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Appendix A Adjusting the Clipping Value

Considering the sparsification process, we have gﬁ (Di,m) = gi (Di,m) ® m , where D; ,, is the m-th sample of the i-th client,
© represents the element-wise product process, mf is a binary mask vector and its element me r € {0,1}, k€ {1,...,K} and
K = |m!|. Because probabilities of m! , =0 and m!, =1 are equal to s} and (1 — s}), respectively, we have
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Therefore, we can obtain E [||g} (Ds,m) ® m{||] < \/g llgi (Pi,m)||- This completes the proof. O

Appendix B Convergence Analysis
First, we define 1¢ £ Zj.vzl aﬁ,j to denote whether the i-th client has been allocated to an available channel. We can note that
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Using the L-Lipschitz smoothness, we can obtain
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Then, we can rewrite E; as
— -1
Ei=-n) _p; 1Z(VF(w ) B[VF;(w;) ©mil) —n > pil; 3 (VF(w'), En}’ ©mi)). (B3)
ieu £=0 ieu £=0
Because E[n}‘] = 0 and (z,y) = $(lyll* + 2] — |z — y||*), we have
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Further, we have
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Due to Jensen’s inequality and (A1), we obtain
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Then, we can bound Ei1 as
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Combining E; and E2, we can obtain
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To ensure the training performance, we will select a proper DP noise variance to have ]E[anZHZ] = ]E[Hn:“w] < ©. Due to the
bounded gradient, by setting nL7 < 1 and n®L? <« 1, we obtain
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Rearranging and summing ¢ from 0 to T — 1, we have
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This completes the proof. O

Appendix C Solution of the Optimal Gradient Sparsification Rate

To obtain the optimal gradient sparsification rate, we first derive the relation between 5; and V?'. Hence, we first consider the
condition Q*'9¢ > 0 and have
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Due to the maximizing process, this problem can be divided into N subproblems based on the client with the maximum delay.
First, let us discuss the condition that the delay of the client owning the j-th channel is the maximum one among all clients. We
assume the j-th channel is allocated to the i-th client and its delay is the maximum one. Thus, we can obtain
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If si’mm > 1, there is no solution to this subproblem. Otherwise, we can derive the first derivative of V' with respect to sg of the
j-th subproblem as follows:
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For other fast clients, i.e., i’ € U/i, we have

If ) < A, it can be found that as the value of s: increases, the objective V! decreases. Hence, we have sz’* =1.
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We can also derive the first derivative of V* with respect to s:.’, as gvt = 7pi.’, A. Therefore, we have s:‘,,’ = min{s};**, 1}.
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If piQ7 ) > A, we can find that as the value of s,f- increases, the objective V' increases. Therefore, the system need
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to select a small gradient sparsification rate 3; in [sth7 1] for the i-th client. However, for the i’-th client, i.e., i’ € U/i, we want
to select a large gradient sparsification rate in [s“‘, min{1, s77**}] because the first derivative of V' with respect to s:, is negative.
‘We can decrease the s from 1 and then smax may be selected. Therefore, the first derivative of V' with respect to sﬁ should be

modified because s"‘ax is related to s,i. When the first derivative of V' with respect to st become negative, let us stop decreasing

the value of st. We can note that this way can obtain the optimal sf’* and s:} = min{s};**, 1}.
Other subproblems can be addressed using the same method. Overall, after addressing all N subproblems, the optimal solution
can be obtained as the final output. This completes the proof. O

Appendix D Feasibility Analysis

We first introduce the Lyapunov function T'(Q?) = 5 Lt de)2 +3 Eleu( QY fa) , in which the drift from one communication round
can be given as
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opt

Based on Theorem 4.5 in [1] and Lemma 1 in [2], existing (°P* > 0, we can obtain the following inequality:

E [V”(Pt, st at’)] < C1 +¢°P. (D5)
By summing this equation over t = 0,1,...,T, we obtain
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This completes the proof. O
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