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To support the ever-emerging capacity requirement of data-

center interconnection (DCI) applications, transmitter dis-

persion eye closure quaternary (TDECQ) has been proposed

by IEEE802.3 standard [1], which is specifically employed

for the four-level pulse amplitude modulation (PAM-4) sig-

nals. However, the traditional scheme of TDECQ assess-

ment needs several iterative operations, leading to an en-

hanced computation complexity. Therefore, the intelligent

TDECQ assessment with both high accuracy and low im-

plementation complexity has attracted worldwide research

interests. Meanwhile, deep learning (DL) is widely investi-

gated in optical communication systems [2], which can re-

duce the operation complexity and maintenance cost. For

example, a two-dimensional convolutional neural network

(2D-CNN) based on the rectified linear unit (ReLU) as the

nonlinear activation function (NAF), together with three

feature extraction layers and one regression layer, has been

proposed for accelerating the TDECQ assessment, when the

eye-diagram of 25 Gbaud PAM-4 signals is used as the 2D-

CNN input. The mean absolute error (MAE) of 0.13 dB is

experimentally reported, when the TEDCQ range is from 1.9

to 5 dB [3]. However, the computation complexity of deep

neural networks (DNNs) hinders their applications. There-

fore, it is ideally desired to simplify the involvement of NAF

and reduce the number of neural units.

In the current submission, a linear shallow neural network

(L-SNN) is proposed to accelerate the TDECQ assessment.

Since the L-SNN only consists of input and output neural

units, we can realize a minimalist neural network (NN) with-

out the use of hidden layer and NAF, for the ease of precise

and fast TDECQ assessment. Our experimental results of 25

and 50 Gbaud PAM-4 optical signals indicate that the MAE

is below the standard threshold of 0.25 dB over a TDECQ

range of 1.5–4.0 dB.

Operation principle of L-SNN. Since amplitude his-

tograms (AHs) are utilized as the NN input in this study,

the TDECQ value of each AH is calculated by the tra-

ditional TDECQ assessment scheme recommended by the

IEEE standard to obtain the correct label. Meanwhile, a

traditional DNN is equipped with the input layer, hidden

layer, and output layer. Especially, the NAF is indispens-

able. Generally, DNN can be described as

H
1 = NAF(W 1

×X + b
1), (1)

Y = W
2
×H

1 + b
2, (2)

where X is the input matrix with a size of 1 × D. W i is

an ni−1
× ni weight matrix, which provides a linear con-

nection from the (i− 1)th layer to the ith layer. ni denotes

the neuron numbers of the ith layer. b
i is the bias for each

layer. H1 represents the output value of the first hidden

layer, and Y is the prediction result. NAF(·) indicates the

used NAF.

Generally, the NAF is used to identify complex nonlin-

ear relationships between the input data and output task.

However, as for the application of optical communication,

it is worth thinking about the necessity of the NAF. The

commonly-used NAFs can be divided into two categories,

including saturated activation functions and unsaturated ac-

tivation functions. Those unsaturated activation functions

include ReLU and Swish, which can be analytically divided

into linear factors and nonlinear factors. When the input

data is positive, the NAF is approximately a linear func-

tion. Since the obtained dataset from optical communica-

tion applications has no negative value, it is reasonable to

replace the unsaturated activation functions with the linear

activation function (LAF). Meanwhile, both Tanh and Sig-

moid are widely used as the saturated activation function.

When the NAF is satisfied with Taylor theorem [4], Sigmoid

is used to decompose as an example. We can identify that,

the saturated activation function can also be divided into
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Figure 1 (Color online) Experimental setup of TDECQ assessment. (a) Structure of L-SNN; (b) compared results.

the linear factor and the nonlinear factor shown as

Sigmoid(x) =
1

1 + e−x
=

1

2
+

1

4
x

︸ ︷︷ ︸

linear factor

+ · · ·+ Rn
︸ ︷︷ ︸

nonlinear factor

, (3)

where Rn = o[xn] is the higher-order term. The saturated

activation function approaches a constant under the satu-

rated state, and it can be approximated by a linear function

under the un-saturated state. Therefore, the potential ap-

plication of LAF in the field of optical communication is

promising.

When all NAFs are removed, a linear neural network

(LNN) is developed with the linear connection. Then, the

DNN can be reconfigured as

Y = W
2(W 1

×X + b
1) + b

2

= W
2
×W

1

︸ ︷︷ ︸

weights

×X +W
2
× b

1 + b
2

︸ ︷︷ ︸

bias

= W
︸︷︷︸

weights

×X + b
︸︷︷︸

bias

.

(4)

Next, L-SNN is further developed, without the use of hid-

den layers and NAFs, as shown in Figure 1(a). Since the

used AH as input is optimized with 210 bins, the input neu-

ral unit of L-SNN is 210, while the output neural unit of

L-SNN is 1.

Experimental setup and results. The experimental setup

of TDECQ assessment is schematically shown in Figure 1.

At the transmitter (Tx), electrical 25/50 Gbaud PAM-4

signals based on short stress pattern random quaternary

(SSPRQ) pattern are generated by arbitrary waveform gen-

erator (AWG, Keysight M8194A) having a sampling rate of

120 GSa/s. A root-raised cosine (RRC) filter with a roll-off

factor of 0.1 is used, before the corresponding digital signals

are loaded into AWG. After being amplified by an electrical

amplifier with a gain of 18 dB and a 3 dB bandwidth of

67 GHz, the electrical signals are used to drive the Mach-

Zehnder modulator (MZM) (FUJITSU FTM7938EZ) with

a 3 dB bandwidth of 40 GHz, leading to the successful gen-

eration of 25 and 50 Gbaud PAM-4 optical signals. At the

receiver (Rx), a photodetector (PD) (Finisar XPDV3120R-

VF-FP) with 3 dB bandwidth of 70 GHz is used to realize

the optical-to-electrical conversion. The output electrical

signals are digitalized by the real-time oscilloscope (RTO,

LECROY LabMaster 10-59Zi-A) with a sampling rate of

160 GSa/s. Then the received PAM-4 signals are used to

generate each AH with 30000 sampling points as the L-SNN

input. All AHs labeled with variable TDECQ values are col-

lected by varying the MZM bias. Next, 67% of those AHs

are used for training, while 37% of those AHs are used for

testing. Initially, we carried out a performance comparison

among 2D-CNN, DNN, LNN, and the proposed L-SNN. Fig-

ure 1(b) shows the experimental TDECQ assessment results

of 25 and 50 Gbaud PAM-4 optical signals, respectively. Al-

though the MAE values of 2D-CNN and DNN-enabled as-

sessment schemes are better than those of L-SNN-enabled

schemes, the implementation of 2D-CNN and DNN requires

a lot of hardware resources. The MAE values of L-SNN en-

abled assessment for 25 and 50 Gbaud PAM-4 optical signals

are 0.13 and 0.15 dB, respectively, over a TDECQ range of

1.5–4.0 dB. In particular, the L-SNN-enabled scheme can

reach the accuracy threshold recommended by IEEE stan-

dard [5]. Although the MAE performance is almost the same

for both LNN and L-SNN, the used number of multiplica-

tions is only 210 for the L-SNN, which is almost two orders

of magnitude smaller than that of LNN.

Conclusion. We have demonstrated a data-driven

TDECQ assessment scheme based on L-SNN. In comparison

with existing DL-based schemes, the proposed L-SNN can

achieve the lowest computation complexity with only 210

multiplications. The MAE of the L-SNN scheme for 25 and

50 Gbaud PAM-4 optical signals is experimentally verified

to be 0.13 and 0.15 dB, respectively, over the TDECQ range

of 1.5–4.0 dB, which has reached the accuracy threshold of

0.25 dB recommended by the IEEE standard.
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