
SCIENCE CHINA
Information Sciences

. Supplementary File .

A smart hybrid memory scheduling approach using
neural models

Yanjie ZHEN1, Huijun ZHANG2, Yongheng DENG1, Weining CHEN1,

Wei GAO1, Ju REN1 & Yu CHEN1*

1Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China;
2China Huaneng Clean Energy Research Institute, Beijing 000000, China

Appendix A Benchmarks

Table A1 Benchmarks statistics.

Benchmark Suite Domain #Unique Pages(4KB)

backprop Rodinia Pattern Recognition 42,252

kmeans Rodinia Data Mining 34,500

hotspot3D Rodinia Physics Simulation 10,733

heartwall Rodinia Medical Imaging 9,999

cfd Rodinia Fluid Dynamic 8,195

bwaves SPECCPU2017 Explosion modeling 222,885

wrf SPECCPU2017 Weather forecasting 49,957

namd SPECCPU2017 Molecular dynamics 41,157

pennant CORAL-2 hydrodynamics 67,954

quicksilver CORAL-2 Monte Carlo 21,543

redis Real World Application in Linux NoSQL Databases 104,823

high performance linpack(hpl) Real World Application in Linux High-Performance Computing 214,572

Appendix B Limitations of existing page scheduling in hybrid memory systems

Developing effective page scheduling mechanisms is not trivial. Previous research on hybrid memory scheduling can be broadly

classified into two categories: non-intelligent scheduling [1–4] and intelligent scheduling [5,6]. This section provides an overview of

these two categories and experimentally demonstrates their limitations.

Appendix B.1 Non-intelligent scheduling

Temporal locality, the tendency of a processor to access the same set of memory locations repeatedly over a short period of time,

is a crucial feature of memory access [8]. Many memory management techniques have been designed based on it [9, 10], including

most advanced non-intelligent schedulers in hybrid memory systems [1–4]. These schedulers predict the hotness of pages based

on the address accesses in the recent past, which are referred to as history schedulers. Nevertheless, history schedulers have

limited prediction capabilities due to the short length of the address sequence they look back on, which makes them less robust for

applications with sharply changing access patterns or frequent random accesses.

To investigate the limitations of history schedulers, we use ten benchmarks from Rodinia [11], SPECCPU2017 [12], CORAL-2 [13]

and two real-world applications, which cover diverse domains and are summarized in Table A1. Following several state-of-the-art

schedulers, we implement a history scheduler that assumes pages hot in the current epoch will also be hot in the next epoch.

Then, we simulate a hybrid memory system consisting of fast and slow memory with a capacity ratio of 1:8 and deploy the history

scheduler to the simulated system. Besides, we also implement an oracle scheduler [3] that assumes all future page accesses are

already known, which serves as the performance upper bound for comparison. We use the hit rate of fast memory as the performance

evaluation metric of schedulers, and the evaluation results are shown in Figure B1. We can observe that the fast memory hit rate of

the history scheduler is 37.9% on average, which lags behind 88.9% of the oracle scheduler. Therefore, new page scheduling policies

are in dire need of bridging the significant performance gap.

*Corresponding author (email: yuchen@tsinghua.edu.cn)



Zhen Y J, et al. Sci China Inf Sci 2

Fa
st

 m
em

or
y 

hi
t r

at
e（

%
）

0

50

100

backprop kmeanshotspot3Dheartwall cfd bwaves wrf namd penantquicksilver redis hpl average

History Oracle

Figure B1 The performance gap between the history scheduler and the oracle scheduler. The oracle scheduler is the optimal

scheduler that assumes all future page accesses are already known. Section Appendix D.1 details the experimental methodology.

Appendix B.2 Intelligent scheduling

An application’s memory access behavior is determined by how its code executes, resulting in predictable access patterns. However,

the memory access patterns can be quite complex and vary depending on the application’s specific function. Solely relying on

temporal locality is insufficient to capture this complexity accurately. Effective scheduling should possess the capability to identify

complex memory access patterns and make well-informed predictions based on these patterns. Inspired by the ability of deep learning

to learn complex patterns and its competitive performance in computer architecture, especially in hardware prefetching [14–17],

some works have investigated the potential of using neural models in hybrid memory scheduling.

To the best of our knowledge, Kleio [5] and Coeus [6] are the only two hybrid memory page schedulers employing neural models.

These works have demonstrated that neural models can significantly improve the accuracy of page hotness prediction. However,

their exorbitant costs impede their wide use in practice since both of them utilize individual prediction, i.e., deploying a Recurrent

Neural Network (RNN) for each page. Such a design comes with a prohibitive cost, which increases proportionally with the number

of pages. Each application has a large number of unique pages, with the max exceeding 220,000, as shown in Table A1. Concurrently

training and inferring such a large number of RNN models can be costly in terms of both time and memory, rendering it impractical

use. Kleio and Coeus propose to limit the number of neural models to reduce prediction cost. They divide pages into two categories:

important pages are predicted by RNN models, while the remaining pages are predicted by traditional history scheduling. However,

we have experimentally demonstrated that employing such a design cannot reduce the cost of these schedulers to a practical level.

Fa
st

 m
em

or
y 

hi
t r

at
e 

(%
)

0

20

40

60

80

100

Percentage of RNNs to the total number of pages
0 20 40 60 80 100

N
or

m
al

iz
ed

 fa
st

 m
em

or
y 

hi
t r

at
e 

(%
)

0

20

40

60

80

100

Percentage of RNNs to the total number of pages
0 20 40 60 80 100

backprop
kmeans

hotspot3D
heartwall

cfd
bwaves

wrf
namd

penant
quicksilver

redis
hpl

(a) (b)

Figure B2 The fast memory hit rate when tuning the percentage of RNNs to the total number of pages.

To evaluate the impact of the number of RNNs (corresponding to the number of pages predicted using neural models) on system

performance, following the settings in Kleio, we select a subset of pages and deploy an RNN for each, while the remaining pages

are still managed by a history scheduler. Figure B2(a) illustrates the hit rate of the fast memory when tuning the percentage of

RNNs to the total number of pages. We can observe that when the percentage of RNNs is set to 0, all pages are managed by the

history scheduler, and when set to 1, all pages are managed by RNNs. We employ the oracle scheduler to predict the selected

pages rather than using RNNs to avoid the high cost of numerous RNNs. This simplification does not affect the conclusion, as the

oracle scheduler is the upper limit of RNNs. Figure B2(b) normalizes the hit rate improvement. We observe that when the hit rate

improvement achieved by RNNs is half of the maximum possible improvement, the number of pages managed by RNNs ranges from

7.7% to 60.8% of the total pages, averaging 36.4%. Referring to Table A1, for each benchmark, RNNs are required to manage an

average of approximately 18,000 pages, with a maximum of 135,500 pages. Given that each page needs to build an RNN model,

the total number of required models is significantly high, making the neural-model-based scheduler impractical.

The above experimental results reveal that the cost of existing neural-model-based hybrid memory scheduling schemes is too

expensive to be practical. Consequently, reducing the cost of the neural-model-based scheduling scheme is essential to promote its

wide use in practice.



Zhen Y J, et al. Sci China Inf Sci 3

Appendix C Cost-driven approach: from individual to collective
This section explores converting the hybrid memory scheduling problem into a neural network prediction task. A critical aspect of

employing neural networks is the selection of features that accurately represent the problem and serve as inputs. We discuss the

choice of input features with a focus on cost considerations.

Figure C1 Input features of individual-page prediction and collective-page prediction.

Appendix C.1 Individual-page prediction

Existing neural-model-based schedulers employ a separate neural model for each page, which is referred to as individual-page

prediction. Figure C1 illustrates the input of individual-page prediction. Despite the high prediction accuracy of each model, the

significant cost of deploying a large number of models makes these schedulers impractical for real-world systems. We experimentally

measure the cost of individual-page prediction models with a comprehensive experimental setup detailed in Section Appendix D.

The cost can be categorized into two areas:

1. Time and memory for training. During training, memory usage for each model can be up to tens of gigabytes(GB). However,

these models cannot be trained in parallel even when using advanced GPUs, such as the NVIDIA A100 Tensor Core GPU [18].

Specifically, it takes approximately ten minutes to train each model. As discussed in Section Appendix B, prior works relying on

individual-page prediction require thousands or even hundreds of thousands of models. Training such a large number of models

serially consumes significant hardware resources and time.

2. Time and memory for inference. The duration of a scheduling epoch in most current hybrid memory schedulers typically

spans from 1 to 10 seconds [3, 19–21], which provides a baseline for our cost analysis. The neural model’s inference time must be

shorter than a single epoch while ensuring ample time for page migration. Our experiments show that the resource utilization for

one model in individual-page prediction during inference occurs almost instantaneously and takes approximately 80 milliseconds on

average. However, it is worth noting that each model requires a separate process or thread for inference. As the number of models

increases, this can consume substantial scheduling and thread resources, resulting in an extended time required for completing the

inference of all models.

Appendix C.2 Collective-page prediction

In fact, neural models have the ability to learn complex patterns, such as learning different access patterns of multiple pages

simultaneously. To exploit the full potential of neural models, we propose to deploy a single model for all pages (collective-page

prediction) instead of deploying an individual neural model for each page (individual-page prediction). Figure C1 exhibits the input

features of the collective-page prediction model, which feeds the hotness of all pages within an epoch as a whole to a single neural

model. In contrast with individual-page prediction, collective-page prediction has the following significant advantages:

1. Reducing the number of models, thus avoiding the cost of thread resources and scheduling.

2. Reducing the parameters of models, thus reducing computational and memory costs. While the single model employed for

collective-page prediction requires more parameters to capture complex patterns than each model in individual-page prediction,

the relationship between the number of parameters in a neural model and the range of page patterns it covers is non-linear.

Consequently, the total number of parameters required for collective-page prediction is considerably less than that required for

individual-page predictions.

3. More suited for existing hardware. Collective-page prediction can utilize hardware resources more efficiently by leveraging

the simultaneous computation of numerous parameters per network layer and batch processing of multiple pages in a large model

because current deep learning-supporting hardware possesses robust matrix computation capabilities.

Appendix D Experiment
This section evaluates the performance of SmartS by comparing it with both existing non-intelligent schedulers and neural-model-

based schedulers.

Appendix D.1 Methodology

Neural network models are typically trained offline on an input corpus. However, we conducted a simulated online training

experiment similar to [22] to validate that SmartS can capture changes in memory access patterns during program execution.

Specifically, SmartS is trained on a phase of 50 million memory accesses and uses the trained model to predict the next phase of

50 million memory accesses. Thus, the model is constantly being trained during one phase for use in the next phase. No inference

is performed in the first phase.



Zhen Y J, et al. Sci China Inf Sci 4

Simulator. We developed a Python-based simulation of a hybrid memory system similar to [3, 5], whose accuracy has been

validated by its developers through comparison with performance data from real hybrid memory systems. The simulated hybrid

memory consists of a fast and a slow memory component. Both components are managed uniformly as contiguous physical memory,

similar to the app direct mode configuration of the Intel Optane platform [7]. The overall capacity of the simulated memory system

is equivalent to the memory footprint of the application, with a fast to slow memory capacity ratio of 1:8. Based on the PMEM

access speeds reported in [3, 7], we established a latency ratio of 1:3 and a bandwidth ratio of 1:0.37 between the fast and slow

memory components. To obtain an accurate estimation of the runtime, we add constant delays for every page migration and the

start of a period to account for the cost of the page scheduler itself, using the proposed values in [23]. Furthermore, we assumed

that an epoch corresponds to the time required to issue a fixed number of memory accesses since we do not employ cycle-accurate

simulation. In our experiments, we assume 10,000 memory access requests per epoch, similar to [20].

Datasets. We selected ten benchmarks from Rodinia [11], SPECCPU2017 [12], and CORAL-2 [13] to evaluate the performance

of SmartS. These benchmarks cover various application scenarios with varying memory access patterns. To evaluate SmartS on

more challenging workloads, we also use two real-world applications: Redis, a popular NoSQL database, and High Performance

Linpack (HPL), a software application designed for assessing the performance of high-performance computing systems.

In line with prior works [3, 5], we utilize the frequency of page accesses within a given epoch as the page’s hotness during this

epoch. We employ Intel’s Pin [24] dynamic binary instrumentation tool to capture the memory access trace and tally the page

access frequencies for each epoch. Since we focus on accesses to memory, we add a simulated three-level cache when collecting

accessed addresses. The final trace collected is the memory address of the last level cache misses.

Baseline. We evaluate SmartS against the history scheduler [3], Kleio [5], Coeus [6] and the oracle scheduler [3]. The history

scheduler is a state-of-the-art non-intelligent scheduler that uses the current epoch’s page hotness as the next epoch’s page hotness.

Kleio and Coeus are state-of-the-art neural-model-based schedulers. We implement them following the settings in their papers.

Both deploy 100 RNNs for selected pages (100 pages in Kleio and 100 identical patterns in Coeus) and manage the remaining

pages using a history scheduler. The oracle scheduler is an ideal but impractical scheduler that assumes the future address access

is known. It is the upper limit of all schedulers.

Appendix D.2 Cost analysis

First and foremost, we evaluate the cost of different schedulers. We conduct experiments using a machine with a dual-socket 3.00GHz

Intel Xeon Gold 6248R processor and 256GB of memory. SmartS’s neural model is trained offline and accelerated using an A100

GPU with 40GB of memory. We report the average metrics obtained from the given hardware testbed. The hyperparameters of

the model are determined based on the number of clusters. We present the cost associated with a configuration of 2,000 clusters, as

Figure D3 indicates that the performance of most benchmarks converges when the number of clusters reaches 2,000. Consequently,

the hyperparameters of the model, embedding length and hidden length, are both set to 2,000. We also deployed Kleio and Coeus

in the same environment, with code obtained from their open-source repositories.

The training cost of SmartS consists of two parts: one is the cost of clustering, and the other is the cost of training the LSTM

model. The clustering time increases with the number of pages, ranging from 11 to 313 seconds, averaging around 121 seconds.

The time of training the LSTM model depends on the number of clusters. When the number of clusters is set to 2000, the training

time of SmartS spanned an average of 80 epochs, lasting approximately 3 hours. Memory utilization during training peaked at tens

of gigabytes. The memory usage for saving the trained model is less than 40MB. Regarding resource usage during inference, it is

trivial and takes an average of only 6.8 milliseconds without GPU acceleration and 1.3 milliseconds with GPU acceleration. The

typical duration of a hybrid memory scheduling epoch ranges from 1 to 10 seconds [3,19–21]. SmartS’ inference time is acceptable

and leaves ample time for page migration.

For comparison, we also evaluate the cost of each model in Kleio and Coeus. Their training phase takes an average of 10 minutes

for each model, and memory utilization during training for each model is also at the gigabyte level. The memory usage for saving

the trained model is 1.5 MB and the average inference time is approximately 3 milliseconds without GPU acceleration. However,

Kleio and Coeus require building thousands or even tens of thousands of neural models for a single application, as discussed in

Section Appendix B. Although the cost of each individual model is slightly lower than that of SmartS, the cumulative cost of

numerous models, along with the scheduling cost, becomes impractical.

In conclusion, compared to prior neural-model-based scheduling, SmartS’s clustering-based similar page identifier and LSTM-

based collective-page prediction significantly reduce memory and computation costs.

Appendix D.3 Comparing effectiveness with prior art

Appendix D.3.1 Prediction accuracy of neural models
Prior works have explored using neural models to predict page hotness. Their empirical results have demonstrated that neural models

can achieve high prediction accuracy. However, previous approaches build one model for each identical pattern corresponding to

one or multiple pages. Conversely, SmartS deploys a single model to learn numerous different patterns corresponding to all pages.

SmartS utilizes fewer models to learn more patterns compared to prior approaches. In this section, we experimentally answer

whether SmartS can maintain high prediction accuracy while reducing the number of models and increasing the number of learned

patterns.

Selecting an appropriate metric to measure the prediction accuracy is a crucial step in our analysis. SmartS and prior works’

models utilize regression predictions to estimate page hotness. Common metrics such as Mean Absolute Error (MAE), Mean

Absolute Percentage Error (MAPE), and R-squared (R2) are widely used to calculate the distance between the predicted values

and true values to measure the accuracy of regression predictions. However, they may not be ideal for our purposes. This is

because these models’ primary goal is not to predict the pages’ hotness accurately but to identify the most promising candidates for

migration based on their relative hotness rankings. We adopted fast memory hit rate as an alternative metric to evaluate whether

the model correctly selected higher hot pages for migration. The preemptive migration of pages into the fast memory before their

access can enhance the fast memory hit rate. The higher the hotness of the migrated pages, the more significant the improvement

on the fast memory hit rate.

Notably, Kleio and Coeus’ neural models predict a different range of pages compared to SmartS. Kleio and Coeus’ model can

only predict the hotness of a limited number of selected pages, whereas SmartS’ model can predict the hotness of all pages.

For a fair comparison, we calculate the hit rate by excluding pages that do not employ neural model predictions, thus centering

attention exclusively on the improvement of the hit rate that the neural models can furnish on selected pages. Specifically, in Kleio

and Coeus, fast memory hit rate improvement is normalized between 0% and 100%, where 0% represents all pages are managed



Zhen Y J, et al. Sci China Inf Sci 5

by the history scheduler, and 100% represents the selected pages are managed by the oracle scheduler and the remaining pages are

managed by a history scheduler. Following the settings described in their paper, Kleio and Coeus built 100 LSTM models, where

Kleio intelligently predicted 100 pages, and Coeus intelligently predicted an average of 390 pages. In SmartS, fast memory hit rate

improvement is similarly normalized, with 0% representing all pages are managed by the history scheduler and 100% representing

all pages are managed by the oracle scheduler.

Kleio Coues SmartS

H
it 

ra
te

 im
pr

ov
em

en
t (

%
)

0

50

100

backprop kmeanshotspot3Dheartwall cfd bwaves wrf namd penantquicksilver redis hpl average

Figure D1 Normalized fast memory hit rate improvement of Kleio, Coeus and SmartS.

Figure D1 illustrates the fast memory hit rate improvement achieved by SmartS compared to Kleio and Coeus. SmartS’s

number of clusters is set to 5000 as a trade-off between performance and cost. The effect of the number of clusters on SmartS will

be discussed in Section Appendix D.4.1. On average, SmartS brings 72.3% of the possible fast memory hit rate improvement, while

Kleio and Coeus bring 79.5% and 79.8%. For 66%applications, SmartS yields a comparatively lower hit rate improvement than

Kleio and Coeus. However, the gap in hit rate improvement between these schedulers is relatively small, with a variation of less

than 10% in 66% of applications.

SmartS’s hit rate improvement is lower than prior works for three primary reasons. Firstly, SmartS uses a single model to learn

multiple patterns simultaneously, while Kleio and Coeus use a single model to learn a single pattern. Secondly, SmartS predicts a

more significant number of pages than Kleio and Coeus. SmartS incorporates a clustering mechanism to effectively predict a large

number of pages while accounting for cost constraints, introducing partial errors. Lastly, SmartS predicts all pages, unlike Kleio

and Coeus, which selectively predict specific pages through the page selector.

In summary, despite the reduction in the number of models and the increase in the scope of learned patterns, the neural model

in SmartS maintains high prediction accuracy, with only a decrease of 8.7% compared with prior schedulers’ neural models. It is

worth noting that the performance improvement gained from a single page is limited. SmartS’s neural model manages a number

of pages that is tens or even thousands of times greater than prior works. As shown in Section Appendix B, only a scheduler like

SmartS, capable of intelligently predicting numerous pages, can significantly improve the hybrid memory systems’ performance.

Appendix D.3.2 Application performance

History SmartS Oracle
(a)

(b)

Sp
ee

du
p 

of
 H

is
to

ry

0

1

2

3

Fa
st

 m
em

or
y 

hi
t r

at
e 

(%
)

0

50

100

backprop kmeanshotspot3Dheartwall cfd bwaves wrf namd penantquicksilver redis hpl average

Figure D2 Fast memory hit rate and speedup in the application runtime of Kleio, Coeus and SmartS.

Apart from the model’s prediction accuracy, the improvement of system performance is a more important metric to evaluate

the hybrid memory schedulers. In this section, we evaluate the fast memory hit rate of SmartS compared to the history scheduler

and the oracle scheduler on ten applications. Furthermore, we evaluate the speedup in the application runtime of SmartS and

the oracle scheduler, with the history scheduler as the baseline and being normalized to 1. To calculate the speedup of various

schedulers, we employ the analytical model utilized by Meswani et al. [3] to estimate the application runtime based on the number of



Zhen Y J, et al. Sci China Inf Sci 6

accesses serviced from fast memory and slow memory appropriately. This model uses the Leading Loads method, which divides the

application runtime into computation time and the time required to satisfy memory requests. A comparison between SmartS, Kleio,

and Coeus is unnecessary since Section Appendix B clearly shows the relationship between the number of models and performance.

Specifically, the performance improvement is relatively insignificant when utilizing a limited number of models, such as the 100

models used in Kleio.

SmartS improves the hit rate on average to 74.0%, as shown in Figure D2(a). SmartS brings 70.5% of the possible hit rate

improvement, compared with 37.9% for the history scheduler and 89.1% for the oracle scheduler. Figure D2(b) displays the speedup

in the application runtime achieved by SmartS, which is 1.50x compared with 1.92x of the oracle scheduler. SmartS has significant

advantages for most applications compared with the history scheduler, especially for scientific computations and big data analytics

applications, such as backprop, kmeans, namd, etc. For these applications, there is a significant gap between the history scheduler

and the oracle scheduler, while SmartS effectively bridges this gap. The reason is that such applications always iterate forward,

similarly traversing the addresses during each iteration cycle. There are multiple scheduling epochs within each iteration cycle.

Scheduling epochs within the same iteration cycle traverse different memory regions. Consequently, the history scheduler that

predicts based on the last one or a few scheduling epochs performs poorly, while SmartS that predicts based on a long history

from several iteration cycles significantly improves performance. Even for benchmarks where the history scheduler performs well,

SmartS still performs better, e.g., the hit rate of heartwall, wrf, and quicksilver can achieve up to 76.44% of the possible hit rate

improvement.

Appendix D.4 Understand clustering in SmartS

This section analyzes our results to illustrate the effectiveness of the clustering-based similar page identification mechanism in

SmartS. We pay particular attention to (1) how to set the number of clusters and (2) the performance reduction caused by

clustering.

Appendix D.4.1 Effect of the number of clusters

Fa
st

 m
em

or
y 

hi
t r

at
e 

(%
)

0

10

20

30

40

50

60

70

80

90

100

Number of clusters
0 1000 2000 3000 4000 5000

Sp
ee

du
p 

of
 th

e 
hi

st
or

y 
sc

he
du

le
r

0.8

1.2

1.6

2.0

2.4

Number of clusters
0 1000 2000 3000 4000 5000

backprop
kmeans

hotspot3D
heartwall

cfd
bwaves

wrf
namd

penant
quicksilver

redis
hpl

(a) (b)

Figure D3 Fast memory hit rate and speedup in the application runtime of SmartS with different number of clusters.

This section mainly discusses the effect of the number of clusters on model effectiveness and provides recommendations on

selecting the optimal cluster number. Figure D3 illustrates the fast memory hit rate and speedup of SmartS when the number of

clusters is 100, 200, 500, 1000, 2000, and 5000. It can be observed that as the number of clusters increases, the effectiveness of

SmartS progressively improves. This is due to clusters grouping pages with similar patterns. The hotness of a page is replaced by

the average hotness of pages within that cluster during the hotness prediction phase. The discrepancy between the true hotness of

a page and the average hotness is the error introduced by clustering. Naturally, with fewer clusters, each cluster encompasses more

pages, leading to a larger error.

We observe that each curve exhibits an elbow point. In other words, SmartS is only sensitive to the number of clusters when

it is below the elbow point. When the cluster number exceeds the elbow point, SmartS’s sensitivity to the number significantly

diminishes. This suggests that the similarity among pages belonging to the same cluster has become considerably high. Based on

this observation, we recommend selecting the elbow point where the performance curve begins to plateau as the cluster number.

From our experiments, 1000-2000 is a suitable inflection point for most applications.

The elbow point also indicates that for different applications with a page number ranging from a few thousand to several hundred

thousand, only 1,000 to 2,000 clusters in SmartS are needed to achieve high effectiveness. The reason is that although there are

many pages, the number of different access patterns is limited. Therefore, SmartS is capable of accommodating variations in the

number of pages.

Appendix D.4.2 Breakdown of performance reduced by clustering

Some pages may migrate incorrectly due to clustering. The decision to migrate pages is based on the average hotness of the pages

in the cluster to which they belong. However, some pages significantly deviate from this average, suggesting they should be treated

differently.



Zhen Y J, et al. Sci China Inf Sci 7

Oracle_c100
Oracle_c2000

Oracle_c200
Oracle_c5000

Oracle_c500
Oracle_wc

Oracle_c1000
Fa

st
 m

em
or

y 
hi

t r
at

e 
(%

)

0

20

40

60

80

100

backprop kmeanshotspot3Dheartwall cfd bwaves wrf namd penantquicksilver redis hpl average

Figure D4 Fast memory hit rate of the oracle scheduler with different numbers of clusters.

We employ the same clustering strategy as SmartS on the oracle scheduler to break down the negative impact of the clustering

on SmartS. Figure D4 illustrates the fast memory hit rate of the clustering-based oracle scheduler with the number of clusters

of 100(Oracle c100), 200(Oracle c200), 500(Oracle c500), 1000(Oracle c1000), 2000(Oracle c2000) and 5000 (Oracle c5000),

compared with the oracle scheduler without clustering(Oracle wc). The result shows that, on average, the oracle scheduler with

1000, 2000 and 5000 clusters reduces the hit rate to 85.8%, 87.4% and 88.3%, compared with 88.9% for the oracle scheduler without

clustering. It demonstrates that our clustering strategy only has a minor negative impact while effectively reducing the input and

output size of the neural model.

However, another doubt might emerge if we compare the two experiments about the number of clusters followed by SmartS and

the oracle scheduler. That is why SmartS is more sensitive to the change in the number of clusters, while the oracle scheduler is less

affected. The reason could be traced back to the characteristics of neural networks. The auto-learning ability of neural networks is

based on the learning of the given input, which means that the more information is given as input, the more effective information

related to the task could be obtained. The number of clusters directly corresponds to the length of the input features, thus directly

affecting the information quantity. Therefore, when the number of clusters is lower than 500, the performance of SmartS sharply

declines, ascribing to too little information.

Appendix D.5 Validation of predicted k value

This section aims to evaluate whether the k value has a pattern, whether the pattern is learnable, and the impact of the errors

introduced by the predicted k values on the effectiveness of SmartS. Metric MAPE (Mean Absolute Percentage Error) is employed

to evaluate the accuracy of the k value regression model:

MAPE(K, K̃) =
100%

N

N∑
i=1

|
Ki − K̃i

Ki

| (D1)

where Ki is the true value calculated from page hotness and K̃i is the predicted value. MAPE is a very intuitive interpretation in

terms of relative error. As shown in Figure D5(a), the MAPE ranges from 0.002% to 18.0% on 12 benchmarks, with 10 of them less

than 10%. This confirms the existence of patterns of k value and shows how regression prediction models can learn the pattern.

(a)

SmartS_predK SMartS_trueK

Fa
st

 m
em

or
y 

hi
t r

at
e 

(%
)

0

20

40

60

80

100

ba
ck

pro
p

km
ean

s

ho
tsp

ot3
D

he
art

wall cfd

bw
av

es wrf
na

md
pe

na
nt

qu
ick

sil
ve

r
red

is hp
l

M
A

PE
 (%

)

0

20

40

60

80

100

ba
ck

pro
p

km
ean

s

ho
tsp

ot3
D

he
art

wall cfd

bw
av

es wrf
na

md
pe

na
nt

qu
ick

sil
ve

r
red

is hp
l

(b)

Figure D5 MAPE of predicted k value and decrease in SmartS’ hit rate caused by the error of predicted k values.

Figure D5(b) depicts the decrease in SmartS’ hit rate caused by the error of predicted k values. Even for wrf and heartwall with

the MAPE exceeds 10%, the hit rate fall is less than 2%, which is substantially less than the MAPE. The reason is that SmartS

has ordered the pages according to page hotness. The pages that migrate incorrectly fall in the pages with low hotness at the end

of the pages queue, considerably diminishing the little impact on scheduler performance.



Zhen Y J, et al. Sci China Inf Sci 8

Appendix E Discussion
In this section, we will discuss the limitations of the current study and potential directions for future research.

Although SmartS significantly reduces the cost of training and inference compared to previous works, the training time is still

too long for applications with frequently changing memory access patterns and high real-time requirements. This is also an issue

that researchers are actively working to address, but currently, there is no effective solution.

There are some possible paths that might address the issue of long training time. Transfer learning approaches [28] could be

considered whereby a foundational model is pre-trained and then fine-tuned based on new memory access patterns. Incremental

learning [27] also could be explored, allowing the model to be updated incrementally based on emerging memory access patterns.

Furthermore, model compression techniques, such as knowledge distillation [26] and weight pruning [25], can be considered to

reduce the model’s size and computational demands, making it more suitable for online updates.

Integrating neural models into real-world operating systems is another important research direction for the future and poses

multiple challenges: (1) Collecting and storing page access information at a low cost. Page access information serves as the data

input for model training. Collecting and storing this information in a lightweight approach requires further study. (2) Reducing

the resource consumption for model training and inference. Model training and inference can impact the resource scheduling of

the operating system and the execution speed of applications. Therefore, minimizing the resource consumption, including both

computational and storage resources, for model training and inference is necessary.

References

1 Yang D, Liu H, Jin H, et al. Hmvisor: dynamic hybrid memory management for virtual machines. Sci China Inf Sci, 2021,

64(9): 192104

2 Shen D, Liu X, Lin FX. Characterizing emerging heterogeneous memory. ACM Sigplan Not, 2016, 51(11): 13-23

3 Meswani MR, Blagodurov S, Roberts D, et al. Heterogeneous memory architectures: a HW/SW approach for mixing die-

stacked and off-package memories. In: Proceedings of the 21st International Symposium on High Performance Computer

Architecture (HPCA), 2015. 126-136

4 Wu K, Huang Y, Li D. Unimem: runtime data management on non-volatile memory-based heterogeneous main memory. In:

Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, 2017. 1-14

5 Doudali TD, Blagodurov S, Vishnu A, et al. Kleio: a hybrid memory page scheduler with machine intelligence. In: Proceedings

of the 28th International Symposium on High-Performance Parallel and Distributed Computing, 2019. 37-48

6 Doudali TD, Gavrilovska A. Coeus: clustering (a) like patterns for practical machine intelligent hybrid memory management.

In: Proceedings of the 22nd IEEE International Symposium on Cluster, Cloud and Internet Computing, 2022. 615-624

7 Izraelevitz J, Yang J, Zhang L, et al. Basic performance measurements of the Intel Optane DC persistent memory module.

2019. ArXiv:1903.05714

8 Stallings W. Computer Organization and Architecture: Designing for Performance. Pearson Education India, 2003.

9 Traverso S, Ahmed M, Garetto M, et al. Temporal locality in today’s content caching: why it matters and how to model it.

ACM SIGCOMM Comp Commun Rev, 2013, 43(5): 5-12

10 Jaleel A, Borch E, Bhandaru M, et al. Achieving non-inclusive cache performance with inclusive caches: temporal locality

aware (TLA) cache management policies. In: Proceedings of the 43rd Annual IEEE/ACM International Symposium on

Microarchitecture, 2010. 151-162

11 Che S, Boyer M, Meng J, et al. Rodinia: A benchmark suite for heterogeneous computing. In: Proceedings of the 2009 IEEE

International Symposium on Workload Characterization (IISWC), 2009. 44-54

12 Bucek J, Lange K-D, v. Kistowski J. SPEC CPU2017: Next-generation compute benchmark. In: Companion of the 2018

ACM/SPEC International Conference on Performance Engineering, 2018. 41-42

13 Wu X. and Taylor V. Power and Performance Characteristics of CORAL Scalable Science Benchmarks on BlueGene/Q Mira.

In: Proceedings of the International Green and Sustainable Computing Conference (IGSC), 2015, 1-6

14 Hashemi M, Swersky K, Smith J, et al. Learning memory access patterns. In: International Conference on Machine Learning,

2018, PMLR. 1919-1928

15 Zeng Y, and Guo X. Long Short Term Memory Based Hardware Prefetcher: A Case Study. In: Proceedings of the International

Symposium on Memory Systems, 2017. 305-311

16 Narayanan A, Verma S, Ramadan E, et al. DeepCache: A deep learning based framework for content caching. In: Proceedings

of the 2018 Workshop on Network Meets AI & ML, 2018. 48-53

17 Peled L, Weiser U, Etsion Y. A Neural Network Prefetcher for Arbitrary Memory Access Patterns. ACM Trans Archit Code

Optim, 2019, 16(4): 1-27.

18 Choquette J, Gandhi W, Giroux O, et al. NVIDIA A100 tensor core GPU: performance and innovation. IEEE Micro, 2021,

41(2): 29-35

19 Yan Z, Lustig D, Nellans D, et al. Nimble page management for tiered memory systems. In: Proceedings of the Twenty-Fourth

International Conference on Architectural Support for Programming Languages and Operating Systems, 2019. 331-345

20 Agarwal N, Wenisch T F. Thermostat: application-transparent page management for two-tiered main memory. In: Proceedings

of the Twenty-Second International Conference on Architectural Support for Programming Languages and Operating Systems,

2017. 631-644

21 Kwon Y, Yu H, Peter S, et al. Coordinated and Efficient Huge Page Management with Ingens. In: Proceedings of the 12th

USENIX Symposium on Operating Systems Design and Implementation, 2016. 705-721

22 Shi Z, Jain A, Swersky K, et al. A hierarchical neural model of data prefetching. In: Proceedings of the 26th ACM International

Conference on Architectural Support for Programming Languages and Operating Systems, 2021. 861-873

23 Kommareddy V R, Hammond S D, Hughes C, et al. Page migration support for disaggregated non-volatile memories. In:

Proceedings of the International Symposium on Memory Systems, 2019. 417-427

24 Luk C K, Cohn R, Muth R, et al. Pin: building customized program analysis tools with dynamic instrumentation. ACM

Sigplan Not, 2005, 40(6): 190-200

25 Hassibi B, Stork D. Second order derivatives for network pruning: Optimal brain surgeon[J]. Advances in neural information

processing systems, 1992, 5.

26 Hinton G, Vinyals O, Dean J. Distilling the knowledge in a neural network[J]. arXiv preprint arXiv:1503.02531, 2015.

27 Parisi G I, Kemker R, Part J L, et al. Continual lifelong learning with neural networks: A review[J]. Neural networks, 2019,

113: 54-71.

28 Pan S J, Tsang I W, Kwok J T, et al. Domain adaptation via transfer component analysis[J]. IEEE transactions on neural

networks, 2010, 22(2): 199-210.


	Benchmarks
	Limitations of existing page scheduling in hybrid memory systems
	Non-intelligent scheduling
	Intelligent scheduling

	Cost-driven approach: from individual to collective
	Individual-page prediction
	Collective-page prediction

	Experiment
	Methodology
	Cost analysis
	Comparing effectiveness with prior art
	Prediction accuracy of neural models
	Application performance

	Understand clustering in SmartS
	Effect of the number of clusters
	Breakdown of performance reduced by clustering

	Validation of predicted k value

	Discussion

