• Supplementary File •

Gradient Sparsification for Efficient Wireless Federated Learning with Differential Privacy

Kang Wei¹, Jun Li^{1*}, Chuan Ma^{2,7}, Ming Ding⁴, Feng Shu^{3,1}, Haitao Zhao⁵, Wen Chen⁶ & Hongbo Zhu⁵

¹Nanjing University of Science and Technology, Nanjing 210096, China;

²Zhejiang Lab, Hangzhou 311121, China;

³Hainan University, Haikou 570228, China;

⁴CSIRO, Sydney 2015, Australia;

⁵Nanjing University of Posts and Telecommunications, Nanjing 210003, China;

⁶Shanghai Jiao Tong University, Shanghai 200240, China

Appendix A Adjusting the Clipping Value

Considering the sparsification process, we have $\boldsymbol{g}_{i}^{t}\left(\mathcal{D}_{i,m}\right)=\boldsymbol{g}_{i}^{t}\left(\mathcal{D}_{i,m}\right)\odot\boldsymbol{m}_{i}^{t}$, where $\mathcal{D}_{i,m}$ is the m-th sample of the i-th client, \odot represents the element-wise product process, \boldsymbol{m}_{i}^{t} is a binary mask vector and its element $\forall m_{i,k}^{t}\in\{0,1\},\ k\in\{1,\ldots,K\}$ and $K=|\boldsymbol{m}_{i}^{t}|$. Because probabilities of $m_{i,k}^{t}=0$ and $m_{i,k}^{t}=1$ are equal to s_{i}^{t} and $(1-s_{i}^{t})$, respectively, we have

$$\begin{split} (\mathbb{E}[\|\boldsymbol{g}_{i}^{t}(\mathcal{D}_{i,m})\odot\boldsymbol{m}_{i}^{t}\|])^{2} \leqslant \mathbb{E}[\|\boldsymbol{g}_{i}^{t}(\mathcal{D}_{i,m})\odot\boldsymbol{m}_{i}^{t}\|^{2}] &= \mathbb{E}\left[\sum_{k=1}^{K}(\boldsymbol{g}_{i,k}^{t}(\mathcal{D}_{i,m})\boldsymbol{m}_{i,k}^{t})^{2}\right] = \sum_{k'=0}^{K}\frac{k'\binom{K}{k'}}{K}(s_{i}^{t})^{k'}(1-s_{i}^{t})^{K-k'}\sum_{k=1}^{K}(g_{i,k}^{t}(\mathcal{D}_{i,m}))^{2} \\ &= \sum_{k'=0}^{K}\binom{K-1}{k'-1}(s_{i}^{t})^{k'}(1-s_{i}^{t})^{K-k'}\sum_{k=1}^{K}(g_{i,k}^{t}(\mathcal{D}_{i,m}))^{2} = s_{i}^{t}\|\boldsymbol{g}_{i}^{t}(\mathcal{D}_{i,m})\|^{2}. \end{split}$$

$$\text{Therefore, we can obtain } \mathbb{E}\left[\|\boldsymbol{g}_{i}^{t}(\mathcal{D}_{i,m})\odot\boldsymbol{m}_{i}^{t}\|\right] \leqslant \sqrt{s_{i}^{t}}\|\boldsymbol{g}_{i}^{t}(\mathcal{D}_{i,m})\|. \text{ This completes the proof.} \end{split}$$

Appendix B Convergence Analysis

First, we define $\mathbb{1}_i^t \triangleq \sum_{j=1}^N a_{i,j}^t$ to denote whether the *i*-th client has been allocated to an available channel. We can note that

$$\boldsymbol{w}^{t+1} - \boldsymbol{w}^{t} = \sum_{i \in \mathcal{U}} p_{i}^{t} \mathbb{1}_{i}^{t} \boldsymbol{w}_{i}^{t,\tau} - \boldsymbol{w}_{i}^{t,0} = -\eta \sum_{i \in \mathcal{U}} p_{i}^{t} \mathbb{1}_{i}^{t} \sum_{\ell=0}^{\tau-1} (\nabla F_{i}(\boldsymbol{w}_{i}^{t,\ell}) \odot \boldsymbol{m}_{i}^{t} + \boldsymbol{n}_{i}^{t,\ell} \odot \boldsymbol{m}_{i}^{t}). \tag{B1}$$

Using the L-Lipschitz smoothness, we can obtain

$$\mathbb{E}[F(\boldsymbol{w}^{t+1}) - F(\boldsymbol{w}^{t})] \leqslant \mathbb{E}[\langle \nabla F(\boldsymbol{w}^{t}), \boldsymbol{w}^{t+1} - \boldsymbol{w}^{t} \rangle] + \frac{L}{2} \mathbb{E}[\|\boldsymbol{w}^{t+1} - \boldsymbol{w}^{t}\|^{2}]$$

$$= \underbrace{-\mathbb{E}\left[\left\langle \nabla F(\boldsymbol{w}^{t}), \eta \sum_{i \in \mathcal{U}} p_{i}^{t} \mathbb{1}_{i}^{t} \sum_{\ell=0}^{\tau-1} (\nabla F_{i}(\boldsymbol{w}_{i}^{t,\ell}) \odot \boldsymbol{m}_{i}^{t} + \boldsymbol{n}_{i}^{t,\ell} \odot \boldsymbol{m}_{i}^{t})\right\rangle\right]}_{E_{1}} + \frac{\eta^{2} L}{2} \underbrace{\mathbb{E}\left[\left\|\sum_{i \in \mathcal{U}} p_{i}^{t} \mathbb{1}_{i}^{t} \sum_{\ell=0}^{\tau-1} (\nabla F_{i}(\boldsymbol{w}_{i}^{t,\ell}) \odot \boldsymbol{m}_{i}^{t} + \boldsymbol{n}_{i}^{t,\ell} \odot \boldsymbol{m}_{i}^{t})\right\|^{2}\right]}_{E_{2}}.$$
(B2)

Then, we can rewrite E_1 as

$$E_{1} = -\eta \sum_{i \in \mathcal{U}} p_{i}^{t} \mathbb{1}_{i}^{t} \sum_{\ell=0}^{\tau-1} \langle \nabla F(\boldsymbol{w}^{t}), \mathbb{E}[\nabla F_{i}(\boldsymbol{w}_{i}^{t,\ell}) \odot \boldsymbol{m}_{i}^{t}] \rangle - \eta \sum_{i \in \mathcal{U}} p_{i}^{t} \mathbb{1}_{i}^{t} \sum_{\ell=0}^{\tau-1} \langle \nabla F(\boldsymbol{w}^{t}), \mathbb{E}[\boldsymbol{n}_{i}^{t,\ell} \odot \boldsymbol{m}_{i}^{t}] \rangle.$$
(B3)

Because $\mathbb{E}[\boldsymbol{n}_i^{t,\ell}] = 0$ and $\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \frac{1}{2}(\|\boldsymbol{y}\|^2 + \|\boldsymbol{x}\|^2 - \|\boldsymbol{x} - \boldsymbol{y}\|^2)$, we have

$$E_{1} = -\frac{\eta}{2} \sum_{\ell=0}^{\tau-1} \|\nabla F(\boldsymbol{w}^{t})\|^{2} - \frac{\eta}{2} \sum_{i \in \mathcal{U}} p_{i}^{t} \mathbb{1}_{i}^{t} \sum_{\ell=0}^{\tau-1} \mathbb{E}[\|\nabla F_{i}(\boldsymbol{w}_{i}^{t,\ell}) \odot \boldsymbol{m}_{i}^{t}\|^{2}] + \frac{\eta}{2} \sum_{i \in \mathcal{U}} p_{i}^{t} \mathbb{1}_{i}^{t} \sum_{\ell=0}^{\tau-1} \mathbb{E}[\|\nabla F(\boldsymbol{w}^{t}) - \nabla F_{i}(\boldsymbol{w}_{i}^{t,\ell}) \odot \boldsymbol{m}_{i}^{t}\|^{2}].$$
(B4)

⁷ Key Laboratory of Computer Network and Information Integration (Southeast University), Ministry of Education, Nanjing 211189, China;

^{*}Corresponding author (email: jun.li@njust.edu.cn)

Further, we have

$$E_{1} = -\frac{\eta}{2} \sum_{\ell=0}^{\tau-1} \|\nabla F(\boldsymbol{w}^{t})\|^{2} - \frac{\eta}{2} \sum_{i \in \mathcal{U}} p_{i}^{t} \mathbb{1}_{i}^{t} \sum_{\ell=0}^{\tau-1} \mathbb{E}[\|\nabla F_{i}(\boldsymbol{w}_{i}^{t,\ell}) \odot \boldsymbol{m}_{i}^{t}\|^{2}]$$

$$+ \frac{\eta}{2} \sum_{i \in \mathcal{U}} p_{i}^{t} \mathbb{1}_{i}^{t} \sum_{\ell=0}^{\tau-1} \mathbb{E}[\|\nabla F(\boldsymbol{w}^{t}) - \nabla F_{i}(\boldsymbol{w}^{t}) + \nabla F_{i}(\boldsymbol{w}^{t}) - \nabla F_{i}(\boldsymbol{w}_{i}^{t,\ell}) + \nabla F_{i}(\boldsymbol{w}_{i}^{t,\ell}) - \nabla F_{i}(\boldsymbol{w}_{i}^{t,\ell}) \odot \boldsymbol{m}_{i}^{t}\|^{2}].$$
(B5)

Due to Jensen's inequality and (A1), we obtain

$$E_{1} \leqslant -\frac{\eta}{2} \sum_{\ell=0}^{\tau-1} \|\nabla F(\boldsymbol{w}^{t})\|^{2} - \frac{\eta}{2} \sum_{i \in \mathcal{U}} p_{i}^{t} \mathbb{1}_{i}^{t} s_{i}^{t} \sum_{\ell=0}^{\tau-1} \mathbb{E}[\|\nabla F_{i}(\boldsymbol{w}_{i}^{t,\ell})\|^{2}] + \frac{3\eta\tau}{2} \sum_{i \in \mathcal{U}} p_{i}^{t} \mathbb{1}_{i}^{t} \varepsilon_{i}$$

$$+ \frac{3\eta L^{2}}{2} \sum_{i \in \mathcal{U}} p_{i}^{t} \mathbb{1}_{i}^{t} \sum_{\ell=0}^{\tau-1} \underbrace{\mathbb{E}[\|\boldsymbol{w}^{t} - \boldsymbol{w}_{i}^{t,\ell}\|^{2}]}_{E_{11}} + \frac{3\eta}{2} \sum_{i \in \mathcal{U}} p_{i}^{t} \mathbb{1}_{i}^{t} (1 - s_{i}^{t}) \sum_{\ell=0}^{\tau-1} \mathbb{E}[\|\nabla F_{i}(\boldsymbol{w}_{i}^{t,\ell})\|^{2}].$$
(B6)

Then, we can bound E_{11} as

$$E_{11} = \mathbb{E}[\|\boldsymbol{w}^{t} - (\boldsymbol{w}_{i}^{t,\ell-1} - \eta \nabla F_{i}(\boldsymbol{w}_{i}^{t,\ell-1}) \odot \boldsymbol{m}_{i}^{t} - \eta \boldsymbol{n}_{i}^{t,\ell-1} \odot \boldsymbol{m}_{i}^{t})\|^{2}] = \eta^{2} \mathbb{E}[\|\sum_{\kappa=0}^{\ell-1} (\nabla F_{i}(\boldsymbol{w}_{i}^{t,\kappa}) \odot \boldsymbol{m}_{i}^{t} + \boldsymbol{n}_{i}^{t,\kappa} \odot \boldsymbol{m}_{i}^{t})\|^{2}]$$

$$\leq \eta^{2} \ell \sum_{\kappa=0}^{\ell-1} \mathbb{E}[\|\nabla F_{i}(\boldsymbol{w}_{i}^{t,\kappa}) \odot \boldsymbol{m}_{i}^{t} + \boldsymbol{n}_{i}^{t,\kappa} \odot \boldsymbol{m}_{i}^{t}\|^{2}] = \eta^{2} \ell s_{i}^{t} \sum_{\kappa=0}^{\ell-1} \mathbb{E}[\|\nabla F_{i}(\boldsymbol{w}_{i}^{t,\kappa})\|^{2}] + \eta^{2} \ell s_{i}^{t} \sum_{\kappa=0}^{\ell-1} \mathbb{E}[\|\boldsymbol{n}_{i}^{t,\kappa}\|^{2}].$$
(B7)

Hence, we can obtain

$$E_{1} \leqslant -\frac{\eta}{2} \sum_{\ell=0}^{\tau-1} \|\nabla F(\boldsymbol{w}^{t})\|^{2} + \frac{3\eta\tau}{2} \sum_{i\in\mathcal{U}} p_{i}^{t} \mathbb{1}_{i}^{t} \varepsilon_{i} + \frac{\eta}{2} \sum_{i\in\mathcal{U}} p_{i}^{t} \mathbb{1}_{i}^{t} (3 - 4s_{i}^{t}) \sum_{\ell=0}^{\tau-1} \mathbb{E}[\|\nabla F_{i}(\boldsymbol{w}_{i}^{t,\ell})\|^{2}]$$

$$+ \frac{3\eta^{3} L^{2}}{2} \sum_{i\in\mathcal{U}} p_{i}^{t} \mathbb{1}_{i}^{t} s_{i}^{t} \sum_{\ell=0}^{\tau-1} \ell \sum_{k=0}^{\ell-1} \mathbb{E}[\|\nabla F_{i}(\boldsymbol{w}_{i}^{t,\kappa})\|^{2}] + \frac{3\eta^{3} L^{2}}{2} \sum_{i\in\mathcal{U}} p_{i}^{t} \mathbb{1}_{i}^{t} s_{i}^{t} \sum_{\ell=0}^{\tau-1} \ell \sum_{k=0}^{\ell-1} \mathbb{E}[\|\boldsymbol{n}_{i}^{t,\kappa}\|^{2}]$$

$$(B8)$$

and

$$E_{2} \leqslant \tau \sum_{i \in \mathcal{U}} p_{i}^{t} \mathbb{1}_{i}^{t} \sum_{\ell=0}^{\tau-1} \mathbb{E}[\|\nabla F_{i}(\boldsymbol{w}_{i}^{t,\ell}) \odot \boldsymbol{m}_{i}^{t} + \boldsymbol{n}_{i}^{t,\ell} \odot \boldsymbol{m}_{i}^{t}\|^{2}] = \tau \sum_{i \in \mathcal{U}} p_{i}^{t} \mathbb{1}_{i}^{t} s_{i}^{t} \sum_{\ell=0}^{\tau-1} \mathbb{E}[\|\nabla F_{i}(\boldsymbol{w}_{i}^{t,\ell})\|^{2}] + \tau \sum_{i \in \mathcal{U}} p_{i}^{t} \mathbb{1}_{i}^{t} s_{i}^{t} \sum_{\ell=0}^{\tau-1} \mathbb{E}[\|\boldsymbol{n}_{i}^{t,\ell}\|^{2}].$$
(B9)

Combining E_1 and E_2 , we can obtain

$$\mathbb{E}[F(\boldsymbol{w}^{t+1}) - F(\boldsymbol{w}^{t})] \leqslant -\frac{\eta}{2} \sum_{\ell=0}^{\tau-1} \|\nabla F(\boldsymbol{w}^{t})\|^{2} + \frac{\eta}{2} \sum_{i \in \mathcal{U}} p_{i}^{t} \mathbb{1}_{i}^{t} (3 - 4s_{i}^{t}) \sum_{\ell=0}^{\tau-1} \mathbb{E}[\|\nabla F_{i}(\boldsymbol{w}_{i}^{t,\ell})\|^{2}] \\
+ \frac{3\eta^{3} L^{2}}{2} \sum_{i \in \mathcal{U}} p_{i}^{t} \mathbb{1}_{i}^{t} s_{i}^{t} \sum_{\ell=0}^{\tau-1} \ell \sum_{\kappa=0}^{\ell-1} \mathbb{E}[\|\nabla F_{i}(\boldsymbol{w}_{i}^{t,\kappa})\|^{2}] + \frac{3\eta^{3} L^{2}}{2} \sum_{i \in \mathcal{U}} p_{i}^{t} \mathbb{1}_{i}^{t} s_{i}^{t} \sum_{\ell=0}^{\tau-1} \ell \sum_{\kappa=0}^{\ell-1} \mathbb{E}[\|\boldsymbol{n}_{i}^{t,\kappa}\|^{2}] \\
+ \frac{\eta^{2} L \tau}{2} \sum_{i \in \mathcal{U}} p_{i}^{t} \mathbb{1}_{i}^{t} s_{i}^{t} \sum_{\ell=0}^{\tau-1} \mathbb{E}[\|\nabla F_{i}(\boldsymbol{w}_{i}^{t,\ell})\|^{2}] + \frac{\eta^{2} L \tau}{2} \sum_{i \in \mathcal{U}} p_{i}^{t} \mathbb{1}_{i}^{t} s_{i}^{t} \sum_{\ell=0}^{\tau-1} \mathbb{E}[\|\boldsymbol{n}_{i}^{t,\ell}\|^{2}] + \frac{3\eta\tau}{2} \sum_{i \in \mathcal{U}} p_{i}^{t} \mathbb{1}_{i}^{t} s_{i}^{t}.$$
(B10)

To ensure the training performance, we will select a proper DP noise variance to have $\mathbb{E}[\|\boldsymbol{n}_{i}^{t,\ell}\|^{2}] = \mathbb{E}[\|\boldsymbol{n}_{i}^{t,\kappa}\|^{2}] \leqslant \Theta$. Due to the bounded gradient, by setting $\eta L \tau < 1$ and $\eta^{3} L^{2} \ll 1$, we obtain

$$\mathbb{E}[F(\boldsymbol{w}^{t+1}) - F(\boldsymbol{w}^{t})] \leqslant -\frac{\eta\tau}{2} \|\nabla F(\boldsymbol{w}^{t})\|^{2} + \frac{3\eta\tau G^{2}}{2} \sum_{i \in \mathcal{U}} p_{i}^{t} \mathbb{I}_{i}^{t} (1 - s_{i}^{t}) + \frac{\eta^{2} L \tau^{2} \Theta(1 + 3\eta L \tau)}{2} + \frac{3\eta\tau}{2} \mathbb{E}\left[\sum_{i \in \mathcal{U}} p_{i}^{t} \mathbb{I}_{i}^{t} \varepsilon_{i}\right]. \tag{B11}$$

Rearranging and summing t from 0 to T-1, we have

$$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[\|\nabla F(\boldsymbol{w}^t)\|^2] \leqslant \frac{2(F(\boldsymbol{w}^0) - F(\boldsymbol{w}^T))}{\eta \tau T} + 3\varepsilon + \frac{3G^2}{T} \sum_{t=0}^{T-1} \sum_{i \in \mathcal{U}} p_i^t \mathbb{1}_i^t (1 - s_i^t) + \eta \tau^2 \Theta(1 + 3\eta L \tau). \tag{B12}$$

This completes the proof. \Box

Appendix C Solution of the Optimal Gradient Sparsification Rate

To obtain the optimal gradient sparsification rate, we first derive the relation between s_i^t and V^t . Hence, we first consider the condition $Q^{t,\text{de}} > 0$ and have

$$\begin{split} V^t &= \sum_{i \in \mathcal{U}} \sum_{j \in \mathcal{N}} (Q_i^{t, \text{fa}} - \lambda p_i^t s_i^t) a_{i,j}^t + Q^{t, \text{de}} \left(d^t - d^{\text{Avg}} \right) - \sum_{i \in \mathcal{U}} \sum_{j \in \mathcal{N}} \beta_i = \sum_{i \in \mathcal{U}} \sum_{j \in \mathcal{N}} (Q_i^{t, \text{fa}} - \lambda p_i^t s_i^t) a_{i,j}^t \\ &+ Q^{t, \text{de}} \max_{i \in \mathcal{N}} \left\{ \sum_{j \in \mathcal{N}} a_{i,j}^t \left(\frac{Z p_i^t s_i^t}{B \log_2 \left(1 + \frac{P_i^t h_{i,j}^t}{\sigma^2} \right)} + d_i^{t, \text{do}} + \frac{\tau |\mathcal{D}_i| \Phi_i}{f_i^t} \right) \right\} - Q^{t, \text{de}} d^{\text{Avg}} - \sum_{i \in \mathcal{U}} \sum_{j \in \mathcal{N}} \beta_i. \end{split}$$

Due to the maximizing process, this problem can be divided into N subproblems based on the client with the maximum delay. First, let us discuss the condition that the delay of the client owning the j-th channel is the maximum one among all clients. We assume the j-th channel is allocated to the i-th client and its delay is the maximum one. Thus, we can obtain

$$d_{i,j}^{t} = \frac{Zp_{i}^{t}s_{i}^{t}}{B\log_{2}\left(1 + \frac{P_{i}^{t}h_{i,j}^{t}}{\sigma^{2}}\right)} + d_{i}^{t,do} + \frac{\tau|\mathcal{D}_{i}|\Phi_{i}}{f_{i}^{t}} \geqslant \max_{i' \in \mathcal{U}/i} \left\{ \sum_{j' \in \mathcal{N}} a_{i',j'}^{t} \left(\frac{Zp_{i'}^{t}s_{i'}^{t}}{B\log_{2}\left(1 + \frac{P_{i'}^{t}h_{i',j'}^{t}}{\sigma^{2}}\right)} + d_{i'}^{t,do} + \frac{\tau|\mathcal{D}_{i'}|\Phi_{i'}}{f_{i'}^{t}} \right) \right\}. \tag{C2}$$

From the above inequation, we have

$$s_i^t \geqslant s_i^{t,\min} \triangleq B \log_2 \left(1 + \frac{P_i^t h_{i,j}^t}{\sigma^2}\right) \frac{\max\limits_{i' \in \mathcal{U}/i} \left\{ \sum_{j' \in \mathcal{N}} a_{i',j'}^t \left(\frac{Zp_{i'}^t s_{i'}^{th}}{P_i^t h_{i',j'}^t} + d_{i'}^{t,\text{do}} + \frac{\tau |\mathcal{D}_{i'}| \Phi_{i'}}{f_{i'}^t} \right) \right\} - d_i^{t,\text{do}} - \frac{\tau |\mathcal{D}_i| \Phi_i}{f_i^t}}{Zp_i^t}.$$

If $s_i^{t,\min} > 1$, there is no solution to this subproblem. Otherwise, we can derive the first derivative of V^t with respect to s_i^t of the j-th subproblem as follows:

$$\frac{\partial V^t}{\partial s_i^t} = -\lambda + \frac{Z p_i^t Q^{t,\text{de}}}{B \log_2 \left(1 + \frac{P_i^t h_{i,j}^t}{\sigma^2}\right)}. \tag{C4}$$

 $\text{If } \frac{Zp_i^tQ^{t,\text{de}}}{B\log_2\left(1+\frac{P_i^th_{i,j}^t}{\sigma^2}\right)}\leqslant \lambda, \text{ it can be found that as the value of } s_i^t \text{ increases, the objective } V^t \text{ decreases. Hence, we have } s_i^{t,*}=1.$

For other fast clients, i.e., $i' \in \mathcal{U}/i$, we have

$$s_{i'}^{t} \leqslant s_{i'}^{\max} \triangleq \frac{Zp_{i'}^{t} \left(\frac{Zp_{i}^{t} s_{i}^{t}}{B \log_{2} \left(1 + \frac{P_{i'}^{t} h_{i,j}^{t}}{\sigma^{2}}\right)} + d_{i}^{t, \text{do}} + \frac{\tau |\mathcal{D}_{i}| \Phi_{i}}{f_{i}^{t}} - d_{i'}^{t, \text{do}} - \frac{\tau |\mathcal{D}_{i'}| \Phi_{i}}{f_{i'}^{t}}\right)}{\sum_{j'=1}^{N} a_{i',j'}^{t} B \log_{2} \left(1 + \frac{P_{i'}^{t} h_{i',j'}^{t}}{\sigma^{2}}\right)}.$$
(C5)

We can also derive the first derivative of V^t with respect to $s^t_{i'}$ as $\frac{\partial V^t}{\partial s^t_{i'}} = -p^t_{i'}\lambda$. Therefore, we have $s^{t,*}_{i'} = \min\{s^{\max}_{i'}, 1\}$.

If
$$\frac{Zp_i^tQ^{t,\text{de}}}{B\log_2\left(1+\frac{P_i^th_i^t}{\sigma^2}\right)} > \lambda$$
, we can find that as the value of s_i^t increases, the objective V^t increases. Therefore, the system need

to select a small gradient sparsification rate s_i^t in $[s^{\text{th}}, 1]$ for the i-th client. However, for the i'-th client, i.e., $i' \in \mathcal{U}/i$, we want to select a large gradient sparsification rate in $[s^{\text{th}}, \min\{1, s_i^{\max}\}]$ because the first derivative of V^t with respect to s_i^t is negative. We can decrease the s_i^t from 1 and then s_i^{\max} may be selected. Therefore, the first derivative of V^t with respect to s_i^t should be modified because s_i^{\max} is related to s_i^t . When the first derivative of V^t with respect to s_i^t become negative, let us stop decreasing the value of s_i^t . We can note that this way can obtain the optimal $s_i^{t,*}$ and $s_i^{t,*} = \min\{s_i^{\max}, 1\}$.

Other subproblems can be addressed using the same method. Overall, after addressing all N subproblems, the optimal solution can be obtained as the final output. This completes the proof.

Appendix D Feasibility Analysis

We first introduce the Lyapunov function $\Gamma(\mathbf{Q}^t) = \frac{1}{2}(Q^{t,\text{de}})^2 + \frac{1}{2}\sum_{i\in\mathcal{U}}(Q_i^{t,\text{fa}})^2$, in which the drift from one communication round can be given as

$$\Gamma\left(\boldsymbol{Q}^{t+1}\right) - \Gamma\left(\boldsymbol{Q}^{t}\right) = \frac{1}{2} \left(\max\left\{Q^{t,\text{de}} + d^{\text{Avg}} - d^{t}, 0\right\}\right)^{2} - \frac{1}{2} \left(Q^{t,\text{de}}\right)^{2} + \frac{1}{2} \sum_{i \in \mathcal{U}} \left(\max\left\{Q^{t-1,\text{fa}}_{i} + \mathbb{1}_{i}^{t} - \beta_{i}, 0\right\}\right)^{2} - \frac{1}{2} \sum_{i \in \mathcal{U}} \left(Q^{t,\text{fa}}_{i}\right)^{2}$$

$$\leq \frac{1}{2} \left(d^{\text{Avg}} - d^{t}\right)^{2} + Q^{t,\text{de}} \left(d^{\text{Avg}} - d^{t}\right) + \frac{1}{2} \sum_{i \in \mathcal{U}} \left(\mathbb{1}_{i}^{t} - \beta_{i}\right)^{2} + \sum_{i \in \mathcal{U}} Q^{t,\text{fa}}_{i} \left(\mathbb{1}_{i}^{t} - \beta_{i}\right). \tag{D1}$$

Because

$$V^{t}(\boldsymbol{P}^{t}, \boldsymbol{s}^{t}, \boldsymbol{a}^{t}) = -\lambda \sum_{i \in \mathcal{U}} p_{i}^{t} \mathbb{1}_{i}^{t} s_{i}^{t} + \sum_{i \in \mathcal{U}} Q_{i}^{t, \text{fa}} (\mathbb{1}_{i}^{t} - \beta_{i}) + Q^{t, \text{de}} \left(d^{t} - d^{\text{Avg}} \right), \tag{D2}$$

we have

$$V^{t}(\boldsymbol{P}^{t}, \boldsymbol{s}^{t}, \boldsymbol{a}^{t}) \leqslant -\lambda \sum_{i \in \mathcal{U}} p_{i}^{t} \mathbb{1}_{i}^{t} \boldsymbol{s}_{i}^{t} + \frac{1}{2} \left(\boldsymbol{d}^{\operatorname{Avg}} - \boldsymbol{d}^{t} \right)^{2} + Q^{t, \operatorname{de}} \left(\boldsymbol{d}^{\operatorname{Avg}} - \boldsymbol{d}^{t} \right) + \frac{1}{2} \sum_{i \in \mathcal{U}} \left(\mathbb{1}_{i}^{t} - \beta_{i} \right)^{2} + \sum_{i \in \mathcal{U}} Q_{i}^{t, \operatorname{fa}} \left(\mathbb{1}_{i}^{t} - \beta_{i} \right). \tag{D3}$$

Due to $s_i^t, p_i^t \leqslant 1$, $\boldsymbol{a}_{i,j}^t \in \{0,1\}$, $\beta_i \leqslant \frac{N}{U}$, $d^t = \max_{i \in \mathcal{U}} \mathbbm{1}_i^t d_{i,j}^t$ and $d_{i,j}^t = d_i^{t,\text{do}} + d_i^{t,\text{lo}} + d_{i,j}^{t,\text{lo}}$, $\forall i \in \mathcal{U}, j \in \mathcal{N}$, we have

$$\mathbb{E}\left[V^{t}(\boldsymbol{P}^{t}, \boldsymbol{s}^{t}, \boldsymbol{a}^{t}) | \boldsymbol{Q}^{t}\right] \leqslant C_{1} + Q^{t, \text{de}} \mathbb{E}\left[d^{\text{Avg}} - d^{t} | \boldsymbol{Q}^{t}\right] + \sum_{i \in \mathcal{U}} Q_{i}^{t, \text{fa}} \mathbb{E}\left[\mathbb{I}_{i}^{t} - \beta_{i} | \boldsymbol{Q}^{t}\right]. \tag{D4}$$

Based on Theorem 4.5 in [1] and Lemma 1 in [2], existing $\zeta^{\text{opt}} > 0$, we can obtain the following inequality:

$$\mathbb{E}\left[V^{t}(\boldsymbol{P}^{t}, \boldsymbol{s}^{t}, \boldsymbol{a}^{t})\right] \leqslant C_{1} + \zeta^{\text{opt}}.$$
(D5)

By summing this equation over $t=0,1,\ldots,T,$ we obtain

$$\lim_{T \to \infty} \sup \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}\left[V^{t}(\boldsymbol{P}^{t}, \boldsymbol{s}^{t}, \boldsymbol{a}^{t})\right] \leqslant C_{1} + \zeta^{\text{opt}} < \infty.$$
 (D6)

This completes the proof.

References

- $1\ \ \text{Neely M. J. Stochastic network optimization with application to communication and queueing systems. Synthesis Lectures on Communication Networks, 2010$
- 2 Deng X., Li J., Shi L., et al. Wireless powered mobile edge computing: Dynamic resource allocation and throughput maximization. IEEE Trans. Mob. Comput., 2022, 21(6): 2271-2288