter in local round e, we−1 denotes the parameter in last round, g denotes the gradient of

weights, and η denotes the learning rate. It is worth noting that the backward propagation and the update of Feature Extractor

are performed by TDi, rather than SMj
i , such that the risk of incurring high computational overhead on SMs is mitigated.

After a pre-determined number of local iteration rounds, the serialized split model in each entity is encrypted and sent to the

Aggregator. Since parameters are updated ahead, the model can be submitted by CSi without the necessity of waiting for TDi

such that the asynchronous problem between TDi and its corresponding CSi is addressed.

Sci China Inf Sci 5

Appendix C.6 Two-stage Semi-asynchronous Aggregation

Figure C1 Semi-asynchronous aggregation, k denotes the number of communication round, i denotes index of TD or CS.

The updated model from different TDs and CSs may be received by the Aggregator asynchronously, as demonstrated in Figure

C1. In classical federated learning models, either longer training time occurs in waiting for the stragglers, or the model performance

is reduced because of the removals of such stragglers. On the other hand, while computation time can be reduced by asynchronous

aggregation during the training process, extensively higher communication overhead is incurred on TD since each submission of

a new local model necessitates the update of the global model. Therefore, a two-stage semi-asynchronous aggregation mechanism

is proposed in our work to address these issues. Meanwhile, to guarantee that both the structure of the model and the plaintext

of the parameters are not disclosed to the Aggregator, homomorphic encryption is implemented. Furthermore, considering the

computation involved in the subsequent aggregation process, fully homomorphic encryption is employed. Hence the serialized

and encrypted model parameters [[vr−1]]pk will be aggregated in each communication round. The two-stage semi-asynchronous

aggregation is shown in Algorithm C3.

Algorithm C3 Two-StageAggregation

Input: Buff, [[vr−1]]pk, r

Output: [[vr]]pk

1: Sort Buff in descending order of cosj

2: Buff← Buff[0 : m] ▷ only top-m models are retained in Buff

▷ pre-aggregate the models in the buffer

3: [[vnew]]pk =
∑

i,k,j∈Buff
cosj∑

j∈Buff
cosj

[[vk
i]]pk

4: |D| =
∑

i,j∈Buff
cosj∑

j∈Buff
cosj
|Di|

5: τ =
∑

k,j∈Buff
cosj∑

j∈Buff
cosj

(r − k)

▷ aggregate the local models to obtain the new global model

6: [[vr]]pk ← (1 − θr)[[v
r−1]]pk + θr[[v

new]]pk, where θr = θg(τ, |D|), g(·) is a function of staleness and dataset size, respectively.

g(τ, |D|) = 1

(1+τ+

∑
|Di|

M|D|
)
1
e

7: return [[vr]]pk

Once a local update is received, the model parameters are stored in the corresponding buffer, i.e., the models from TDs are

stored in Buff
TD

while those from CSs are stored in Buff
CS

. Taking the varying communication capabilities of different devices

into account, models in the buffers with lower quality or higher variance from the global optima have a direct impact on the model

performance. The cosine similarity between current local model and previous global model can effectively indicate the discrepancy

in the convergence direction [10]. This similarity measure serves as a valuable tool to identify and filter out malicious models.

Building upon this conclusion, we employ cosine similarity to evaluate the quality of the model, which provides the basis for

obtaining the aggregation weights. Thus, before the aggregation with the global model from prior round, we pre-aggregate the

Sci China Inf Sci 6

models in each buffer in terms of cosine similarity as follows:

cos =
[[vk

i]]pk · [[v
r−1]]pk∥∥[[vk

i]]pk
∥∥ ∥[[vr−1]]pk∥

(C2)

such that the quality can be measured, where k represents the round from which the basic global model derived, r represents the

current round, and the staleness of the model can be derived as τ = r − k. To further improve the efficiency, only top-m models

with the highest cos(the model with the cos < 0 will be dropped directly) will be pre-aggregated, thereby filtering out the models

with low quality. This pre-aggregation is comprised of deriving the weighted average parameters, dataset size and the staleness

regarding, as follows:

[[v
new

]]pk =
∑

i,k,j∈Buff

cosj∑
j∈Buff cosj

[[v
k
i]]pk (C3)

|D| =
∑

i,j∈Buff

cosj∑
j∈Buff cosj

|Di| (C4)

τ =
∑

k,j∈Buff

cosj∑
j∈Buff cosj

(r − k) (C5)

For the update of the global model, we define a hyper-parameter θ ∈ [0, 1]. Therefore the final weight of the updated model θr
is determined by the product of θ and g(·), which is a function of staleness and dataset size, i.e., θr = θg(τ, |D|). g(·) is defined as

follows where a smaller weight will be assigned to the model with larger staleness and smaller dataset size:

g(τ, |D|) =
1

(1 + τ +
∑

|Di|
M|D|)

1
e

(C6)

Hence, the global model is updated as:

[[v
r
]]pk ← (1− θr)[[v

r−1
]]pk + θr[[v

new
]]pk (C7)

Note that all the algorithms including cosine similarity calculations and model aggregations, are performed in ciphertext because

of the fully homomorphic encryption applied. In addition, since the comparisons in ciphertext can be approximated by addition

and multiplication according to [11], the detailed operations on the ciphertext will not be disclosed in our framework.

Appendix D Experimental Evaluation

Appendix D.1 Experimental Setups

Implementation. All the experiments are carried out on Windows 10 operating system equipped with AMD Ryzen 3600 CPU,

16 GB RAM, and NVIDIA GeForce GTX 1660 SUPER. The federated learning algorithm is conducted on top of Pytorch. And the

implementation of the homomorphic encryption for secure aggregation is based upon the library of TenSEAL.

Dataset. To evaluate the performance of FUSE on electricity theft detection tasks, we conduct experiments on a real-world

dataset published by State Grid Cooperation of China (SGCC). The dataset consists of daily electricity consumption data collected

by the SMs deployed in 42,372 electricity consumers’ homes. For each consumer, it contains the data for 1,035 days from 2014 to

2016 where a regular consumer is labeled as 0 while the abnormal one is labeled as 1. There are 38,757 regular consumers and

3,615 abnormal consumers. Accordingly, the entire dataset is partitioned into a training set and a test set with a ratio of 9:1.

Theft Detection Model. In our work, to simulate the scenario wherein large-scale models are trained on those resource-

constrained devices, we choose an attention-based theft detection model with over 50,000,000 parameters [12]. As mentioned

in Appendix C, the theft detection model is split into the Feature Extractor, the Feature Learner, and the Feature Classifier, with

106,785 parameters, 50,808,706 parameters, and 2,050 parameters respectively. The local training process follows Algorithm C2.

Federated Setting. Three TDs and corresponding CSs are considered in our experiments. In addition, the number of SMs differs

over these TDs, thereby resulting in different local models with varying sample sizes. Therefore, the data follows the quantity-based

skew situation of non-IID [13].

Evaluation Metrics. Due to the sample imbalance phenomenon in the dataset, the loss and accuracy (ACC) as the only

evaluation criteria are not sufficient. Thus, Area under the ROC Curve (AUC), recall rate, F1 score, and the Matthews correlation

coefficient (MCC) are also incorporated in our analysis.

Appendix D.2 Hyperparamater Learning

In this subsection, we explore the hyperparameters from local training to global aggregation, such that the optimized hyperparame-

ters can be applied in following experiments on the performance evaluation of FUSE. For the purpose of simulating the asynchronous

communications between TD, CS, and the Aggregator, the maximum staleness of model submission for TD is set to 6, and for CS

is set to 4.

Appendix D.2.1 Impact of Hyperparameter on Local Training
1) Impact of local optimizer: In classical federated learning, Stochastic Gradient Descent (SGD) is the most commonly used

local optimization algorithm [1]. However, RAdam is deployed in [12] instead of SGD in a centralized learning setting. We

thereby first conduct an experiment to explore whether RAdam performs better than SGD in a federated learning setting. We set

batchsize = 100, m = 3 ,and θ = 0.6, where m denotes the maximum number of models in buffers that will be aggregated and θ

denotes the basic aggregation weight of the new models in each round. The results are presented in both Figure D1 and Table D1.

We verify that RAdam with a learning rate η = 0.001 outperforms SGD with a learning rate η = 0.1. Furthermore, RAdam has a

faster convergence rate and better performance in terms of the criteria used in our experiments. Therefore, RAdam is chosen for

subsequent experiments in the federated learning context.

Sci China Inf Sci 7

(a) Loss (b) Accuracy (c) AUC

Figure D1 Model comparisons with different local optimizers

(a) Loss (b) Accuracy (c) AUC

Figure D2 Model comparisons with different batch sizes

(a) Loss (b) Accuracy (c) AUC

Figure D3 Model comparisons by varying m

(a) Loss (b) Accuracy (c) AUC

Figure D4 Model comparisons by varying θ

Sci China Inf Sci 8

Table D1 Comparisons on the Performance between Models with Different Settings

Item Setting ACC Recall F1 AUC MCC

Optimizer SGD 0.930 0.255 0.379 0.881 0.408

RAdam 0.951 0.582 0.670 0.929 0.653

50 0.949 0.557 0.645 0.930 0.627

Batchsize 100 0.951 0.582 0.670 0.929 0.653

200 0.950 0.548 0.653 0.930 0.642

1 0.946 0.521 0.617 0.921 0.600

n 3 0.951 0.582 0.670 0.929 0.653

5 0.949 0.562 0.651 0.931 0.633

0.5 0.949 0.548 0.657 0.932 0.646

θ 0.6 0.951 0.582 0.670 0.929 0.653

0.8 0.948 0.557 0.640 0.932 0.620

2) Impact of batch size: Batch size is another significant factor affecting the performance of the model. Thus, an appropriate

batch size should be determined. We set m = 3 and θ = 0.6, and batch size is set three levels: 50, 100, and 200 respectively. The

result are shown in Figure D2 and Table D1. As Figure D2 illustrates, the batch size has a negligible impact on the convergence rate,

since the number of rounds to reach the convergence remains almost unchanged under each setting. However, best performance

regarding the recall rate, F1 score, and MCC can be observed at the model trained with batchsize = 100. Therefore we set

batchsize = 100 for the rest of the experiments.

Appendix D.2.2 Impact of Hyperparameters during Model Aggregation
1) Impact of m in top-m: Since m determines the number of the models in the buffers to be aggregated in a new round, we set

θ = 0.6 and set m = 1, 3, and 5 respectively in this experiment. Figure D3 and Table D1 compare the performance across the

models where the worst convergence occurs when m = 1. Though a slightly faster convergence can be achieved when m = 5, it

does not work better than m = 3 in terms of accuracy, recall rate, F1 score, and MCC. This is because the update of the global

model is negligible during each aggregation when n is relatively small. On the other hand, the accumulated variance from the global

optimum becomes larger as m increases, thereby leading to negative impact on the performance. Consequently, we set m = 3 for

the following experiments.

2) Impact of θ: θ has a direct impact on the basic weight of local models for aggregation in each communication round. To

explore such influence, we compare the model convergence and the other metrics over θ = 0.5, 0.6, 0.8, respectively. The results are

presented in Figure D4 and Table D1. As illustrated, the models with different θ are on par in convergence. Meanwhile, θ = 0.6

performs better on accuracy, recall rate, F1 score, and MCC. Hence we set θ to 0.6 in the later experiments.

Appendix D.3 Result and Performance Analysis

In this section, we carry out experimental studies to compare how FUSE performs vis-à-vis a set of benchmark works. All the

hyperparameters are obtained from the discussions in Apprendix D.2.

Appendix D.3.1 Comparisons on Performance
We first compare our framework with a synchronous aggregation algorithm FedAvg [1], an asynchronous aggregation algorithm

FedAsync [3], and a semi-asynchronous aggregation algorithm FedSA [14]. The local training process for all models follows Algorithm

C2 and the maximum staleness of model submission is set to 6 for TD, 4 for CS. Furthermore, we assume FedAvg removes the

model when a straggler issue occurs [15]. As in FedAsync, we consider two strategies to address the asynchronous problem between

TD and its corresponding CS during aggregation for the purpose of exploring the effects of aggregating different components of

the full model asynchronously: FedAsync (wait) is to wait until all components of the model have arrived, whereas FedAsync is to

perform aggregation asynchronously based upon the arrivals of components. In addition, FedSA filters the models according to a

predefined threshold on staleness such that the models are aggregated based on the number of samples.

Figure D5 and Table D2 compare the model performance between our framework and the benchmarks. As expected, a faster

convergence is achieved by FedAsync than FedAsync(wait). We also find that better performance and faster convergence are

fulfilled through FUSE in comparison with FedAvg and FedAsync. This is because FedAvg removes models with high level of

latency, thereby resulting in loss of features from the stragglers. Whereas only one model is aggregated in each communication

round in FedAsync, leading to a lower rate of convergence. Meanwhile, better performance in terms of accuracy, recall rate, F1

score, and MCC is obtained by FUSE in contrast to FedSA, since the models with latencies are pre-aggregated in FUSE based

upon cosine similarity, instead of imposing strong assumptions on threshold. On the other hand, not only the number of samples

but the degree of model latency is taken into account in our framework, thus incentivizing a significantly better performance.

Appendix D.3.2 Overhead Analysis
Homomorphic Overhead: In this section, we evaluate the additional overhead introduced by the homomorphic encryption for

secure aggregation in our framework. More specifically, Cheon-Kim-Kim-Song (CKKS) scheme is used in our experiments to encrypt

the parameters [16]. The overhead brought on by the homomorphic encryption includes parameter encryption and decryption on

TDs and CSs, and ciphertext computing of aggregation on the Aggregator.

Both encryption and decryption overheads are presented in Table D3, where the full model denotes the solution without U-shape

split learning for local training. We find that our framework is more cost-effective, while the overhead on CS is significantly greater

Sci China Inf Sci 9

(a) Loss (b) Accuracy (c) AUC

Figure D5 Comparison on model performance

Table D2 Comparison on Model Performance between FUSE and the Benchmarks

Methods Accuracy Recall F1 AUC MCC

FedAvg 0.938 0.332 0.476 0.911 0.505

FedAsync(wait) 0.935 0.288 0.432 0.888 0.476

FedAsync 0.937 0.357 0.490 0.912 0.500

FedSA 0.950 0.524 0.636 0.931 0.627

FUSE 0.951 0.582 0.670 0.929 0.653

Table D3 Computation Time for Encryption & Decryption

Encryption Decryption

v
TD

129.12ms 31.03ms

v
CS

60740.20ms 13759.50ms

Full model 64819.94ms 14637.31ms

than TD. This is not surprising because the majority of the overhead is transferred from TD to CS such that large scale of models

are processed on CS with higher capacities. To further explore the overhead of ciphertext aggregation in depth, we decouple the

operations into atomic ones based on addition and multiplication before the testing. The results are shown in Table D4, where a

denotes a scalar, v
TD

and v
CS

denote the serialized model parameters of TD and CS, respectively. Considering the enhancement

on privacy-preserving and the scenario wherein such operations are performed by the Aggregator with sufficient capacities instead

of TD, it would be worthwhile to compromise on the overhead.

Table D4 Computation Time for Operations in Ciphertext

Operation Time Cost Operation Time Cost

[[a]] · [[a]] 3.00ms [[v
TD

]] · [[v
TD

]] 2313.10ms

[[v
CS
]] · [[v

CS
]] 1060607.01ms a · [[v

TD
]] 22.02ms

a · [[v
CS
]] 9393.54ms [[a]] + [[a]] ≈ 0.00ms

[[v
TD

]] + [[v
TD

]] 4.00ms [[v
CS
]] + [[v

CS
]] 933.85ms

[[a]] · [[v
TD

]] 588.54ms [[a]] · [[v
CS
]] 263427.03ms

Communication and Computing Overhead: We evaluate the communication and computational overhead from the per-

spective of the entities in FUSE. Since both of them are positively related to the number of model parameters, such overhead

can be closely approximated by the model size. Assuming the number of local iterations is E we present the results in Table

D5. To demonstrate that FUSE enables reducing the computational overheads on resource-constrained devices, we compare our

framework with a vanilla federated learning-based framework, i.e., the whole local training process executed by SM or TD. Given

a traditional approach without U-shape split learning, the computational overhead can be represented as E · [FP(|w|) + BP(|w|)],
where |w| =

∣∣w
FE

∣∣ + ∣∣w
FL

∣∣ + ∣∣w
FC

∣∣. Since |w
FL
| ≫ |w

FE
| + |w

FC
|, the computational overheads of TD or SM are significantly

lower than E · [FP(|w|) + BP(|w|)]. As a result, the analysis highlights that the computational overheads on SM and TD are

migrated to assisted cloud servers, in contrast to the solution without U-shape split learning for local training. However, this

trade-off of reducing computational overhead on resource-constrained devices comes at the cost of increased overall communica-

tion overhead. The communication overhead of TD can be represented as |w| =
∣∣w

FE

∣∣ + ∣∣w
FL

∣∣ + ∣∣w
FC

∣∣ while the whole local

training process is executed completely by TD. In our scheme, the communication overhead of TD can be further represented as

(E · |SM|+ 1) · |w
FE
|+E · (|output

FE
| · |SM|+ |output

FL
|) + |w

FC
| according to Table D5, since |g∗

FC
| = |output

FL
|, where |g∗

FL
|

Sci China Inf Sci 10

denotes the gradient of the first layer of the Feature Learner. Therefore, the communication overhead of TD is reduced if and only

if |w
FL
| > E · |SM| · |w

FE
| + E · (|output

FE
| · |SM| + |output

FL
|). This inequality holds true in most cases, as the parameters

of the Feature Learner constitute the majority of the overall model parameters. Therefore, our approach can significantly reduce

communication overhead for TD in most scenarios.

Table D5 Communication & Computing Overhead In One Communication Round

Computing Communication

SM E · FP(|w
FE
|) E · |output

FE
|︸ ︷︷ ︸

to TD

TD
E · [FP(|w

FC
|) + BP(|w

FC
|) +

BP(|w
FE
|)] E · |wFE | · |SM|︸ ︷︷ ︸

to SM

+E · |output
FE
| · |SM|+ E · |g∗

FC
|︸ ︷︷ ︸

to CS

+ |wFE |+ |wFC |︸ ︷︷ ︸
to Aggregator

CS E · [FP(|w
FL
|) + BP(|w

FL
|)] E · |output

FL
|+ E · |g∗

FL
|︸ ︷︷ ︸

to TD

+ |w
FL
|︸ ︷︷ ︸

to Aggregator

* FP(·) and BP(·) denotes the function of computing overhead of forward propagation and back-propagation respectively.

Appendix E Related Work

Appendix E.1 Distributed Theft Detection Method

Typically, the increasing demands on privacy-preserving may not be fulfilled by the centralized methods satisfactorily, and even

though studies are conducted on enhancing the security through cryptography techniques, they are not suitable for the scenario

of Advanced Metering Infrastructure(AMI) wherein computational resources are limited due to the extensive overhead required for

decryption and encryption. Thus, federated learning and split learning have emerged as major offerings for theft detection models by

providing commitment on protecting sensitive data. FedDetect is the first federated learning-based schema [17] where data privacy

is guaranteed by homomorphic encryption and local differential privacy. However, the work has not considered the substantial

computational overhead for the clients and asynchronous model updates. Ashraf et al. [18] subsequently introduce FedDP, which

presents a novel federated voting classifier specifically for theft detection. In contrast, a decentralized federated learning-based theft

detector is proposed in [19]. This approach designs a secure and communication-efficient functional encryption-based aggregation

scheme, eliminating the need for a centralized key distribution center to generate security parameters. However, all these schemes

involve collecting the electricity consumption data from SMs to detection stations, which exposes them to the risk of raw data

leakage. Alromih et al. [20] employ split learning in the smart grid to ensure better privacy protection. However, they model the

detection as an unsupervised task, which is not appropriate for the scenarios where labeled data is available.

Appendix E.2 Federated Learning

Federated learning is proposed by Google which allows the data owners to train a global model collaboratively without exposing

the raw data [1]. Due to the ability to preserve the privacy of raw data, federated learning is increasingly applied in various fields,

including industry [21,22], healthcare [23], and traffic [24]. Particularly, FedAvg [1] is the first algorithm for model aggregation and

its performance and effectiveness has been verified in many studies. However, the straggler issue due to heterogeneity of bandwidths

among devices is a bigger challenge in realistic environment. Li et al. [15] propose a synchronous aggregation algorithm where such

issue is addressed by adjusting the local epoch of the straggler, while the performance has not been improved. On the other hand,

a faster convergence can be achieved in asynchronous federated learning schema since the aggregation occurs when the update is

received by the aggregator. Xie et al. [3] design FedAsync to improve both the flexibility and scalability of federated learning on

massive devices with varying resources. Besides, asynchronous aggregation algorithms such as ASO-Fed and PAFLM are proposed

to accommodate the model submissions at different rates [25, 26]. However, the extensive communication overhead brought on by

the asynchronous aggregation strategy is placing additional hurdles on resource-constrained devices.

Balancing the trade-offs between the model performance, convergence rate, and communication overhead, semi-asynchronous

aggregation mechanisms are developed by combining the advantages of both synchronous and asynchronous aggregations. A first-

come-first-merge client selection mechanism is incorporated in SAFA to improve the efficiency of the training process and the quality

of the global model [5]. FedSA is another semi-asynchronous framework proposed by Ma et al., where the number of local models

for aggregation is optimized in order to minimize the training time [14]. To our knowledge, metrics that are critical to assuring

model quality other than latency have not been considered in this study.

References

1 McMahan B, Moore E, Ramage D, et al. Communication-efficient learning of deep networks from decentralized data. In:

Artificial intelligence and statistics, 2017. 1273-1282.

2 Xu C H, Qu Y Y, Xiang Y, et al. Asynchronous federated learning on heterogeneous devices: A survey. Computer Science

Review, 2023, 50: 100595.

3 Xie C, Koyejo S, Gupta I. Asynchronous federated optimization. arXiv preprint, 2019, arXiv:1903.03934.

4 Zhang Y, Duan M, Liu D, et al. Csafl: A clustered semi-asynchronous federated learning framework. In: 2021 International

Joint Conference on Neural Networks (IJCNN), 2021. 1-10.

5 Wu W T, He L A, Lin W W, et al. Safa: A semi-asynchronous protocol for fast federated learning with low overhead. IEEE

Transactions on Computers, 2020, 70(5):655-668.

6 Hao J S, Zhao Y C, Zhang J L. Time efficient federated learning with semi-asynchronous communication. In: 2020 IEEE 26th

International Conference on Parallel and Distributed Systems (ICPADS), 2020. 156-163.

Sci China Inf Sci 11

7 Vepakomma P, Gupta O, Swedish T et al. Split learning for health: Distributed deep learning without sharing raw patient

data. arXiv preprint arXiv:1812.00564, 2018.

8 Thapa C, Arachchige P C M, Camtepe S, et al. Splitfed: When federated learning meets split learning. In: Proceedings of

the AAAI Conference on Artificial Intelligence, 2022. volume 36, pages 8485-8493.

9 Alromih A, Clark J A, Gope P. Privacy-aware split learning based energy theft detection for smart grids. In: Information and

Communications Security: 24th International Conference, ICICS 2022, Canterbury, UK, 2022. 281-300.

10 Wang T, Liu Y, Zheng X, et al. Edge-based communication optimization for distributed federated learning. IEEE Transactions

on Network Science and Engineering, 2021, 9(4):2015-2024.

11 Cheon J H, Kim D, Kim D, et al. Numerical method for comparison on homomorphically encrypted numbers. In: Advances in

Cryptology-ASIACRYPT 2019: 25th International Conference on the Theory and Application of Cryptology and Information

Security, Kobe, Japan, 2019. Part II, pages 415-445.

12 Finardi P, Campiotti I, Plensack G, et al. Electricity theft detection with self-attention. arXiv preprint, 2020,

arXiv:2002.06219.

13 Li Q B, Diao Y Q, Chen Q, et al. Federated learning on non-iid data silos: An experimental study. In: 2022 IEEE 38th

International Conference on Data Engineering (ICDE), 2022. 965-978.

14 Ma Q P, Xu Y, Xu H L, et al. Fedsa: A semi-asynchronous federated learning mechanism in heterogeneous edge computing.

IEEE Journal on Selected Areas in Communications, 2021, 39(12):3654-3672.

15 Li T, Sahu A K, Zaheer M, et al. Federated optimization in heterogeneous networks. Proceedings of Machine learning and

systems, 2020, 2:429-450.

16 Cheon J H, Kim A, Kim M, et al. Homomorphic encryption for arithmetic of approximate numbers. In: Advances in

Cryptology-ASIACRYPT 2017: 23rd International Conference on the Theory and Applications of Cryptology and Information

Security, Hong Kong, China, 2017. Part I 23, pages 409-437.

17 Wen M, Xie R, Lu K J, et al. Feddetect: a novel privacy-preserving federated learning framework for energy theft detection

in smart grid. IEEE Internet of Things Journal, 2021, 9(8):6069-6080.

18 Ashraf M M, Waqas M, Abbas G, et al. Feddp: A privacy-protecting theft detection scheme in smart grids using federated

learning. Energies, 2022, 15(17):6241.

19 Ibrahem M I, Mahmoud M, Fouda M M, et al. Privacy preserving and efficient decentralized federated learning-based energy

theft detector. In: GLOBECOM 2022-2022 IEEE Global Communications Conference, 2022. 287-292.

20 Alromih A, Clark J A, Gope P. Privacy-aware split learning based energy theft detection for smart grids. In: Information and

Communications Security: 24th International Conference, ICICS 2022, Canterbury, UK, 2022. 281-300.

21 Chen J B, Xue J F, Wang Y, et al. Privacy-Preserving and Traceable Federated Learning for data sharing in industrial IoT

applications. Expert Systems with Applications, 2023, 213: 119036.

22 Wang N Y, Li X, Guan Z T, et al. FedStream: A Federated Learning Framework on Heterogeneous Streaming Data for

Next-Generation Traffic Analysis. IEEE Transactions on Network Science and Engineering, 2023.

23 Bashir A K, Victor N, Bhattacharya S, et al. Federated learning for the healthcare metaverse: Concepts, applications,

challenges, and future directions. IEEE Internet of Things Journal, 2023.

24 Liu L, Tian Y X, Chakraborty C, et al. Multilevel Federated Learning based Intelligent Traffic Flow Forecasting for Trans-

portation Network Management. IEEE Transactions on Network and Service Management, 2023.

25 Chen Y J, Ning Y, Slawski M, et al. Asynchronous online federated learning for edge devices with non-iid data. In: 2020

IEEE International Conference on Big Data (Big Data), 2020. 15-24.

26 Lu X F, Liao Y Y, Lio P, et al. Privacy-preserving asynchronous federated learning mechanism for edge network computing.

IEEE Access, 2020, 8:48970-48981.

	(2)scis_supplementary.pdf
	Preliminary
	Federated Learning
	Split Learning

	Problem Formulation & Threat Model
	Problem Formulation
	Threat Model and Objectives

	The Proposed Framework
	Entities in FUSE
	Table C1: Key Notations
	Algorithm C1: FUSE
	Initialization
	Three-tier U-shape Split Learning-based Local Training
	Two-stage Semi-asynchronous Aggregation

	Experimental Evaluation
	Experimental Setups
	Hyperparamater Learning
	Impact of Hyperparameter on Local Training
	Impact of Hyperparameters during Model Aggregation

	Result and Performance Analysis
	Comparisons on Performance
	Overhead Analysis

	Related Work
	Distributed Theft Detection Method
	Federated Learning

