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Abstract Post-layout simulation provides accurate guidance for analog circuit design, but post-layout

performance is hard to be directly optimized at early design stages. Prior work on analog circuit sizing often

utilizes pre-layout simulation results as the optimization objective. In this work, we propose a post-layout-

simulation-driven (post-simulation-driven for short) analog circuit sizing framework that directly optimizes

the post-layout simulation performance. The framework integrates automated layout generation into the

optimization loop of transistor sizing and leverages a coupled Bayesian optimization algorithm to search for

the best post-simulation performance. Experimental results demonstrate that our framework can achieve

over 20% better post-layout performance in competitive time than manual design and the method that only

considers pre-layout optimization.

Keywords analog EDA, transistor sizing, Bayesian optimization, post-layout simulation

1 Introduction

Analog circuit sizing is a critical task in analog design automation. The sizing configuration of transistors
not only dominates the performance in the schematic design but also has a high impact on the subsequent
layout design. Previous analog sizing methods based on pre-layout schematic simulation become incom-
patible with the increasingly sophisticated performance requirements, which drives the emerging research
on analog circuit sizing aware of post-layout effects. With the increasingly sophisticated performance
requirements, analog sizing methods only considering the pre-layout simulation are no longer enough.
Thus, analog circuit sizing is evolving toward the awareness of post-layout performance.

Conventional analog design flow can be split into schematic phase and layout phase. In the pre-
layout phase, an analog designer develops a sizing configuration to meet a performance specification
according to the results of the pre-layout simulation. In the conventional design flow, layout design
requires end-to-end manual participation. Therefore, it is difficult to consider post-layout performance
at the circuit sizing stage, as re-sizing the schematic design could lead to re-drawing the layout manually,
which could be extremely time-consuming especially when such a procedure needs to iterate for design
closure. However, the emergence of fully automated layout generation tools, such as ALIGN [1], BAG [2,
3], and MAGICAL [4], bring new opportunities for the revolution of the existing fully manual design
methodology. As these tools are designed under the philosophy of “no-human-in-the-loop”, they can be
integrated into the optimization loops for efficient layout generation. The insuperable barrier between
the pre-layout design phase and the layout design phase can be broken.

With the technology node shrinking to a smaller scale and the performance requirements becoming
more specialized, the discrepancy between pre-layout schematic simulation and post-layout simulation
cannot be ignored. Recent studies on analog circuit sizing unveil the insufficiency of simply relying on
the pre-layout simulation alone for analog circuit sizing. Liu et al. [5] proposed a post-layout parasitic-
aware circuit sizing method using graph neural network as a surrogate model. Ranjan et al. [6] took the
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post-layout parasitics effects into account with a symbolic performance model. BagNet [7] introduces a
sizing framework that uses a deep neural network to select a sizing configuration, generate a layout, and
extract parasitics for the selected sizing configuration. AutoCkt [8] utilizes deep reinforcement learning
for circuit synthesis taking post-layout parasitics into account. These studies integrate the aforementioned
layout generation tools as the internal layout generators. However, none of those studies consider the
post-simulation performance as the direct optimization objective. Moreover, most studies leverage neural
networks as surrogate models, which usually require large amounts of data to achieve high accuracy for
finding high-quality solutions [9, 10]. To accelerate the analog design closure, we should go one step
further to optimize the post-simulation performance directly.

Despite the diverse modeling of analog circuit sizing problem, most of the sizing studies treat the
sizing solution synthesis as a black-box optimization problem. Early attempts include using simulated
annealing on symbolic AC models, geometric programming, and evolutionary algorithms [11]. Recent
work [12] also explores reinforcement learning combined with graph neural networks for transferable
transistor sizing. Li et al. [13] proposed an actor-critic reinforcement learning approach to optimize post-
simulation performance. However, they do not combine pre-layout simulation with post-layout simulation
to consider the sizing process. Besides, Bayesian optimization is also adopted in analog circuit sizing for
optimizing the pre-layout performance [14,15], as it is suitable for problems with objectives expensive to
compute. Recent work considers post-layout performance with Bayesian fusion technique [16, 17], which
calculates the initial performance model and requires an additional training process.

To enable direct optimization for the post-layout performance, we propose a post-simulation-driven
analog circuit sizing framework. We create a Bayesian optimization paradigm of two coupled Bayesian
optimization models. The specially designed framework can perform well in terms of efficiency as well as
post-layout performance.

We summarize our major contributions as follows:

• This work directly optimizes post-layout performance at the analog circuit sizing stage.

• We propose a new paradigm of coupled Bayesian optimization and apply this optimization technique
to the sizing problem, to leverage both the efficiency of the pre-layout simulation and the precision of the
post-layout simulation.

• Experimental results on real-world analog circuit designs demonstrate the advantages of our frame-
work to enhance the post-layout performance in terms of multiple metrics.

The rest of this paper is organized as follows. Section 2 recalls the pre-layout simulation and post-layout
simulation (post-simulation for short), and introduces the basic idea of Bayesian optimization. In the
last part of Section 2, we formulate the post-simulation-driven analog circuit sizing problem. Section 3
takes a journey on the algorithm details of our proposed framework. Section 4 discusses how we set up
our experiment and demonstrates the experimental results. Section 5 summarizes the whole paper.

2 Preliminaries

In this section, we introduce the background of our framework, including pre-layout simulation, post-
layout simulation, and Bayesian optimization. Besides, we formulate the post-simulation-driven circuit
sizing problem.

2.1 Pre-layout simulation vs. post-layout simulation

Previous studies on analog circuit sizing often utilize pre-layout simulation as a performance modeling
method [14]. Figure 1 illustrates an example of pre-layout simulation results and post-layout simulation
results on loop gain. We plot the results on the gain results varying with two selected sizing parameters.
The gain results of pre-layout simulation form the surface of blue dotted points and the gain results
of post-layout simulation form the surface of red cross points. As we can see, the pre-layout simulation
results are generally more optimistic than the post-layout simulation. The surface of pre-layout simulation
results varies much more smoothly with the two parameters. From a global perspective, the pre-layout
simulation results turn out to have a similar trend to the post-layout simulation. However, when diving
into a local region, the pre-layout simulation cannot model the accurate post-layout performance. Note
that this figure is a direct view of how one metric varies with two parameters, while a realistic sizing
scenario involves multiple metrics and a series of sizing parameters. For the high-dimensional optimization
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Figure 1 (Color online) Pre-layout and post-layout simulation results on Gain varying with two sizing parameters.

problem, the surfaces of pre-layout simulation and post-layout simulation in the high-dimensional space
will be way more different.

The results of the pre-layout simulation can neither reflect the interconnect parasitics nor all the
other complex layout-dependent effects on the circuit performance, which introduces a bias that cannot
be ignored. As directly optimizing the post-layout performance is desired, switching to post-layout
simulation could be a potential solution. However, post-layout simulation suffers from layout generation
overhead and heavy computation costs. It is intuitive to discover a hybrid high-performance sizing
framework combining pre-layout simulation and post-layout simulation.

2.2 Bayesian optimization

Bayesian optimization is a widely used strategy for global black-box optimization problems, especially for
those expensive-to-evaluate black-box functions [18–21]. The essence of Bayesian optimization is rooted
in the surrogate model and acquisition function. The surrogate model is supposed to approximate the
objective function and quantify the uncertainty on the posterior distribution. The acquisition function
proposes sampling points and evaluates the usefulness of the sampled point for maximizing the objective
function.

The most commonly used surrogate model is the Gaussian process (GP) [22]. A GP(µ0, k) is a non-
parametric model described by prior mean function µ0 : X 7→ R and covariance function k : X × χ 7→
R. The unknown function values f are modeled as a joint Gaussian distribution. Given f , the noisy
observations y will be normally distributed:

f | X ∼ N (m,K),

y | f , σ2 ∼ N (f , σ2I),
(1)

where the ith element of the mean vectorm ismi := µ0(xi) and the (i, j) element of the covariance matrix
K is Ki,j := k(xi,xj). The distribution on f gives the prior distribution p(f) for the GP. For a newly
observed data point x, the conditional probability of random variable f(x) on previous observations D
is normally distributed:

µ(x) = µ0(x) + k(x)T(K + σ2I)−1(y −m),

σ2(x) = κ(x,x)− k(x)T(K + σ2I)−1k(x),
(2)

where k(x) is the covariance between x and x1:n ∈ D. The posterior functions will guide the selection
for the next data point to be observed.

A key challenge for the acquisition function is to trade off exploitation and exploration. Exploitation
means sampling the next data point in which the prediction of the surrogate model is high, while ex-
ploration means sampling the next data point in which the surrogate model is highly uncertain. That
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is, exploration encourages exploring the objective function space and exploitation encourages finding a
high objective. Common mechanisms for acquisition function include expected improvement (EI) [23],
probability of improvement [24], Thompson sampling [25], and entropy search portfolio [26].

The EI is a widely applicable mechanism for acquisition function. The EI is defined as

EIyt(x) :=

∫ ∞

−∞

max(yt − y, 0)pM (y|x)dy, (3)

where yt is a designated threshold, and M is some model for black-box function f : X → R
N . EI is

the expectation under model M that f exceeds the threshold yt. The criteria of the EI mechanism is to
optimize EI to approximate f(x).

2.3 Problem formulation

The goal of our framework is to optimize the post-layout performance in the circuit sizing stage. The
measurement of analog circuit performance often involves multiple performance metrics. Thus, the mod-
eling of the analog circuit sizing can be seen as a multi-objective constrained optimization. To better
formulate the sizing problem, we adopt the figure-of-merit (FOM) representation. We describe FOM
formulation for analog sizing as follows:

max
P

FOM(P ) =
∑

i

αifi(P )

s.t. thresjlow 6 fj(P ) 6 thresjhigh,

(4)

where P represents the sizing configuration, fi(·) and fj(·) denote the metrics of post-layout performance,
αi is the corresponding coefficient for the ith metric term in the FOM, and thresj are thresholds to
constrain the jth metric. Each sizing configuration P represents a set of assignments for all sizing
parameters, including the number of fingers and finger width for each transistor. We define the sizing
parameter space as the high-dimensional space of all feasible assignments for sizing parameters, and
the sizing configuration is sampled from the sizing parameter space. The proposed framework aims to
maximize FOM without constraint violation over sizing parameters and finally provides a good sizing
solution that each metric performs well in post-layout simulation.

3 Algorithm

In this section, we introduce our analog circuit sizing framework driven by post-layout simulation. The
framework builds up a compact closure considering the post-layout simulation at early sizing stage. We
take advantage of automatic layout generation to integrate the post-layout simulation into the closure.
For efficiency considerations, we utilize pre-layout simulation to compensate for the time-consuming
post-simulation loop. We design a coupled Bayesian optimization that makes use of pre-layout simula-
tion results to explore the parameter space and apply post-layout simulation results to guide the best
FOM exploiting. As analog circuit sizing involves discrete parameters such as the number of fingers
for a transistor, we consider the Bayesian estimator for mixed-variable optimization. We will detail the
proposed framework in the following subsections.

3.1 Overview of our framework

Figure 2 shows the workflow of our framework. Different from previous analog sizing work, we propose
a novel coupled Bayesian optimization paradigm. Our framework combines two models named Bayes-α
and Bayes-β. Bayes-α consists of a tree-structured Parzen estimator (TPE) and a GP. Bayes-α applies
Bayesian optimization on the black-box function of pre-layout simulation. Bayes-β attempts to optimize
the black-box function of a more complex procedure with an automatic layout generator and post-layout
simulation in it. The intrinsics of the two black-box functions are the pre-layout performance and post-
layout performance correspondingly.

Our framework combines the two GP-based Bayesian optimization parts of Bayes-α and Bayes-β in a
way we call coupled Bayesian optimization. We propose the concept of coupled Bayesian optimization.



Gao X H, et al. Sci China Inf Sci April 2024, Vol. 67, Iss. 4, 142401:5

Bayes-α Bayes-β

Gaussian process GP-αTPE sampling

Sample Observe Observe

Sizing config Pre-layout perf Post-layout perf

GP-α params;

pre-layout perf

Gaussian process GP-β Acquisition function AF-β

SampleObserve

Pre-layout simulation

Sizing config

Automatic layout 

generator
Post-layout simulation

Transfer

Layout

Sizing params

Input circuit netlist

Output sizing config

Sizing params

Figure 2 (Color online) Overall flow of our proposed framework.

Definition 1. A group of Bayesian optimization models is said to be coupled if

(1) they share the same form of acquisition functions;

(2) their surrogate models can be seen as generating from the same rendering process with different
values of hyperparameters.

To be more specific, in our framework, Bayes-α and Bayes-β are coupled, as we can transfer the belief
that surrogate model GPα gains from the pre-layout performance black-box function to the domain of
surrogate model GPβ . That is, we can make use of the observed FOM values in pre-layout simulation to
benefit the sampling in Bayesian optimization for post-layout performance. We will discuss more about
how to realize this powerful property in Subsection 3.2.

As we mentioned in Subsection 2.2, a well-designed acquisition function is supposed to trade off ex-
ploration and exploitation in a balanced way. For two coupled Bayesian optimization models, there is a
different way to trade off exploration and exploitation. Our framework makes Bayes-α explore the sizing
parameter space and Bayes-β focus on exploiting the higher FOM values. We will tackle sampling from
the mixed parameter space for Bayes-α in Subsection 3.3. Furthermore, we show how we do efficient
exploration with a TPE for Bayes-α in Subsection 3.4.

As the coupled Bayesian optimization is an iterative process, our framework conducts iterations with
the two GPs GPα and GPβ . Frequent calls of post-layout simulation can be extremely time-consuming,
and therefore we set a variable interval to control how many iterations we run one single post-layout
simulation loop. Before sampling from Bayes-β, we update Bayes-β with Bayes-α.

3.2 Transfer surrogate model

As the computation cost of automatic layout generation and post-layout simulation is far greater than
pre-layout simulation, our framework explores how to make less observation in Bayes-β but manages to
approximate the best FOM of post-layout simulation. To benefit the Bayes-β from the richer sampling
points but not accurate simulation results in Bayes-α, we explore the transfer of the surrogate model in
Bayes-α to the one in Bayes-β.

Bayes-α and Bayes-β have their own GP-based surrogate model, and the GP GPα of Bayes-α gains
the belief about the black-box function fα. To clarify, we use the notation fα for the black-box function
of pre-layout simulation, and fβ for the black-box function of post-layout simulation. A naive strategy
is to regard the GPα and GPβ as two independent processes, but the strategy will not work due to the
lack of observed data points for GPβ. We propose a strategy to gain belief about black-box fβ from both
GPβ and GPα.

Our strategy is inspired by the re-parameterization trick [27,28]. Note that for an arbitrary parameter
configuration x, the value fα(x) and fβ(x) are strongly correlated in some way unknown. We assume
that they are jointly distributed as

[

fα(x)

fβ(x)

]

∼ N

([

µα

µβ

]

,

[

Kα Kα,β

Kβ,α Kβ

])

, (5)
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where µα, µβ are mean vectors, and Kα, Kβ are GP kernels, defined in (2). Kα,β and Kβ,α are
covariance matrices between fα and fβ.

Consider GPα and GPβ as two models generated by the same sampler from two different sets of
hyperparameters. We adapt the re-parameterization trick to formulate the posterior distribution [27].
For a new observation of parameter configuration (x, fα(x), fβ(x)), we first update K with general
Bayesian optimization strategy, and then update Kβ for GPβ:

Kβ = Kβ −Kβ,α(Kα)−1Kα,β. (6)

3.3 Tackle mixed-variable optimization

Traditional Bayesian optimization methods usually deal with black-box functions with continuous vari-
ables. Analog circuit sizing faces optimizing continuous variables and discrete variables simultaneously.
The Bayesian optimization does not naturally support mixed-variable optimization. To enhance the
optimization process, we design our acquisition function to sample from both continuous and discrete
variables, based on the TPE approach.

The TPE approach derives from the EI optimization scheme [18]. As we mentioned before, the
Gaussian-process-based method models p(y|x), and furthermore TPE models both p(y|x) and the dis-
tribution of objective function values p(y). We inherit the replacing strategy from the TPE that models
p(y|x) by replacing the prior distributions on sizing parameter space with non-parametric densities. The
most used parameters like the number of fingers and finger width can be described with uniform variables
and quantized uniform variables. Under the replacing strategy, for example, we can describe a parameter
of finger width as a truncated Gaussian mixture. Therefore, we can produce a variety of densities over
the sizing parameter space X and we define two densities for sizing parameter space:

ℓ(x) =
∂x ∗ P ℓ

∂µX

, x ∈ {xi|f(xi) < y∗},

g(x) =
∂x ∗ P g

∂µX

, x ∈ {xi|f(xi) > y∗},

(7)

where y∗ is the best FOM value observed yet, ℓ(x) represents the density induced from the observations
{xi} ∈ X whose prediction is less than y∗, g(x) represents the density induced from other observed
xi. x ∗ P ℓ is the probability measure on measurable space (X ,Aℓ), Aℓ := {xi|f(xi) 6 y∗} and µX is
a reference measure. Eq. (7) defines how we get the two densities ℓ(x) and g(x) by Radon-Nikodym
derivative. We adopt the formulation from [29] to numerically calculate the ℓ(x) and g(x). Here we gives
how we calculate ℓ(x) as example

ℓ(x) =
1

nℓh(nℓ)

∑

xi

K

(

x− xi

h(nℓ)

)

, xi ∈ Aℓ, (8)

where nℓ stands for the size of set Aℓ, K(·) is a real-valued Borel function, and h(·) is a sequence of
positive real numbers, and they satisfy the conditions described in [29]. As we can calculate (8) for both
continuous and discrete variables, the density definition is applicable to all parameter spaces met in the
analog circuit sizing problem. We will continue the subsequent deduction for acquisition function design
in the next subsection.

3.4 Control the acquisition function

As we expect Bayes-α to explore more parameter space, a controlling strategy for TPE is desired. We
adapt the TPE [18] to control whether to sample aggressively. Sampling aggressively implies more
exploitation and sampling less aggressively indicates more exploration. Following (7) and (8), Then we
can define the p(x|y) on sizing parameter space using the pre-defined ℓ(x) and g(x)

p(y|x) =

{

ℓ(x), y < y∗,

g(x), y > y∗.
(9)
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Under the assumption of (9), we can design acquisition functions for our framework to optimize the
EI introduced in (3). By a simple application of the Bayesian theorem, we derive

EIy∗(x) =

∫ y∗

−∞

(y∗ − y)
p(x|y)p(y)

p(x)
dy, (10)

here we take y∗ for the threshold yt. As the marginalization property indicates, we have

p(x) =

∫

R

p(x|y)p(y)dy, (11)

from which we deduce that

∫ y∗

−∞

(y∗ − y)p(x|y)p(y)dy = ℓ(x)

∫ y∗

−∞

(y∗ − y)p(y)dy

= p(y < y∗)y∗ℓ(x)− ℓ(x)

∫ y∗

−∞

p(y)dy. (12)

Therefore, we get the proportional formulation

EIy∗(x) =
p(y < y∗)y∗ℓ(x)− ℓ(x)

∫ y∗

−∞
p(y)dy

p(y < y∗)ℓ(x) + p(y > y∗)g(x)
, (13)

EIy∗(x) ∝

(

p(y < y∗) +
g(x)

ℓ(x)p(y > y∗)

)−1

. (14)

From (14), we know that our proposed acquisition function will be more likely to sample the next

sizing parameter configuration x from parameter space X with higher g(x)
ℓ(x) .

As we discussed before, we expect the Bayesian optimization Bayes-α to explore more about the
parameter space. We assign a less aggressive threshold, that is, a small y∗ for Bayes-α, to encourage
exploring more parameter space.

4 Experimental results

In this section, we demonstrate the efficiency of our proposed framework. We conduct experiments on
two real-world analog circuits, including an inverter-based operational transconductance amplifier (OTA)
and a low-dropout regulator (LDO). The two circuits are designed under TSMC 40 nm technology. We
conduct our experiments on a CentOS workstation with an Intel Xeon Gold 5218R CPU and 128 GB
memory. We adopt the MAGICAL [4, 30, 31] as our automatic layout generator. All the pre-layout
simulation results and post-layout simulation results are generated from Cadence Virtuoso and Mentor
Graphics Calibre.

We implement a baseline considering pre-layout simulation (denoted as Plain) and another baseline
considering both pre-layout simulation and post-layout simulation (denoted as BMF). The former adopts
the basic Bayesian optimization method from [5]. The latter applies the Bayesian model fusion tech-
nique [16] to train a post-layout performance Bayesian model and then uses the Bayesian model to find
a sizing configuration. We set the number of post-layout training samples the same as the post-layout
simulation iterations. The number of iterations in the follow-up Bayesian optimization also takes the
same value. We list the specific values in Subsections 4.1 and 4.2.

We estimate the runtime by program execution time other than CPU time. We demonstrate the
execution pattern of our optimization flow with Figure 3. Bayes-α and Bayes-β run asynchronously in
most of the time. Bayes-β messages Bayes-α a sampled sizing configuration at the beginning of a Bayes-β
iteration. Bayes-α messages Bayes-β the parameters of GPα and the pre-layout simulation result of the
sampled sizing configuration. As for BMF [16], we first run pre-layout simulations and select a part of
sizing configurations with top performance for the training, which is a sequential execution pattern.
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4.1 Inverter-based OTA

The schematic of the OTA is shown in Figure 4. This circuit is reproduced from [4], which is a taped-out
case.

We perform symmetry detection for this OTA circuit [32] and reduce the design parameters to 20 for
the sizing process. To meet a reasonable design requirement, we construct the specific form of FOM for
this circuit:

max
P

α1Gain + α2 lg UGB

s.t. threslow 6 PM 6 threshigh,
(15)

where Gain denotes the close loop gain, UGB stands for the unity gain bandwidth, and PM represents
the phase margin. As Gain involves logarithmic calculation, we add a logarithmic form for the other term
UGB to normalize the optimization objective. In this experimental setup, we consider Gain and UGB to
be equally important, and thus we set their coefficient α1 and α2 to 1.0, respectively. To represent the
constraint on phase margin, we introduce a penalty term to the optimization objective. To guarantee
the circuit functionality, the phase margin is supposed to range from 45 to 80, and therefore we set
threslow = 45 and threshigh = 80.

The penalty term is defined as

penalty = max(threshigh,PM)−min(threslow,PM). (16)

Plain is the basic Bayesian optimization method on pre-layout simulation results [5]. BMF-16 and
BMF-32 is the Bayesian model fusion which employs 16 and 32 post-layout training samples, respectively.
The iterations on the predicted Bayesian model also take 16 and 32, respectively. Manual is an open-
source taped-out case from MAGICAL [4]. In Table 1, Ours-10 and Ours-5 are our methods of coupled
Bayesian optimization. The x of Ours-x represents the interval that we run post-layout simulation once



Gao X H, et al. Sci China Inf Sci April 2024, Vol. 67, Iss. 4, 142401:9

Table 1 FOM results and post-simulation performance of the inverted-based OTA

Performance Plain [5] BMF-16 [16] BMF-32 [16] Manual [4] Ours-10 Ours-5

Gain (dB) 17.09 17.19 20.34 14.15 19.89 20.52

UGB (MHz) 7.11 7.35 8.04 5.11 8.54 9.03

PM (◦) 45<,<80 45<,<80 45<,<80 45<,<80 45<,<80 45<,<80

FOM 32.86 33.00 36.24 29.59 35.85 36.53

#PreSimu 160 160 160 – 160 160

#PostSimu – 16 32 – 16 32

Runtime 87 min 2 s 140 min 5 s 198 min 10 s – 95 min 13 s 104 min 27 s

VDD

LDO OUT

VFB OUT

GND

VBIAS
IBIAS

VFB IN

EN

IEN

Figure 5 Schematic of the LDO.

every x runs of the pre-layout simulation. We restrict the maximum number of iterations to 160 and
initialize the optimization process with random starting points. By iteration, we mean one single loop
of sampling a sizing configuration, measuring by simulation, and updating our model. As we know
from Figure 3, the runtime of post-layout iteration could overlap with the runtime of several pre-layout
iterations. We estimate the time of pre-layout simulation (25 ± 5 s), the time of layout generation (70
±50 s), the time of post-layout simulation (80± 15 s), the time of sample&observe (6 5 s), and the time
of transferring model (6 5 s) for one iteration. We set the timeout as 240 s for the layout generator.

Table 1 summarizes the post-layout performance of the inverter-based OTA circuit. We present the
performance with gain, unity gain bandwidth, and phase margin metrics. #PreSimu and #PostSimu
represent the number of runs of pre-layout simulation and post-layout simulation. Both Ours-10 and Ours-
5 outperform Plain and manually sized design. Ours-10 outperforms BMF-16 and Ours-5 outperforms
BMF-32. Our framework satisfies the constraint on phase margin. Ours-5 achieves a 45% improvement
in gain, a 76% improvement in unity gain bandwidth, compared with manual sizing configuration, and
a 20% improvement in gain, a 27% improvement in unity gain bandwidth, compared with Plain with
Bayesian optimization on pre-layout simulation.

4.2 LDO

The schematic of the LDO is shown in Figure 5. This circuit is designed by an experienced designer. We
use 12 design parameters for sizing this circuit. The specific form of FOM for this LDO circuit is defined
as

max
P

α1Gain + α2VOU

s.t. threslow 6 PM 6 threshigh,
(17)
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Table 2 FOM results and post-simulation performance of the LDO

Performance Plain [5] BMF-30 [16] BMF-60 [16] Manual Ours-4 Ours-2

Gain (dB) 70.16 72.21 72.71 73.22 73.45 72.15

OU (V) 1.40 0.73 0.36 1.43 0.47 0.28

PM (◦) 60<,<90 60<,<90 60<,<90 60<,<90 60<,<90 60<,<90

FOM −6.98 −0.08 3.63 −6.98 2.65 4.42

#PreSimu 120 120 120 – 120 120

#PostSimu – 30 60 – 30 60

Runtime 54 min 15 s 99 min 2 s 143 min 52 s – 96 min 30 s 105 min 50 s
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Figure 6 (Color online) Best FOM results of different #PreSimu and #PostSimu settings. (a) Different #PreSimu when #Post-

Simu = 60; (b) different #PostSimu when #PreSimu = 120; (c) different #PreSimu when #PostSimu = 0; (d) comparing #PreSimu

= 120 and #PreSimu = 0.

where Gain denotes the close-loop gain, PM denotes the phase margin, VOU stands for overshot up
voltage. As the design is supposed to decrease the overshot up voltage, we assign a negative coefficient
for the term. To be more specific, we take α1 = 0.1 and α2 =−10.0 so that the two terms are of the same
order of magnitude. The penalty for phase margin constraint follows the formulation shown in (16), in
which threslow takes 60 and threshigh takes 90.

Table 2 shows the results of post-layout performance for the LDO circuit. Here we demonstrate Ours-4
and Ours-2 for this case, which run one post-layout simulation per 4 and 2 iterations, respectively. We
choose smaller intervals 4 and 2 for this case because there is a large gap between the distributions of the
pre-layout simulation and the post-layout simulation of the LDO. Similar to the first case, we compare
our framework with the manual sizing configuration Manual and the baseline method Plain, BMF-30,
BMF-60. Here BMF-30 and BMF-60 take 30 and 60 post-layout training samples, respectively. We
estimate the time of pre-layout simulation (20±5 s), the time of layout generation (20±15 s), the time of
post-layout simulation (65±15 s), the time of sample&observe (6 5 s), and the time of transferring model
(6 5 s) for one iteration. As shown in the Table 2, both Ours-4 and Ours-2 achieve better performance
in multiple metrics. Ours-4 achieves the best value of gain. Ours-2 obtains the best value of overshot up
voltage. Taken together, our framework outperforms the manual sizing configuration and basic Bayesian
optimization in FOM values within a reasonable runtime.

Figure 6 shows the performance of our method with respect to different #PreSimu and #PostSimu set-
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tings. Figure 6(a) shows the best FOM results with different pre-layout iterations when fixing #PostSimu
= 60, and Figure 6(b) shows the results with different post-layout iterations when fixing #PreSimu = 120.
Both pre-layout and post-layout iterations contribute to the post-layout performance. Figure 6(c) shows
the performance of Plain with different pre-layout iterations when their runtime is close to Ours-2. We
can see that barely with pre-layout simulation, the post-layout performance saturates quickly even given
more simulations. Figure 6(d) compares the performance over post-layout iterations between #PreSimu
= 0 and #PreSimu = 120. Note that the blue line shares the same data with Figure 6(b). We can see
that combining post-layout simulation with pre-layout simulation can significantly improve the efficiency
of searching for better sizing configuration. With these experiments, we conclude that incorporating pre-
layout simulation and post-layout simulation can improve both the quality of performance and efficiency.
Meanwhile, our proposed algorithm can synergistically balance amounts of pre-layout simulations and
post-layout simulations in an asynchronous pattern.

5 Conclusion

In this paper, we propose a post-layout-simulation-driven analog circuit sizing framework. By integrat-
ing the automatic layout generator and post-layout simulation into the circuit sizing loop, we develop a
method that directly optimizes the post-layout performance. Our framework leverages a coupled Bayesian
optimization technique, to represent a group of strongly correlated Bayesian optimization models satisfy-
ing special properties. The coupled Bayesian optimization helps our framework trade-off exploration and
exploitation. Our framework takes advantage of the efficiency of pre-layout simulation to explore more
sizing parameter space and the post-layout simulation to exploit parameter configuration which is likely
to induce a high FOM value. Compared with the Bayesian optimization on pre-layout simulation alone
and the manual sizing results, our framework is more promising for generating sizing configuration with
better post-layout performance. In future work, we can further enhance the efficiency of our proposed
framework.
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