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In the past few years, foundation models have thrived and

succeeded in linguistic and visual tasks, showing astonishing

zero-shot and few-shot capabilities. Their advances encour-

age researchers and industries to extend the boundaries of

what artificial intelligence can do and have shown some fan-

tastic products (e.g., ChatGPT [1]) with the potential to

change the world.

Recently, Kirillov et al. [2] proposed a new vision foun-

dation model for image segmentation, the segment anything

model (SAM), trained on a huge dataset called SA-1B. The

flexible prompting support, ambiguity awareness, and vast

training data endow the SAM with powerful generaliza-

tion, enabling the ability to solve downstream segmenta-

tion problems using prompt engineering. Some following

studies leverage the excellent zero-shot capability of SAM

to solve other 2D vision tasks (e.g., medical image process-

ing [3] and camouflaged object segmentation [4]). Although

SAM presents great power on some 2D vision tasks, whether

it can be adapted to 3D vision tasks still needs to be dis-

covered. With this inspiration, a few studies attempt to

combine SAM with pre-trained 3D models to learn 3D scene

representation (e.g., SA3D [5]) and single-view reconstruc-

tion (e.g., anything-3D [6]), showing promising results.

3D object detection, one of the fundamental tasks in 3D

vision, has a wide range of real-world applications (e.g., au-

tonomous driving). Although plenty of studies aim to solve

this task, the zero-shot setting on 3D object detection still

needs to be explored. Thus, considering the advance of

SAM, it is natural to question: Can we adapt the zero-shot

capability of SAM to 3D object detection?

In this study, we aim to explore the zero-shot 3D object

detection with SAM [2] alone. Considering SAM is initially

built for 2D images, many challenges exist when using SAM

for 3D detection (please refer to the appendix for more dis-

cussion). The key insight is that we can leverage the power-

ful capability of SAM for 3D object detection by using the

bird’s eye view (BEV), which carries crucial 3D informa-

tion (e.g., depths) with a 2D image-like data format. Thus,

the challenges to using SAM for 3D detection can be signif-

icantly solved. With this observation, we present SAM3D,

which uses SAM to segment on BEV maps and predicts ob-

jects based on the masks from its outputs.

We evaluate our method on the large-scale Waymo open

dataset [7], and the results show the great potential of SAM

on 3D object detection. Although this study is only an early

attempt, it gives a positive signal for applying vision foun-

dation models like SAM for 3D vision tasks, especially for

3D object detection.

Proposed method. We consider point cloud as the input

of our method, which is a 3D representation and naturally

sparse, while SAM is trained for 2D images with dense se-

mantics. Our basic idea is to translate LiDAR points into a

2D image-like representation with 3D information that nar-

rows the domain gap; thus BEV is a straightforward choice.

We build the whole pipeline with SAM based on BEV, shown

as Figure 1(a). Our method mainly contains five steps.

Firstly, our method conducts the LiDAR-to-BEV pro-

jection, which translates sparse LiDAR signals to discrim-

inative BEV images. At this step, we use the projection

equations to determine each point’s coordinate on the im-

age plane and a predefined intensity-to-RGB mapping to

get RGB vectors for pixels in a BEV image, making it more

discriminative during processing.

Then, the BEV post-processing modifies the original

BEV images with the morphology dilation (interpreted as a

max pooling) since SAM is trained on natural images with

“dense” signals, which differs from the “sparse” BEV im-

ages. This step helps form more suitable inputs for SAM,

leading to easier segmentation and better performance.

After obtaining the desired BEV images, we segment the

BEV images using SAM, which supports various prompts

like point, box, and mask prompts. Our goal in this step

is to segment foreground objects as many as possible, so we

choose to cover the whole image with mesh grid prompts.

Additionally, we prune the prompts in this step without per-

formance sacrifice to accelerate the segmentation.

Despite SAM’s powerful zero-shot capability, a non-

negligible domain gap still exists. Hence, we propose mask

post-processing for filtering noisy masks according to some

rules drawn from priors, which reduces the number of false
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Figure 1 (Color online) (a) Overall framework of our method. We first project LiDAR points to colorful BEV images via a

predefined palette, then post-process BEV images to better fit the requirements of SAM. After the segmentation, we post-process

the noisy masks and finally predict 3D bounding boxes with the aid of LiDAR points. (b) Results of SAM3D using different versions

of SAM. (c) Results of SAM3D using different pillar sizes. We report metrics of VEHICLE in the range [0, 30) on Waymo validation

set. Best performance is in bold.

positives and helps improve the final performance.

Finally, after the segmentation and post-processing, we

predict 3D bounding boxes from the foreground masks.

Since BEV images already carry depth information, we can

directly estimate the horizontal attributes (i.e., horizontal

object center, length, width, and heading) of 3D bound-

ing boxes from the 2D masks. Meanwhile, for the vertical

attributes (i.e., vertical object center and height), LiDAR

points will be utilized as extra information compensation.

Please refer to the appendix for more detailed methods.

Experiments. We evaluate our method on the Waymo

Open Dataset [7], one of the large-scale datasets for au-

tonomous driving. The dataset is split into 798 training

sequences, 202 validation sequences, and 150 testing se-

quences. Since our method performs zero-shot object de-

tection, we only focus on the validation sequences. For the

metrics, because of the natural sparsity of point clouds and

the lack of semantic label outputs, we only care about the

mAP and mAPH of VEHICLE with a distance of at most

30 m in this study.

Since SAM uses different backbones with different com-

plexities, we conduct experiments to evaluate the effective-

ness of our method, shown in Figure 1(b). It reveals that

using SAM with less capacity performs worse. However,

there is only a marginal difference between SAM with ViT-

L and ViT-H. We argue that the model capacity is not the

performance bottleneck when using large models, and the

power of SAM still needs to be fully unleashed. For insur-

ance purposes, we use SAM with ViT-H. We also conduct

experiments to determine how the pillar size influences the

performance in Figure 1(c). When using larger pillar sizes

such as 0.2 and 0.4 m, the discretization errors are rela-

tively large, and it is hard to distinguish different objects

when they are close to each other. However, pillar sizes that

are too small also harm performance. One possible reason

is that due to the high resolution of the small pillar size and

the sparsity of LiDAR signals, it is difficult for individual in-

stances to form a completely connected region. SAM tends

to separate one object into many parts. We set the pillar

size as 0.1 m, which is a good balance. Please refer to the

appendix for all detailed results.

Conclusion. This study explores the zero-shot 3D object

detection with the visual foundation model SAM and pro-

poses the SAM3D. To narrow the gap between the training

data of SAM and 3D LiDAR signals, we use the BEV im-

ages to represent 3D outdoor scenes. We propose an SAM-

powered BEV processing pipeline to utilize the great zero-

shot capability of SAM for zero-shot 3D object detection.

Qualitative and ablation experiments on the Waymo Open

Dataset show promising results for adapting the zero-shot

ability of SAM to 3D object detection. Although this study

is only an early attempt, we believe it presents a possibility

and opportunity to unleash the power of foundation mod-

els like SAM on 3D tasks with technologies like few-shot

learning, model distillation, and prompt engineering in the

future. The code has been released in https://github.com/

DYZhang09/SAM3D.
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