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Abstract An emerging direction of quantum computing is to establish meaningful quantum applications

in various fields of artificial intelligence, including natural language processing (NLP). Although some efforts

based on syntactic analysis have opened the door to research in quantum NLP (QNLP), limitations such as

heavy syntactic preprocessing and syntax-dependent network architecture make them impracticable on larger

and real-world data sets. In this paper, we propose a new simple network architecture, called the quantum self-

attention neural network (QSANN), which can compensate for these limitations. Specifically, we introduce

the self-attention mechanism into quantum neural networks and then utilize a Gaussian projected quantum

self-attention serving as a sensible quantum version of self-attention. As a result, QSANN is effective and

scalable on larger data sets and has the desirable property of being implementable on near-term quantum

devices. In particular, our QSANN outperforms the best existing QNLP model based on syntactic analysis

as well as a simple classical self-attention neural network in numerical experiments of text classification tasks

on public data sets. We further show that our method exhibits robustness to low-level quantum noises and

showcases resilience to quantum neural network architectures.

Keywords quantum neural networks, self-attention, natural language processing, text classification, pa-

rameterized quantum circuits

1 Introduction

Quantum computing is a promising paradigm [1] for fast computations that can provide substantial
advantages in solving valuable problems [2–6]. With major academic and industry efforts on developing
quantum algorithms and quantum hardware, it has led to an increasing number of powerful applications
in areas including optimization [7], cryptography [8], chemistry [9, 10], and machine learning [6, 11–13].

Quantum devices available currently known as the noisy intermediate-scale quantum (NISQ)
devices [14] have up to a few hundred physical qubits. They are affected by coherent and incoherent
noise, making the practical implementation of many advantageous quantum algorithms less feasible. But
such devices with 50–100 qubits already allow one to achieve quantum advantage against the most power-
ful classical supercomputers on certain carefully designed tasks [15,16]. To explore practical applications
with near-term quantum devices, plenty of NISQ algorithms [17–19] appear to be the best hope for ob-
taining a quantum advantage in fields such as quantum chemistry [20], optimization [21], and machine
learning [22–27]. In particular, those algorithms dealing with machine learning problems, by employing
parameterized quantum circuits (PQCs) [28] (also called quantum neural networks (QNNs) [29]), show
great potential in the field of quantum machine learning (QML). See [12,30–40] for some recent progress
on the theory and applications of QNNs in many directions. However, in artificial intelligence (AI), the
study of QML in the NISQ era is still in its infancy. Thus it is desirable to explore more QML algorithms
exploiting the power that lies within the NISQ devices.
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Natural language processing (NLP) is a key subfield of AI that aims to give machines the ability
to understand human language. Common NLP tasks include speech recognition, machine translation,
and text classification, many of which have greatly facilitated our lives. Due to human language’s high
complexity and flexibility, NLP tasks are generally challenging to implement. Thus, it is natural to
think about whether and how quantum computing can enhance machines’ performance on NLP. Some
studies focus on quantum-inspired language models [41–44] with borrowed ideas from quantum mechanics.
Another approach, known as quantum natural language processing (QNLP), seeks to develop quantum-
native NLP models that can be implemented on quantum devices [45–48]. Most of these QNLP proposals,
though at the frontier, lack scalability as they are based on syntactic analysis, which is a preprocessing
task requiring significant effort, especially for large data sets. Furthermore, these syntax-based methods
employ different PQCs for sentences with different syntactical structures and thus are not flexible enough
to process the innumerable complex expressions possible in human language.

To overcome these drawbacks in current QNLP models, we propose the quantum self-attention neural
network (QSANN), where the self-attention mechanism is introduced into QNNs. Our motivation comes
from the excellent performance of self-attention on various NLP tasks such as language modeling [49],
machine translation [50], question answering [51], and text classification [52]. We also note that a recently
proposed method [53] for quantum state tomography, an important task in quantum computing, adopts
the self-attention mechanism and achieves decent results.

In each quantum self-attention layer (QSAL) of QSANN, we first encode the inputs into high-dimen-
sional quantum states, then apply PQCs on them according to the layout of the self-attention neural
networks, and finally adopt a Gaussian projected quantum self-attention (GPQSA) to obtain the output
effectively. To evaluate the performance of our model, we conduct numerical experiments of text classifica-
tion with different data sets. The results show that QSANN outperforms the currently best known QNLP
model as well as a simple classical self-attention neural network (CSANN) on test accuracy, implying the
potential quantum advantages of our method. Our contributions are multi-fold:

• Our proposal is the first QNLP algorithm with a detailed circuit implementation scheme based on
the self-attention mechanism. This method can be implemented on NISQ devices and is more practicable
on large data sets compared with previously known QNLP methods based on syntactic analysis.

• In QSANN, we introduce the GPQSA, which can efficiently dig out the correlations between words
in high-dimensional quantum feature space. Furthermore, visualization of self-attention coefficients on
text classification tasks confirms its ability to focus on the most relevant words.

• We experimentally demonstrate that QSANN outperforms existing QNLP methods based on syntac-
tic analysis [54] and simple CSANNs on several public data sets for text classification. Numerical results
also imply that QSANN is resilient to both quantum noises and QNN architectures.

Quantum basics. Here, some basic concepts about quantum computing necessary for this paper are
briefly introduced (for more details, see [55]). In quantum computing, quantum information is usually
represented by n-qubit (pure) quantum states over Hilbert space C2n . In particular, a pure quantum
state could be represented by a unit vector |ψ〉 ∈ C2n (or 〈ψ|), where the ket notation |·〉 denotes a column
vector and the bra notation 〈ψ| = |ψ〉† with † referring to conjugate transpose denotes a row vector.

The evolution of a pure quantum state |ψ〉 is mathematically described by applying a quantum circuit
(or a quantum gate), i.e., |ψ′〉 = U |ψ〉, where U is the unitary operator (matrix) representing the quantum
circuit and |ψ′〉 is the quantum state after evolution. Common single-qubit quantum gates include
Hadamard gate H and Pauli operators

H :=
1√
2

[

1 1

1 −1

]

, X :=

[

0 1

1 0

]

, Y :=

[

0 −i
i 0

]

, Z :=

[

1 0

0 −1

]

, (1)

and their corresponding rotation gates denoted by RP (θ) := exp(−iθP/2) = cos θ2I − i sin θ
2P , where the

rotation angle θ ∈ [0, 2π) and P ∈ {X,Y, Z}. In this paper, multiple-qubit quantum gates mainly include
the identity gate I, the CNOT gate and the tensor product of single-qubit gates, e.g., Z ⊗Z, Z ⊗ I, and
Z⊗n.

Quantum measurement is a way to extract classical information from a quantum state. For instance,
given a quantum state |ψ〉 and an observable O, one could design quantum measurements to obtain the
information 〈ψ|O|ψ〉. This work focuses on the hardware-efficient Pauli measurements, i.e., setting O
as Pauli operators or their tensor products. For instance, we could choose Z1 = Z ⊗ I⊗(n−1), X2 =
I ⊗X ⊗ I⊗(n−2), and Z1Z2 = Z ⊗ Z ⊗ I⊗(n−2), with n qubits in total.
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Text classification. As one of the central and basic tasks in the NLP field, text classification is
to assign a given text sequence to one of the predefined categories. Examples of text classification
tasks considered in this paper include topic classification and sentiment analysis. A commonly adopted
approach in machine learning is to train a model with a set of pre-labeled sequences. When fed a new
sequence, the trained model will be able to predict its category based on the experience learned from the
training data set.

Self-attention mechanism. In a self-attention neural network layer [50], the input data {xs ∈
Rd}Ss=1 are linearly mapped via three weight matrices, i.e., query Wq ∈ Rd×d, key Wk ∈ Rd×d and value
Wv ∈ Rd×d, to three parts Wqxs, Wkxs, Wvxs, respectively, and by applying the inner product on the
query and key parts, the output is computed as

ys =
S
∑

j=1

as,j ·Wvxj with as,j =
ex

T
s W

T
q Wkxj

∑S
l=1 e

xT
sW

T
q Wkxl

, (2)

where as,j denote the self-attention coefficients.

2 Method

In this section, we will introduce the QSANN in detail, which mainly consists of QSAL, loss function,
analytical gradients and analysis.

2.1 QSAL

In the classical self-attention mechanism [50], there are mainly three components (vectors), i.e., queries,
keys, and values, where queries and keys are computed as weights assigned to corresponding values to
obtain final outputs. Inspired by this mechanism, in QSAL we design the quantum analogs of these
components. The overall picture of QSAL is illustrated in Figure 1.

For the classical input data {y(l−1)
s ∈ Rd} of the l-th QSAL, we first use a quantum ansatz Uenc to

encode them into an n-qubit quantum Hilbert space, i.e.,

|ψs〉 = Uenc(y
(l−1)
s )H⊗n|0n〉, 1 6 s 6 S, (3)

where H denotes the Hadamard gate and S denotes the number of input vectors in a data sample.
Then we use another three quantum ansatzes, i.e., Uq, Uk, Uv with parameters θq, θk, θv, to represent

the query, key and value parts, respectively. Concretely, for each input state |ψs〉, we denote by 〈Zq〉s
and 〈Zk〉s the Pauli-Z1 measurement outputs of the query and key parts, respectively, where

〈Zq〉s := 〈ψs|U †
q (θq)Z1Uq(θq)|ψs〉,

〈Zk〉s := 〈ψs|U †
k(θk)Z1Uk(θk)|ψs〉.

(4)

The measurement outputs of the value part are represented by a d-dimensional vector

os :=
[

〈P1〉s 〈P2〉s · · · 〈Pd〉s
]T

, (5)

where 〈Pj〉s = 〈ψs|U †
v (θv)PjUv(θv)|ψs〉. Here, each Pj ∈ {I,X, Y, Z}⊗n denotes a Pauli observable.

Finally, by combining (4) and (5), the classical output {y(l)
s ∈ Rd} of the l-th QSAL are computed as

follows:

y(l)
s = y(l−1)

s +

S
∑

j=1

α̃s,j · oj, (6)

where α̃s,j denotes the normalized quantum self-attention coefficient between the s-th and the j-th input
vectors and is calculated by the corresponding query and key parts:

α̃s,j =
αs,j

∑S
m=1 αs,m

with αs,j := e−(〈Zq〉s−〈Zk〉j)
2

. (7)
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Figure 1 (Color online) Sketch of a QSAL. On quantum devices, the classical inputs {y(l−1)
s } are used as the rotation angles

of quantum ansatzes (purple dashed boxes) to encode them into their corresponding quantum states {|ψs〉}. Then, a set of three

ansatzes (in red dashed boxes) representing query, key, and value is applied to each state. Note that it is the same set of ansatzes

applied to all the input states. On classical computers, the measurement outputs of the query part 〈Zq〉s and the key part 〈Zk〉j are

computed through a Gaussian function to obtain the quantum self-attention coefficients αs,j (green circles); we calculate classically

weighted sums of the measurement outputs of the value part (small colored squares) and add the inputs to get the outputs {y(l)
s },

where the weights are the normalized coefficients α̃s,j , cf. Eq. (7).

Here in (6), we adopt a residual scheme when computing the output, which is analogous to [50].
GPQSA. When designing a quantum version of self-attention, a natural and direct extension of the

inner-product self-attention to consider is αs,j := |〈ψs|U †
qUk|ψj〉|2. However, due to the unitary nature

of quantum circuits, 〈ψs|U †
qUk can be regarded as rotating |ψs〉 by an angle, which makes it difficult

for |ψs〉 to simultaneously correlate those |ψj〉 that are far away. In a word, this direct extension is not
suitable or reasonable for working as the quantum self-attention. Instead, the particular quantum self-
attention proposed in (7), which we call GPQSA, could overcome the above drawback. In GPQSA, the
states Uq|ψs〉 (and Uk|ψj〉) in large quantum Hilbert space are projected to classical representations 〈Zq〉s
(and 〈Zk〉j) in one-dimensional1) classical space via quantum measurements and a Gaussian function is
applied to these classical representations. As Uq and Uk are separated, it is pretty easy to correlate |ψs〉
to any |ψj〉, making GPQSA more suitable to serve as a quantum self-attention. Here, we utilize the
Gaussian function [27,56] mainly because it contains infinite-dimensional feature space and is well-studied
in classical machine learning. Numerical experiments also verify our choice of Gaussian function. We
also note that other choices for building quantum self-attention are also worth future study.

Remark. During the preparation of this manuscript, we became aware that Ref. [57] also made
initial attempts to employ the attention mechanism in QNNs. In that work, the authors mentioned
a possible quantum extension towards a quantum transformer where the straightforward inner-product
self-attention is adopted. As discussed above, the inner-product self-attention may not be reasonable for
dealing with quantum data. In this work, we present that GPQSA is more suitable for the quantum
version of self-attention and show the validity of our method via numerical experiments on several public
data sets.

Ansatz selection. In QSAL, we employ multiple ansatzes for the various components, i.e., data
encoding, query, key, and value. Hence, we give a brief review of it here.

1) Multi-dimension is also possible by choosing multiple measurement results, like the value part.
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Figure 3 (Color online) Sketch of QSANN, where a sequence of classical vectors {xs} first goes through L QSALs to obtain the

corresponding sequence of feature vectors {y(L)
s }, then through the average operation, and finally through the fully-connected layer

for the binary prediction task.

In general, an ansatz, a.k.a. PQC [28], has the form U(θ) =
∏

j Uj(θj)Vj , where Uj(θj) = exp(−iθjPj/2)
and Vj denotes a fixed operator such as Identity and CNOT. Here, Pj denotes a Pauli operator. Due to
the numerous choices of the form of Vj , various kinds of ansatzes can be used. In this paper, we use the
strongly entangled ansatz [23] shown in Figure 2 in QSAL. This circuit has n(D+2) parameters in total
for n qubits and D repeated layers.

2.2 Loss function

Consider the data set D := {(xm;1,xm;2, . . . ,xm;Sm), ym}Ns
m=1, where there are in total Ns sequences or

samples and each has Sm words with a label ym ∈ {0, 1}. Here, we assume each word is embedded as
a d-dimensional vector, i.e., xm;s ∈ Rd. The whole procedure of QSANN is depicted in Figure 3, which
mainly consists of L QSALs to extract hidden features and one fully-connected layer to complete the
binary prediction task. Here, the mean squared error [58] is employed as the loss function:

L (Θ,w, b;D) =
1

2Ns

Ns
∑

m=1

(ŷm − ym)
2
+RegTerm, (8)

where the predicted value ŷm is defined as ŷm := σ(wT · 1
Sm

∑Sm

s=1 y
(L)
m;s + b) with w ∈ Rd and b ∈ R

denoting the weights and bias of the final fully-connected layer, Θ denoting all parameters in the ansatz, σ
denoting the sigmoid activation function and ‘RegTerm’ being the regularization term to avoid overfitting
in the training process.

Combining (3)–(7), we know each output of QSAL is dependent on all its inputs, i.e.,

y(l)
m;s :=y(l)

m;s

(

θ(l)
q , θ

(l)
k , θ(l)

v ; {y(l−1)
m;i }Sm

i=1

)

=y(l−1)
m;s +

Sm
∑

j=1

α̃
(l)
s,j

(

θ(l)
q , θ

(l)
k ; {y(l−1)

m;i }Sm

i=1

)

· o(l)
j

(

θ(l)
v ;y

(l−1)
m;j

)

, (9)

where y
(0)
m;s = xm;s and 1 6 s 6 Sm, 1 6 l 6 L. Here, the regularization term is defined as

RegTerm :=
λ

2d
‖w‖2 + γ

2d

Sm
∑

s=1

‖xm;s‖2, (10)
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Algorithm 1 QSANN training for text classification

Input: The training data set D := {(xm;1, xm;2, . . ., xm;Sm), ym}Ns
m=1, EPOCH, number of QSALs L and optimization procedure.

Output: The final ansatz parameters Θ∗, weight w
∗, b∗.

1: Initialize the ansatz parameters Θ, weight w from Gaussian distribution N(0, 0.01) and the bias b to 0;

2: for ep = 1, . . . ,EPOCH do

3: for m = 1, . . . , Ns do

4: Apply the encoder ansatz Uenc to each of xm;s to get the corresponding quantum state |ψs〉, cf. (3);

5: Apply Uq and Uk to |ψs〉 and measure the Pauli-Z expectations to get 〈Zq〉s, 〈Zk〉s, cf. (4), and then calculate the

quantum self-attention coefficients αs,j , cf. (7);

6: Apply Uv and measure a series of Pauli expectations to get os, cf. (5), and then compute the output {y(l)
s } of the l-th

QSAL, cf. (6);

7: Repeat 4–6 L times to get the output {y(L)
s } of the L-th QSAL;

8: Average {y(L)
s } and through a fully-connected layer to obtain the predicted value ŷm;

9: Calculate the mean squared error in (8) and update the parameters through the optimization procedure;

10: end for

11: if the stopping condition is met then

12: Break;

13: end if

14: end for

where λ, γ > 0 are two regularization coefficients.
With the loss function defined in (8), we can optimize its parameters by (stochastic) gradient-

descent [59]. The analytical gradient analysis can be found in Subsection 2.3. Finally, with the above
preparation, we could train our QSANN to get the optimal (or sub-optimal) parameters. See Algorithm 1
for details on the training procedure. We remark that if the loss converges during training or the maximum
number of iterations is reached, the optimization stops.

2.3 Analytical gradients

Here, we give the stochastic analytical partial gradients of the loss function with regard to its parameters
as follows. We first consider the parameters in the last quantum self-attention neural network layer, i.e.,

θ
(L)
q , θ

(L)
k , θ

(L)
v , and the final fully-connected layer, i.e., w, b. Then the parameters in the front layers

could be evaluated similarly and be updated through the back-propagation algorithm [60]. Given the
m-th data sample {(x1,x2, . . . ,xSm) , y} (here, we omit m in the subscript for writing convenience, the
same below), we have

∂L

∂w
= σ̃ · 1

Sm

Sm
∑

s=1

y(L)
s +

λ

d
w,

∂L

∂b
= σ̃, (11)

∂L

∂y
(L)
s

= σ̃ · 1

Sm
·w, (12)

where σ̃ = (σ − y) · σ (1− σ) and σ denotes the abbreviation of σ(wT · 1
Sm

∑Sm

s=1 y
(L)
s + b). We also have

∂L

∂θ
(L)
v

=

Sm
∑

s=1

(

∂L

∂y
(L)
s

)T Sm
∑

j=1

∂y
(L)
s

∂o
(L)
j

·
∂o

(L)
j

∂θ
(L)
v

, (13)

∂L

∂θ
(L)
q

=

Sm
∑

s=1

(

∂L

∂y
(L)
s

)T Sm
∑

j=1

∂y
(L)
s

∂α
(L)
s,j

·
∂α

(L)
s,j

∂〈Zq〉s
· ∂〈Zq〉s
∂θ

(L)
q

, (14)

∂L

∂θ
(L)
k

=

Sm
∑

s=1

(

∂L

∂y
(L)
s

)T Sm
∑

j=1

∂y
(L)
s

∂α
(L)
s,j

·
Sm
∑

i=1

∂α
(L)
s,j

∂〈Zk〉i
· ∂〈Zk〉i
∂θ

(L)
k

, (15)

where ∂y
(L)
s /∂o

(L)
j = α

(L)
s,j , ∂y

(L)
s /∂α

(L)
s,j = o

(L)
j , ∂α

(L)
s,j /∂〈Zq〉s = −∑Sm

i=1 ∂α
(L)
s,j /∂〈Zk〉i and

∂α
(L)
s,j

∂〈Zk〉i
= −α(L)

s,j

(

α
(L)
s,i − δij

)

· 2 (〈Zq〉s − 〈Zk〉i) ,

δij =

{

1, i = j,

0, otherwise.
(16)
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Furthermore, the last three partial derivatives of (13)–(15) could be evaluated directly on the quantum
computers via the parameter shift rule [24]. For example,

∂〈Zq〉s
∂θ

(L)
q,j

=
1

2
(〈Zq〉s,+ − 〈Zq〉s,−) , (17)

where 〈Zq〉s,± := 〈ψs|U †
q,±ZUq,±|ψs〉 and Uq,± := Uq(θ

(L)
q,−j , θ

(L)
q,j ± π

2 ).
Finally, in order to derive the partial derivatives of the parameters in the front layers, we also need

the following:

∂L

∂y
(L−1)
i

=
∂L

∂y
(L)
i

+

Sm
∑

s=1

(

∂L

∂y
(L)
s

)T
∂y

(L)
s

∂o
(L)
i

· ∂o
(L)
i

∂y
(L−1)
i

+

(

∂L

∂y
(L)
i

)T Sm
∑

j=1

∂y
(L)
i

∂α
(L)
i,j

·
∂α

(L)
i,j

∂〈Zq〉i
· ∂〈Zq〉i
∂y

(L−1)
i

+

Sm
∑

s=1

(

∂L

∂y
(L)
s

)T Sm
∑

j=1

∂y
(L)
s

∂α
(L)
s,j

·
∂α

(L)
s,j

∂〈Zk〉i
· ∂〈Zk〉i
∂y

(L−1)
i

, (18)

where the four terms denote the residual, value, query, and key parts, respectively, and each sub-term
can be evaluated similarly to the above analysis. With the above preparation, we could easily calculate
every parameter’s gradient and update these parameters accordingly.

2.4 Analysis of QSANN

According to the definition of the QSAL, for a sequence with S words, we need S(d+ 2) Pauli measure-
ments to obtain the d-dimensional value vectors as well as the queries and keys for all words from the
quantum device. After that, we need to compute S2 self-attention coefficients for all S2 pairs of words on
the classical computer. In general, QSANN takes advantage of quantum devices’ efficiency in processing
high-dimensional data while outsourcing some calculations to classical computers. This approach keeps
the quantum circuit depth low and thus makes QSANN robust to low-level noise common in near-term
quantum devices. This beneficial attribute is further verified by numerical results in Section 3, where we
test QSANN against noise.

In short, our QSANN first encodes words into a large quantum Hilbert space as the feature space
and then projects them back to low-dimensional classical feature space by quantum measurement. Re-
cent studies have proved rigorous quantum advantages on some classification tasks by utilizing high-
dimensional quantum feature space [61] and projected quantum models [12]. Thus, we expect that our
QSANN might also have the potential advantage of digging out some hidden features that are classically
intractable. Furthermore, the low-parameter variational quantum circuit exhibits the ability to achieve
low generalization error [62] with few training data [31], providing further evidence for the effectiveness
of our QSANN method. In Section 3, we carry out numerical simulations of QSANN on several data sets
to evaluate its performance on binary text classification tasks.

3 Numerical results

In order to demonstrate the performance of our proposed QSANN, we have conducted numerical experi-
ments on public data sets, where the quantum part was accomplished via classical simulation. Concretely,
we first exhibit the better performance of QSANN by comparing it with (i) the syntactic analysis-based
quantum model [54] on two simple tasks, i.e., MC and RP, (ii) the CSANN and the naive method on three
public sentiment analysis data sets, i.e., Yelp, IMDb, and Amazon [63]. Then we show the reasonableness
of our particular quantum self-attention GPQSA via visualization of self-attention coefficients. Next, we
perform noisy experiments to show the robustness of QSANN to noisy quantum channels. Finally, we
perform noisy experiments with different ansatzes to demonstrate the resilience of QSANN to the archi-
tectures of QNNs. All the simulations and optimization loops are implemented via Paddle quantum2) on
the PaddlePaddle deep learning platform [64].

2) https://github.com/paddlepaddle/Quantum.

https://github.com/paddlepaddle/Quantum
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Table 1 Overview of hyper-parameter settingsa)

Data set n d Denc Dq/k/v λ γ LR

MC 2 6 1 1 0 0 0.008

RP 4 24 4 5 0.2 0.4 0.008

Yelp 4 12 1 1 0.2 0.2 0.008

IMDb 4 12 1 1 0.002 0.002 0.002

Amazon 4 12 1 2 0.2 0.2 0.008

a) Here, ‘LR’ denotes learning rate, Denc, Dq, Dk, Dv denote the depths of the corresponding ansatzes and d = n(Denc + 2).

Table 2 Training accuracy and test accuracy of QSANN as well as DisCoCat on MC and RP tasksa)

Method
MC RP

# Paras TrainAcc (%) TestAcc (%) # Paras TrainAcc (%) TestAcc (%)

DisCoCat [54] 40 83.10 79.80 168 90.60 72.30

QSANN 25 100.00 100.00 109 95.35±1.95 67.74±0.00

a) The highest accuracy in each column is indicated in bold font. In the MC task, QSANN could easily achieve a 100% test
accuracy while requiring only 25 parameters. In the RP task, QSANN gets a higher training accuracy and a slightly lower test
accuracy, because of the data set bias.

Data sets. The two simple synthetic data sets we employed come directly from [54], which are named
MC and RP, respectively. MC contains 17 words and 130 sentences (70 train + 30 development + 30
test) with 3 or 4 words each; RP has 115 words and 105 sentences (74 train + 31 test) with 4 words in
each one. The other three data sets we use are real-world data sets available at [65] as the Sentiment
Labelled Sentences Data Set. These data sets consist of reviews of restaurants, movies, and products
selected from Yelp, IMDb and Amazon, respectively. Each of the three data sets contains 1000 sequences,
where half are labeled as ‘0’ (for negative) and the other half as ‘1’ (for positive). And each sequence
contains several to dozens of words. We randomly select 80% as training sequences and the rest 20% as
test ones.

Experimental setting. In the experiments, we use a single self-attention layer for both QSANN and
CSANN. As a comparison, we also perform the most straightforward method, i.e., directly averaging the
embedded vectors of a sequence, followed by a fully-connected layer, which we call the ‘Naive’ method, on
the three data sets of reviews. Here, we note that only comparing these simple classical models is because
there are still significant restrictions on current quantum hardware. It is pretty unfair to compare with
the most potent classical models.

Remark. We note that due to the current limitations of quantum hardware, using mini- or small-
scale tasks for benchmarking is a common practice in current QNLP research. Additionally, the quantum
transformer is still in its infancy, and it may not be fair to directly compare it with the most advanced
classical transformers or hybrid transformers [25] currently available. Despite all this, we believe QSANN
provides a good starting point for demonstrating the potential advantages and applications of quantum
computing in NLP, providing valuable experience and insights for more in-depth research in the future.

In QSANN, all the encoder, query, key, and value ansatzes have the same qubit number and are
constructed according to Figure 2, which are easily implementable on the NISQ devices. Specifically,
assuming the n-qubit encoder ansatz has Denc layers with n(Denc + 2) parameters, we just set the
dimension of the input vectors as d = n(Denc + 2). The depths of the query, key, and value ansatzes are
set to the same and are, at most, the polynomial size of the qubit number n. The actual hyper-parameter
settings on different data sets are concluded in Table 1. In addition, we choose Z1, . . . , Zn, X1, . . . , Xn,
Y1, . . . , Yn as the Pauli observables Pj in (5). For example, it just required 3n observables when Denc = 1.
However, if Denc > 1, we could also choose two-qubit observables Z12, Z23. All the ansatz parameters Θ
and weight w are initialized from a Gaussian distribution with zero mean and 0.01 standard deviation,
and the bias b is initialized to zero. Here, the ansatz parameters are not initialized uniformly from [0, 2π)
is mainly due to the residual scheme applied in (6). During the optimization iteration, we use Adam
optimizer [66]. And we repeat each experiment 9 times with different parameter initializations to collect
the average accuracy and the corresponding fluctuations.

In CSANN, we set d = 16 and the classical query, key, and value matrices are also initialized from a
Gaussian distribution with zero mean and 0.01 standard deviation. Except for these, almost all other
parameters are set the same as QSANN. These settings and initializations are the same in the naive
method as well.

Results on MC and RP tasks. The results on MC and RP tasks are summarized in Table 2. In
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Table 3 Test accuracy of QSANN compared to CSANN and the naive method on Yelp, IMDb, and Amazon data setsa)

Method
Yelp IMDb Amazon

# Paras TestAcc (%) # Paras TestAcc (%) # Paras TestAcc (%)

Naive 17 82.78±0.78 17 79.33±0.67 17 80.39±0.61

CSANN 785 83.11±0.89 785 79.67±0.83 785 83.22±1.28

QSANN 49 84.79±1.29 49 80.28±1.78 61 84.25±1.75

a) The highest accuracy in each column is indicated in bold font. On all three data sets, QSANN achieves the highest accuracies
among the three methods while using much fewer parameters than CSANN.

an absolute must visit

the manager was the worst

i would not recommend this place

not tasty and the texture was just nasty

the chefs were friendly and did a good job

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Figure 4 (Color online) Heat maps of the averaged quantum self-attention coefficients for some selected test sequences from the

Yelp data set, where a deeper color indicates a higher coefficient. Words that are more sentiment-related are generally assigned

higher self-attention coefficients by our GPQSA, implying the validity and interpretability of QSANN.

the MC task, our method QSANN could easily achieve a 100% test accuracy while requiring only 25
parameters (18 in the query-key-value part and 7 in the fully-connected part). However, in DisCoCat,
the authors use 40 parameters but get a test accuracy lower than 80%. This result strongly demonstrates
the powerful ability of QSANN for binary text classification. Here, the parameters in the encoder part
are not counted as they could be replaced by fixed representations such as pre-trained word embeddings.
In the RP task, we get a higher training accuracy but a slightly lower test accuracy. However, we observe
that both test accuracies are pretty low when compared with the training accuracy. It is mainly because
there is a massive bias between the training set and the test set, i.e., more than half of the words in
the test set have not appeared in the training one. Hence, the test accuracy highly depends on random
guessing.

Results on Yelp, IMDb, and Amazon data sets. As there are no quantum algorithms for text
classification on these three data sets before, we benchmark our QSANN with the CSANN. The naive
method is also listed for comparison. The results on Yelp, IMDb, and Amazon data sets are summarized
in Table 3. We can intuitively see that QSANN outperforms CSANN and the naive method on all three
data sets. Specifically, CSANN has 785 parameters (768 in the classical query-key-value part and 17
in the fully-connected part) on all data sets. In comparison, QSANN has only 49 parameters (36 in
the query-key-value part and 13 in the fully-connected part) on the Yelp and IMDb data sets and 61
parameters (48 in the query-key-value part and 13 in the fully-connected part) on the Amazon data set,
improving the test accuracy by about 1% as well as saving more than 10 times the number of parameters.
Therefore, QSANN could have a potential advantage for text classification.

Visualization of self-attention coefficient. To intuitively demonstrate the reasonableness of the
GPQSA, in Figure 4, we visualize the averaged quantum self-attention coefficients of some selected test
sequences from the Yelp data set. Concretely, for a sequence, we calculate 1

S

∑S
s=1 α̃s,j for j = 1, . . . , S

and visualize them via a heat map, where S is the number of words in this sequence and α̃s,j is the
quantum self-attention coefficient. As shown in Figure 4, words with higher quantum self-attention
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Figure 5 (Color online) (a) Diagram for adding depolarizing channels in our simulated experiments. The amplitude-damping

channels are added in the same way. (b) Box plots of test accuracy on Yelp data set with depolarizing and amplitude damping

noises. Each box contains nine repeated experiments. The absence of a notable decrease in accuracy implies the noise-resilience

attribute of QSANN.

coefficients are indeed those that determine the emotion of a sequence, implying the power of QSANN
for capturing the most relevant words in a sequence on text classification tasks.

Noisy experimental results on Yelp data set. Due to the limitations of the near-term quantum
computers, we add experiments with noisy quantum circuits to demonstrate the robustness of QSANN
on the Yelp data set. We consider the representative channels [55] such as the depolarizing channel ED(ρ)
and the amplitude-damping channel EAD(ρ):

ED(ρ) := (1− p) ρ+
p

3
(XρX + Y ρY + ZρZ) , (19)

EAD(ρ) := E0ρE
†
0 + E1ρE

†
1 , (20)

with E0 = |0〉〈0|+√
1− p|1〉〈1| and E1 =

√
p|0〉〈1| denoting the Kraus operators. Here, ρ = |ψ〉〈ψ| for a

pure quantum state |ψ〉 and p denotes the noise level. As a regular way to analyze the effect of quantum
noises, we add these single-qubit noisy channels in the final circuit layer to represent the whole system’s
noise, which is illustrated in Figure 5(a).

We take the noise level p as 0.01, 0.1, 0.2 for these two noisy channels, respectively, and the box plots
of test accuracies are depicted in Figure 5(b). From the picture, we see the test accuracy of our QSANN
almost does not decrease when the noise level is less than 0.1, and even when the noise level is up to 0.2,
the overall test accuracy has only decreased a little, showing that QSANN is robust to these quantum
noises.

Noisy experimental results with different ansatzes. Given the recent limitations of quantum
hardware topology, some ansatzes are easier to implement than others. As such, exploring the performance
of QSANN under different ansatzes is crucial to determining the difficulty level in deploying QSANN on
current quantum hardware. Additionally, it is worth investigating which ansatz can most easily achieve
optimal performance of QSANN for specific practical tasks.

In this subsection, we test QSANN using different ansatzes on both MC and RP data sets. As depicted
in Figure 6, these ansatzes utilize different entanglement layers while keeping the single-qubit gates and
the total number of parameters unchanged. Furthermore, a depolarizing channel with p = 0.1 is added
to each ansatz, as shown in (19). Other settings remain the same as in Table 1. The final results are
shown in Table 4, where we see that the performance of the four ansatz types is virtually identical. This
directly indicates that QSANN is resilient to ansatz architectures.

4 Discussions

We have proposed a QSANN by introducing the self-attention mechanism to QNNs. Specifically, the
adopted GPQSA exploits the exponentially large quantum Hilbert space as the quantum feature space,
making QSANN have the potential advantage of mining some hidden correlations between words that
are difficult to dig out classically. Numerical results show that QSANN outperforms the best-known
QNLP method and a simple CSANN for text classification on several public data sets. Moreover, using
only shallow quantum circuits and Pauli measurements, QSANN can be easily implemented on near-term
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Figure 6 Four types of ansatzes used in QSANN. Each has a different entangled layer. (a) Ansatz-0; (b) Ansatz-1; (c) Ansatz-2;

(d) Ansatz-3.

Table 4 Training accuracy and test accuracy of QSANN with four different ansatzes on MC and RP tasks

Method
MC RP

TrainAcc (%) TestAcc (%) TrainAcc (%) TestAcc (%)

Ansatz-0 100.00 100.00 94.74±1.20 67.74±0.00

Ansatz-1 100.00 100.00 94.71±0.11 67.03±0.72

Ansatz-2 100.00 100.00 94.71±0.93 67.38±0.36

Ansatz-3 100.00 100.00 94.74±0.15 67.74±0.00

quantum devices and is noise-resilient, as implied by simulation results. We believe that this attempt to
combine self-attention and QNNs would open up new avenues for QNLP as well as QML.

As a future direction, more advanced techniques such as positional encoding and multi-head attention
can be employed in QNNs for generative models and other more complicated tasks. Another exciting
future research direction is to move toward large language models. However, we must realize that there are
still many challenges and limitations to overcome, particularly in the NISQ era. Despite these challenges,
our work represents a promising step towards this goal, and we are optimistic about the potential of
quantum computing in NLP. As quantum hardware continues to evolve and improve, we anticipate that
our methods can be gradually extended to more complex algorithms and tasks, unlocking new possibilities
for QNLP research.
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