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Abstract Size generalization is important for learning resource allocation policies in wireless systems with

time-varying scales. If a neural network for learning a wireless policy is not generalizable to the size of its

input, it has to be re-trained whenever the system scale changes, which hinders its practical use due to the

unaffordable training costs. Graph neural networks (GNNs) have been shown with size generalization ability

empirically when optimizing resource allocation. Yet, are GNNs naturally size generalizable? In this paper,

we argue that GNNs are not always size generalizable for resource allocation. We find that the aggregation

and activation functions of the GNNs for learning a class of wireless policies play a key role in their size

generalization ability. We take the GNN with the mean aggregator, called mean-GNN, as an example to

reveal a size generalization condition. To demonstrate how to satisfy the condition, we learn power and

bandwidth allocation policies for ultra-reliable low-latency communications and show that selecting or pre-

training the activation function in the output layer of mean-GNN can make the GNN size generalizable.

Simulation results validate our analysis and evaluate the performance of the learned policies.

Keywords size generalization, graph neural networks, resource allocation, permutation equivariance

1 Introduction

Deep learning has been widely applied for resource allocation [1–3] with diverse motivations, say enabling
the real-time implementation of optimized solutions without closed-form expressions [1, 4] or solving
problems without closed-form expressions of objective function or constraints [3]. Encouraged by the
success of deep learning in a variety of applications, intelligent resource allocation has been envisioned as
one of the most important features of the six-generation wireless communications [5].

Generalizability is a key performance metric of deep neural networks (DNNs), especially when learning
the resource allocation policies in dynamic environments. For example, wireless channels and user popu-
lations may change quickly. When the number of users varies, the scale of a resource allocation problem
changes accordingly. If a DNN (e.g., fully-connected neural network (FNN)) is not generalizable to the
size of its input, then the DNN for learning a resource allocation policy has to be re-trained whenever
the problem scale changes. Online learning allows a DNN to be adaptive to time-varying channels, which
however does not enable adaption to time-varying problem scales if the DNN is not size generalizable. In
order for an offline-trained DNN to perform well for a policy with different scales, a straightforward ap-
proach is to train a versatile DNN with samples of all possible sizes. However, the complexity of training
over the dataset generated with numerous system configurations is prohibitive.

A promising way to enable generalization is embedding inductive biases into the structure of DNNs,
e.g., imposing constraints on the functions represented by a DNN by harnessing prior knowledge before
using data samples [6]. Appropriate inductive biases can reduce training complexity without performance
loss [7] and allow the DNNs generalizable in a desirable way [8], while mismatched inductive biases may
lead to performance degradation due to imposing too strong constraints on learning. A resource allocation
policy can usually be represented as a multivariate function, which is a mapping from environmental
parameters (say channels) into the allocated resources to wireless objects (say allocated powers to users).
As a kind of prior knowledge of multivariate functions, permutation equivariance (PE) has been shown as a
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widely existed property of wireless policies [2,9–11]. For a policy exhibiting the PE property, the mapping
is not affected by the order of objects. Depending on the considered problem, a resource allocation policy
may exhibit one-dimensional (1D)-PE, two-dimensional-PE (e.g., precoding [12]), joint-PE (e.g., power
control or link scheduling [2, 9]) properties, their combinations [11]. Graph neural networks (GNNs) [7]
and permutation equivariant neural networks [13] are two kinds of DNNs whose structures are embedded
with PE inductive biases and hence can learn the PE policies efficiently. In addition to the PE property,
GNNs also harness another kind of prior knowledge: the relation among vertices, unless a GNN learns a
policy over a complete graph where all vertices are connected.

GNNs have been gaining increasing attention recently in the wireless communication community [2,9,
11,14–16]. It has been empirically observed that GNNs can be generalized to unseen graph sizes. In [2,9],
a GNN designed to learn a power control policy in an interference network was shown generalizable to
500 or 1000 transceivers when it is trained using samples with 50 transceivers. In [11], a GNN designed
to learn a power allocation policy in the cellular network was shown generalizable to the numbers of users
and cells. In [15,16], the GNNs designed to learn a link scheduling policy and a joint channel and power
allocation policy were shown with good generalization performance to the number of device-to-device
transceiver pairs. Previous studies believe that GNNs are automatically size generalizable. As mentioned
in [2, 9] without explanation, it is the PE inductive bias of GNNs that endows their size generalizability.
As stated in [11], GNNs are size generalizable since the number of trainable parameters of a GNN is
independent of the graph size, which is again owing to the PE inductive bias.

In [2, 17], size generalizability is also referred to as transferability to large graph sizes, which however
differs from a similar notion: scalability, another challenge of intelligent resource allocation. According
to the definition for generic networks in [18], an unscalable DNN adds to labour costs (e.g., structure
re-designing, high complexity re-training) or harms the system performance. The scalability of a DNN is
concerned with whether or not a DNN well-trained and tested in a small scale system can perform well
when it is re-trained and tested in large scale systems with affordable training complexity. To evaluate
the scalability, the DNN needs to be re-trained when the scale of a problem changes, but when evaluating
the size generalizability, the DNN well-trained in certain problem scales is tested in unseen scales without
re-training. In [2], it was argued that the PE property of the candidate functions representable by a
GNN makes the GNN scalable and transferable (i.e., size generalizable). In [9], both scalability and size
generalizability were mentioned, where the definition of scalability agrees with [18].

Despite the empirical success of GNNs in size generalizability, when and why GNNs are size generaliz-
able are still mysterious. Are GNNs naturally size generalizable? Does the size generalizability attribute
to the PE inductive bias? In [17, 19–22], few studies endeavour to analyze the size generalization ability
of GNNs theoretically. Since the general study is extremely difficult, these studies focused on specific
GNNs or particular problems, e.g., GNNs with sum- and mean-pooling for link prediction [19], GNN with
sum-pooling for graph classification [20], spectral-GNN [17, 21], and GNNs with max-, min- and sum-
pooling for the tasks solved by dynamic programming algorithms [22]. In this paper, we strive to answer
the questions by providing counterexamples. To answer the second question, we separate the impact of
introducing the PE inductive bias from exploiting the topology information on size generalization. To
this end, we consider the policies with the 1D-PE property since they can be learned by GNNs over a
complete graph, where the GNNs are with 1D-PE inductive bias [11]. In the sequel, we call a 1D-PE
policy as a PE policy for short. To answer the first question, we resort to the decomposability of a PE
policy when the problem scale is large, and find a condition for a GNN being generalizable to the size of
a PE policy. To demonstrate how to satisfy the condition, we design a size generalizable GNN to learn
a PE policy, by taking power and bandwidth allocation policies as an example. Since analyzing the size
generalization mechanism of GNNs is challenging, we only consider specific GNNs with mean-, sum- and
max-pooling as in [19, 20, 22]. The major contributions are summarized as follows.

• We provide a size generalization condition, which indicates that the size-scaling law of a size general-
izable GNN should be aligned with the size-scaling law of a PE policy. We find that the PE inductive bias
does not guarantee GNNs to be size generalizable, while appropriate aggregation and activation functions
allow the size generalizability of the GNN for learning a PE policy. To the best of our knowledge, this is
the first attempt to analyze the size generalization mechanism of GNNs for wireless communications.

• To demonstrate how to use our finding for designing size generalizable GNNs, we provide a method
that uses the GNN with a mean aggregator (referred to as mean-GNN for short) and a selected or a pre-
trained activation function in the output layer to satisfy the size generalization condition. We take the
power and bandwidth allocation in ultra-reliable low-latency communications (URLLC) as an example
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to show how to use the method for making the GNNs to learn the two policies with size generalizability.
The rest of the paper is organized as follows. In Section 2, we provide the size generalization condition.

In Section 3, we show how to satisfy the condition by designing the activation function in the output
layer of mean-GNNs for size-dependent policies. In Section 4, we evaluate the performance of the power
and bandwidth allocation policies learned by the GNNs. In Section 5, we provide conclusions.

2 Size generalization condition

In this section, we first introduce the issue of size generalization for learning a resource allocation policy.
Then, we show the asymptotic form of a PE policy and the functions learnable by the GNNs with
mean-, max-, and sum-pooling with linear processors for aggregation. Finally, we show that mean-GNN
with size-independent activation functions (SI-AFs) can be generalized to the size of the PE policy with
asymptotic size-invariance property while the GNNs with max- and sum-pooling can not.

2.1 Learning a resource allocation policy with different sizes

A policy for K objects (say users) obtained from a resource allocation problem can usually be represented
as a multivariate function, where the allocated resources (say transmit powers) are the output variables
and the environmental parameters (say channels) are the input variables. Denote x , [x1, . . . , xK ],
y , [y1, . . . , yK ], where xk and yk are respectively the input and output variables of the policy for the
k-th object, k = 1, . . . ,K, and K reflects the scale of the resource allocation problem and is referred to
as the size of corresponding policy.

In fact, K can also be regarded as an environmental parameter. Then, the resource allocation policy
can be represented as y = F ′(x,K) , [f ′1(x,K), . . . , f ′K(x,K)]1). If we can learn the function F ′(x,K)
with a DNN, then the DNN can be used for inference in the scenarios of different values of K without
the need of re-training. Such a DNN can be obtained simply by training with the samples of x with all
possible sizes, which however incurs unaffordable complexity for large scale systems.

2.2 Asymptotic form of a PE policy

If a resource allocation policy F ′(x,K) satisfies a PE property Πy = F ′(Πx,K), i.e., it is permutation
equivariant to x, then the policy is a PE policy [10,11], where Π denotes arbitrary permutation matrix.

For a PE policy, the multivariate function degenerates into a scalar function for each object approxi-
mately when K is very large, i.e., f ′k(x,K) ≈ f(xk,K), as to be proved in the following. This suggests
that F ′(x,K) can be learned by learning f(xk,K) and a size-independent function.

In [13], it was proved that permutation invariant functions can be decomposed into continuous outer
and inner functions, similar to the Kolmogorov-Arnold representation theorem that is applicable for
arbitrary multivariate continuous functions. By extending the proof in [13], it was proved in [23] that
the k-th output variable of any PE policy can be expressed as

yk = f ′k(x,K) , f̃



xk,
∑

j 6=k

φ(xj)



 , ∀k, (1)

where φ(·) and f̃(·) are continuous functions that are the same for every output variable.
The following proposition provides an approximation of (1) for independent and identically distributed

(i.i.d.) input variables, which is accurate for a large number of objects.

Proposition 1. For a PE policy, if K is very large and xk, k = 1, . . . ,K are i.i.d., then

yk ≈ f(xk,K), (2)

where the expression of f(xk,K) is shown in Appendix A.

Proof. See Appendix A.
This indicates that a PE policy (which is a multi-object policy) asymptotically degenerates into a

single-object policy that maps the input variable into the output variable of each object.

1) While K is fixed after user scheduling, it is a variable of the function F ′(x,K) for reflecting the dependence on K of the

resource allocation policy, which may be a misuse of notation.



Wu J J, et al. Sci China Inf Sci April 2024, Vol. 67, Iss. 4, 142301:4

2.3 Impact of aggregator on the asymptotic form of the functions learned by a GNN

We first consider the mean-GNN for learning a PE policy with K objects, whose update equation is

hl
k = σl



U lhl−1
k +





1

K

∑

j 6=k

V lhl−1
j



+ cl



 , l = 1, . . . , L+ 1, (3)

where σl(·) is the activation function in the l-th layer, U l, V l and cl are the trainable parameters of the
l-th layer for ensuring the PE property of each layer, and L is the number of hidden layers. Denote the
output of the GNN as ŷ , [ŷ1, . . . , ŷK ], and the output of the l-th layer as [hl

1, . . . ,h
l
K ]T. The input

feature of the GNN is the input variables of the policy, i.e., h0
k = xk, and the output of the GNN is the

learned output variables, i.e., hL+1
k = ŷk.

The term 1
K

∑

j 6=k V
lhl−1

j in (3) consists of mean-pooling and linear processing, which is called mean
aggregation in previous studies. To impose the PE inductive biases on GNNs, the pooling function should
satisfy commutative law, which can also use other operations such as summation and maximization. With
such pooling functions and the shared trainable parameters in each layer among objects (i.e., U l, V l and
cl are same for the update equation of hl

k, k = 1, . . . ,K), the GNNs satisfy the PE property [11, 13].

The following proposition indicates that the k-th output of a mean-GNN well-trained for K objects
only depends on xk approximately when the input features xk, k = 1, . . . ,K are i.i.d. and K is large.

Proposition 2. For the mean-GNN, if xk, k = 1, . . . ,K are i.i.d. and K is very large, then

ŷk ≈ q̂(xk,K), (4)

where the expression of q̂(xk,K) is shown in Appendix B and the trainable parameters within it are
omitted for notational simplicity.

Proof. See Appendix B.
Denote the probability distribution function of the input features in x of sizeK as pK(x). The following

proposition provides an asymptotic size-invariance property of the mean-GNN.

Proposition 3. For the mean-GNN, if pK(x) = pK
′

(x) for any K 6= K ′, when K and K ′ are very large
and σl(·), l = 1, . . . , L+1 do not depend on K (i.e., they are SI-AFs), the relation between its input and
output of each object is approximately invariant to the input size, i.e.,

ŷk ≈ q̂(xk,K) ≈ q̂(xk,K
′) , q̂(xk). (5)

Proof. See Appendix C.
The proposition means that the functions represented by the mean-GNN will not change with K if

the input features of the GNN are with identical distribution for different input sizes meanwhile the
activation function in each layer is independent from K. The most commonly used activation functions
are SI-AFs, e.g., Softplus, Sigmoid, Tanh, Relu and its variants. One exception is Softmax.

However, if the mean-pooling in (3) is replaced by max- or sum-pooling (the corresponding aggregator
is called max- or sum-aggregator in the sequel), then Eq. (4) will still hold but the GNN will no longer
be size-invariant, as shown in Proposition 4.

Proposition 4. For the GNN with max- or sum-aggregator, if xk, k = 1, . . . ,K are i.i.d. and K is very
large, then ŷk ≈ q̂(xk,K). However, if pK(x) = pK

′

(x) for any K 6= K ′, K and K ′ are very large, and
σl(·), l = 1, . . . , L+ 1 are SI-AFs, then its input-output relation will not be invariant to its input size.

Proof. See Appendix D.

Propositions 2–4 indicate that the functions learnable by a GNN with mean-, sum-, or max-aggregators
asymptotically degenerates into the functions for learning a single-object policy under i.i.d. input features,
while the size-scaling law of a GNN with SI-AFs depend on the pooling function.

2.4 Size generalization condition

According to Propositions 1 and 2 and the universal approximation theorem [23], when the mean-GNN
is well-trained for a PE policy with K objects, then q̂(xk,K) ≈ f(xk,K) if the input features are i.i.d.
and K is very large. Further considering Propositions 3 and 4, we can obtain Corollary 1.
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Corollary 1. If a PE policy is asymptotically invariant to the size K, i.e.,

yk ≈ f(xk,K) = f(xk,K
′) , f(xk), K 6= K ′, (6)

then the mean-GNN with SI-AF in each layer trained for learning the PE policy with K objects can
be generalized to the PE policy with K ′ objects, while the GNN with max- or sum-aggregator can not,
where K and K ′ are very large.

To help understand the polices with the size-invariance property in (6), we consider a simple power
allocation policy. Consider a downlink orthogonal frequency division multiple access (OFDMA) system,
where a single-antenna base station (BS) serves K single-antenna users over bandwidth B. The power
allocation is optimized to minimize the total transmit power under a rate constraint as follows:

min
Pk

K
∑

k=1

Pk s.t. B log

(

1 +
Pkgk
N0B

)

> s0, Pk > 0, (7)

where Pk is the power allocated to the k-th user, gk is the channel gain of the user, N0 is the single-side
noise spectral density, and s0 is the minimal data rate required by each user.

The problem is convex and its global optimal solution can be obtained from the Karush-Kuhn-Tucker
(KKT) conditions as P ∗k = N0

gk
B(2

s0
B − 1). The power allocation policy can be expressed as p∗ = F1(g),

where p∗ = [P ∗1 , . . . , P
∗
K ] and g = [g1, . . . , gK ]. As shown from the closed-form solution of P ∗k , the policy

is independent of K. In other words, the size-scaling law of the policy is that it is invariant to all values
of K. This is because the problem can be decoupled into multiple single-user problems, and thus the
policy obtained from this problem can always be degenerated into a single-user policy.

Corollary 1 indicates that for a PE policy satisfying the size-invariance property in (6), the mean-GNN
with SI-AFs can be generalized to input sizes. This implies a condition for a GNN to learn a PE policy
with size generalization ability, which indicates that the PE inductive bias of a GNN does not guarantee
the GNN to be size generalizable (recalling that the GNNs in this section satisfy the PE property).

Remark 1. Size generalization condition: a GNN can be generalized to the size of a PE policy if the
size-scaling law of the GNN aligns with the size-scaling law of the PE policy.

Remark 2. In practice, the environment parameter xk may not be i.i.d. among objects, e.g., the
channel gains among users are not always i.i.d. in real-world systems. Nonetheless, it has been empirically
observed that GNNs are size generalizable even when the i.i.d. assumption does not hold.

Asymptotic size-invariance is the simplest size-scaling law. In practice, however, the scaling law of a
PE policy is usually not size-invariant.

3 Size generalization for PE policies without size-invariance property

In this section, we demonstrate how to satisfy the size generalization condition with mean-GNNs for
learning the PE policies without the size-invariance property. We first consider a power allocation and
bandwidth optimization problem in a single-antenna OFDMA system, where the power allocation policy
is with closed-form expression and hence is unnecessary to be learned. We consider such an example
for two reasons. One is to help understand Proposition 1 with a multi-user problem that cannot be
decoupled into single-user problems. The other is to show that the size generalization condition for
the power allocation policy can be satisfied by selecting an activation function for the output layer of
mean-GNN with SI-AFs in hidden layers. Then, we consider a practical power and bandwidth allocation
problem in URLLC, whose optimal solution cannot be obtained with closed-form under general settings.
We proceed to show how to make the mean-GNN size generalizable when learning the policies. To learn
the policies from both problems with GNNs, the graphs are complete graphs. Specifically, the users are
vertices (whose features are their channel gains), and there are edges between users (that are without
any feature) since the resource allocation to the users is coupled due to the total power constraint.

3.1 Power allocation and bandwidth optimization

We still consider the downlink OFDMA system, where a single-antenna BS serves K single-antenna users
with maximal transmit power Pmax. Now we optimize the bandwidth of each user B together with power
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allocation to minimize the total bandwidth (equally assigned to users) under both the minimal data rate
constraint and total power constraint,

min
Pk,B

KB (8)

s.t. sk , B log(1 + Pkgk/(N0B)) > s0, (8a)

K
∑

k=1

Pk 6 Pmax, Pk > 0, B > 0, (8b)

where Pk, gk, N0 and s0 have the same meaning as for the problem in (7). From the KKT conditions of

this convex problem, the global optimal solution, denoted as P ∗k and B∗, satisfies
∑K

k=1 P
∗
k = Pmax, and

P ∗k = F (B∗)/gk, (9)

F (B∗) , N0B
∗
(

2
s0
B∗ − 1

)

. (10)

By substituting (9) into
∑K

k=1 P
∗
k = Pmax, we have F (B∗) = Pmax

∑

K
k=1

1
gk

. By substituting this expression

of F (B∗) into (9), we can obtain the optimal power allocated to the k-th user, which can be re-written
in the form of Softmax function as

P ∗k = Pmax

1
gk

∑K
k=1

1
gk

= Pmax
e
ln 1

gk

∑K
k=1 e

ln 1
gk

. (11)

Denote F−1(·) as the inverse function of F (B) in (10). Then, the optimal bandwidth is re-written as

B∗ = F−1
(

Pmax
∑K

k=1
1
gk

)

. (12)

Denote the power allocation and bandwidth optimization policies obtained from (8) as p∗ = F ′2(g,K)
and B∗ = f ′3(g,K), respectively, which are PE policies since the functions F ′2(g,K) and f ′3(g,K) remain
unchanged when the order of the users changes.

3.1.1 Asymptotic policies

Due to the total power constraint, the multi-user problem in (8) cannot be decoupled into single-user
problems as the problem in (7). However, when K is very large and gk, k = 1, . . . ,K are i.i.d., we have

Pmax
∑

K
k=1

1
gk

= 1
K

Pmax

(
∑

K
k=1

1
gk

)/K
≈ 1

K
Pmax

E( 1
gk

)
. Then, the optimal solution can be approximated as

P ∗k ≈
1

K

Pmax

gkE(
1
gk
)
, f2(gk,K), B∗ ≈ F−1

(

1

K

Pmax

E( 1
gk
)

)

, f3(gk,K), (13)

i.e., the multi-user policy F ′2(g,K) or f ′3(g,K) can be approximately degenerated into a single-user policy
when K is large2), which agrees with Proposition 1. Besides, both policies are not size-invariant.

3.1.2 Size generalization by selecting activation function

In what follows, we show that a mean-GNN with proper activation function at the output layer can be
generalized to different values of K when learning the optimal power allocation policy. Denote this GNN
as PP (g; θP ), where θP consists of the trainable parameters. The output of this GNN is p̂ = [P̂1, . . . , P̂K ].

Since DNNs can be expressed as composite functions, we also express the power allocation policy as a
composite of two functions.

From the first equality of (11), the policy can be expressed as a composite function of fe1(gk) ,
1
gk

and a function for normalization (i.e., zk
∑

K
k=1 zk

).

2) Simulations under Rayleigh channels show that the approximation is accurate for this policy when K > 30.
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Figure 1 (Color online) Structure of PP (g; θP ). The connections with the same color are with the same weights (i.e., U l and

V l in (3)).

From the second equality, the policy can also be expressed as a composite function of fe2(gk) , ln 1
gk

and the Softmax function (i.e., σs(zk, {zj}j 6=k) ,
ezk

∑

K
k=1 ezk

) as

F ′2(g,K) =Pmax ·
[

σs

(

fe2(g1), {fe2(gj)}j 6=1

)

, . . . , σs

(

fe2(gK), {fe2(gj)}j 6=K

)

]

,Pmax · σs (fe2(g1), . . . , fe2(gK)) . (14)

For this PE policy, the inner function fe1(gk) or fe2(gk) is size-invariant, and the outer function zk
∑

K
k=1 zk

or σs(·) is size-dependent.

From the composite function form of F ′2(g,K) in (14), the neural network PP (g; θP ) should consist
of hidden layers for learning an inner function (i.e., the mapping from gk to P̂ ′k) and an output layer for

learning the outer function (i.e., the mapping from P̂ ′k to P̂k). When the Softmax function is used at the
output layer3), the output of PP (g; θP ) can be expressed as

p̂ = Pmax ·

[

eP̂
′
1

∑K
k=1 e

P̂ ′
k

, . . . ,
eP̂

′
K

∑K
k=1 e

P̂ ′
k

]

= Pmax ·
[

σs(P̂
′
1, {P̂

′
j}j 6=1), . . . , σs(P̂

′
K , {P̂ ′j}j 6=K)

]

= Pmax · σs(P̂
′
1, . . . , P̂

′
K), (15)

where P̂ ′k ≈ fe2(gk) = ln 1
gk
. When K is very large, the k-th output of PP (g; θP ) becomes

P̂k =
Pmaxe

P̂ ′
k

∑K
k=1 e

P̂ ′
k

=
1

K

Pmaxe
P̂ ′

k

∑K
k=1 e

P̂ ′
k/K

≈
1

K

Pmaxe
P̂ ′

k

E(eP̂
′
k)

,

which approximately scales with K in the same trend as P ∗k shown in (13).

The structure of PP (g; θP ) is shown in Figure 1, which learns a size-invariant inner function fe2(gk)
before the activation function in the output layer (i.e., P̂ ′k ≈ fe2(gk)) and then aligns with the size-
scaling law of the power allocation policy (i.e., 1/K) by Softmax function. After the Softmax function
is multiplied by Pmax, the total power constraint in (8b) can be satisfied.

Since B∗ has to be found from a transcendental equation in (10), f ′3(g,K) is without closed-form and
cannot be expressed as a composition of outer and inner functions explicitly. Hence, it cannot be learned
by mean-GNN with size generalization ability via selecting an activation function or normalization. We
show how to deal with this issue in Subsection 3.2.

3.2 Power and bandwidth allocation for URLLC

Consider a downlink multi-antenna OFDMA system supporting URLLC, where a BS equipped with Nt

antennas serves K single-antenna users. The power and bandwidth allocation is optimized to minimize

3) From another composite function form of F ′
3(g,K), PP (g; θP ) can also first learn a size-invariant inner function fe1(gk) ,

1
gk

and then capture the trend of the power allocation policy with K by normalization. We choose Softmax function as an example,

since it is often used as the activation function of the output layer of DNN.
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the total bandwidth required for satisfying the quality of service (QoS) of every user, i.e.,

min
Pk,Bk

K
∑

k=1

Bk (16)

s.t. CE
k > SE, (16a)

K
∑

k=1

Pk 6 Pmax, (16b)

Pk > 0, Bk > 0, (16c)

where Pk and Bk are respectively the power and bandwidth allocated to the k-th user, CE
k is the effective

capacity of the k-th user depending on the queueing delay bound and delay bound violation probabi-
lity [24], SE is the effective bandwidth depending on the statistics of packet arrival [25], and Pmax is
the maximal transmit power. Eq. (16a) is the QoS constraint [26], and Eq. (16b) is the total power
constraint.

Effective capacity reflects the system service ability for a user with QoS exponent θ. For the k-th user,
it can be expressed as CE

k = − 1
θ lnEgk{e

−θsk} packets/frame that depends on αk [26], and sk is the
achievable rate of the k-th user. To ensure the ultra-low transmission delay, we consider a short frame
structure as in [26], where each frame is with duration Tf and consists of a duration τ for data transmission
and a duration for signaling. Since the delay bound is typically shorter than coherence time, time diversity
is not useful. To guarantee the transmission reliability within the delay bound, we assign each user with
different subcarriers in adjacent frames where the frequency interval between adjacent subcarriers exceeds
coherence bandwidth [26]. Then, the small scale channels of a user among frames are independent, and

the achievable rate of the k-th user can be approximated as sk ≈ τBk

µ ln 2 [ln(1 + αkPkgk
N0Bk

) −
Q−1

G
(ǫck)√

τBk
] [27],

where µ is the packet size, αk and gk are respectively the large-scale channel gain and two norm of the
channel vector of the k-th user, ǫck is the decoding error probability, N0 is the single-sided noise spectral
density, and Q−1G (·) is the inverse of the Gaussian Q-function.

From the KKT conditions, the optimal solution of the problem in (16) should satisfy

K
∑

k=1

P ∗k = Pmax, CE
k = −

1

θ
lnEgk

{

e−θsk(gk,αk,P
∗
k ,B∗

k)
}

= SE , (17)

where sk(gk, αk, P
∗
k , B

∗
k) denotes the rate achieved with P ∗k and B∗k given channels αk and gk.

Since CE
k is hard to be derived with closed-form expression, the problem in (16) cannot be solved with

traditional convex optimization tools. Considering that this problem is quasi-convex [28], the stochastic
gradient descent (SGD) method can be used to find a solution of the problem for each given environment
parameter (i.e., α = [α1, . . . , αK ]). However, the SGD method requires a large number of iterations for
satisfying the stringent QoS constraint. To reduce the resulting high complexity, we resort to DNNs
for learning the optimal power allocation policy p∗ = P ′(α,K) and the bandwidth allocation policy
B∗ = B′(α,K), where p∗ = [P ∗1 , . . . , P

∗
K ], B∗ = [B∗1 , . . . , B

∗
K ]. Since the multivariate functions P ′(α,K)

and B′(α,K) are not affected by the order of the users, both are PE policies.

The problem in (16) also cannot be decoupled into single-user problems. However, when K is very large
and αk, k = 1, . . . ,K are i.i.d., P ′(α,K) and B′(α,K) can be approximately degenerated into single-user
policies. Due to the total power constraint in (16b), P ∗k decreases with K. As a result, B∗k should increase
with K to ensure the QoS in (16a). This indicates that the two policies are not size-invariant.

We use mean-GNNs for learning P ′(α,K) and B′(α,K), which are denoted as PP (α; θP ) and PB(α;
θB), respectively, where θP and θB are the trainable parameters. The input of both GNNs is α. The
output of PP (α; θP ) is [P̂1, . . . , P̂K ], and the output of PB(α; θB) is [B̂1, . . . , B̂K ].

3.2.1 Size generalization by pre-training “activation function”

P ′(α,K) is not with closed-form as in (13) and cannot be expressed as a composite function explicitly
as in (14). Nonetheless, it is also not size-invariant due to the same reason as F ′2(g,K): the total power
constraint. According to the analysis in Subsection 3.1.2, using Softmax as the activation function of the
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v
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Figure 2 Structure of Bv(αk,K; θv) for learning Bv(αk,K). Softplus is used at the output layer to ensure B̂v
k > 0.

output layer of PP (α; θP ), which is a natural choice to satisfy the power constraint in (16b), can make
the mean-GNN generalizable to K.

B′(α,K) is also without closed-form and cannot be expressed as a composite function explicitly. It
is not size-invariant due to the QoS constraint and its dependence on P ∗k . Based on a conjecture that
B′(α,K) is a composite function of an inner function independent of K and an outer function dependent
onK, and inspired by the structure of PP (g; θP ) in Figure 1, we conceive the following approach to enable
a mean-GNN generalizable to K for learning B′(α,K). We first pre-train an “activation function” to
learn the implicit outer function that depends on K. Then, we use a mean-GNN with SI-AFs in hidden
layers to learn a size-invariant inner function and use the pre-trained “activation function” in the output
layer of the mean-GNN to align with the size-scaling law of the bandwidth allocation policy.

Pre-training “activation function”. Given a power allocation policy, the PE policy B′(α,K)
can be degenerated into a function of αk and K when K is large as shown in (2), i.e., B∗k ≈ Bv(αk,K).
This function reflects the scaling law of bandwidth allocation policy with K and is identical for all users,
which can approximate the implicit outer function of the PE policy in the non-asymptotic regime.

In order to learn the function Bv(αk,K) defined over all possible values of αk and K, we introduce a
FNN denoted as Bv(αk,K; θv), where θv consists of trainable parameters. The structure of Bv(αk,K; θv)
is shown in Figure 2, where the input is [αk,K], and the output is B̂v

k .
To reduce the cost of training, we pre-train Bv(αk,K; θv) and assume equal power allocation during

the pre-training. The samples for αk are generated from random realizations of large scale channel and
the samples forK are all possible numbers of users in the considered system. The FNN can be pre-trained
in a supervised manner, where the trainable parameters are found from

θv = argmin
θv

Eαk,K

{

(

B̂v(αk,K; θv)−Bv∗
)2
}

(18)

by estimating the expectation as empirical mean from samples, B̂v(αk,K; θv) is the output of the FNN,
and Bv∗ is the label obtained by numerically solving the equation in (17) with P ∗k = Pmax

K . The FNN can
also be pre-trained in an unsupervised manner, where the trainable parameters are found from

θv = argmin
θv

Eαk,K

{

(

SE +
1

θ
lnEgk

{

e−θsk(gk,αk,
Pmax

K
,B̂v(αk,K;θv))

}

)2
}

, (19)

where the loss function is obtained from the second KKT condition in (17), since the optimally allocated
bandwidth should satisfy the condition.

Learning bandwidth allocation policy. The structure of PB(α; θB) for learning B′(α,K) with
size generalization ability is shown in Figure 3. It consists of a mean-GNN with SI-AFs in hidden layers
for learning the size-invariant inner function (i.e., the mapping from αk, k = 1, . . . ,K to B̂′k, k = 1, . . . ,K)

and the pre-trained FNN in the output layer for learning the outer function (i.e., the mapping from B̂′k
to B̂k), where the learned bandwidth allocated to the k-th user is B̂k = B̂′k · B̂v

k . To ensure B̂k > 0,
Softplus is used at the last hidden layer of the mean-GNN.

3.2.2 Unsupervised learning for the policies

Since the stringent QoS constraints in URLLC is hard to satisfy by supervised learning, we train the
two GNNs for learning the power and bandwidth allocation policies in an unsupervised manner, where
a GNN for learning the Lagrangian multiplier function for controlling the QoS constraint (denoted as
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Figure 3 (Color online) Structure of PB(α; θB) for learning B′(α,K). The connections with the same color are with the same

weights.

Algorithm 1 Training procedure

1: Initialize PP (α; θP ), PB(α; θB) and Pλ(α; θλ) with random parameters θP , θB and θλ;

2: for t = 1, 2, . . . do

3: Sample a batch of (g,α) as S;
4: Input α into PP (α; θP ), PB(α; θB) and Pλ(α; θλ) to obtain P̂k, B̂

′
k and λ̂k, respectively;

5: for k = 1, . . . ,K do

6: Input [αk,K] into the pre-trained Bv(αk,K; θv) to obtain B̂v
k ;

7: Scale B̂′
k with B̂v

k to obtain B̂k, i.e., B̂k = B̂′
k · B̂v

k ;

8: end for

9: Update the parameters θP , θB and θλ as follows:

θ
t+1
P ← θ

t
P−

δt

|S|
∑

(g,α)∈S

∇θP
PP (α; θP )

∂Lt(g,α, P̂k, B̂k, λ̂k)

∂P̂k

,

θ
t+1
B ← θ

t
B−

δt

|S|
∑

(g,α)∈S

∇θB
PB(α; θB)

∂Lt(g,α, P̂k, B̂k, λ̂k)

∂B̂k

B̂v
k ,

θ
t+1
λ ← θ

t
λ+

δt

|S|
∑

(g,α)∈S

∇θλ
Pλ(α; θλ)

∂Lt(g,α, P̂k, B̂k, λ̂k)

∂λ̂k

;

10: end for

Pλ(α; θλ)) is also trained [26].

The joint training procedure for PP (α; θP ), PB(α; θB) and Pλ(α; θλ) is provided in Algorithm 1, where
t is the number of iterations, g , [g1, . . . , gK ], δt is the learning rate, | · | denotes cardinality, ∇xy =

[∇xy1, . . . ,∇xyK ], ∇xyi = [ ∂yi

∂x1
, . . . , ∂yi

∂xK
]T, and Lt(g,α, P̂k, B̂k, λ̂k) ,

∑K
k=1[B̂k+ λ̂k(e

−θsk − e−θS
E

)].

4 Simulation results

In this section, we validate our analyses by evaluating the size generalization performance of the DNNs
for learning the power and bandwidth allocation policies in URLLC. To this end, the DNNs are trained
using the samples generated in the scenario with a given number of users, but tested using the samples
in the scenarios with other numbers of users without re-training.

4.1 Simulation setup

The cell radius is 250 m. All users are randomly located in a road with a minimal distance of 50 m from
the BS. The path loss model is 35.3 + 37.6 log(dk), where dk is the distance between the k-th user and
the BS. Pmax = 43 dBm, Nt = 8, and N0 = −173 dbm/Hz. The required overall packet loss probability
and the end-to-end delay bound are respectively ǫmax = 10−5 and Dmax = 1 ms. After subtracting
the downlink transmission delay and the decoding delay from the delay bound, the queueing delay is
bounded by 0.8 ms [26]. As in [29], the decoding error probability ǫck and the queueing delay violation
probability ǫqk are set as ǫck = ǫqk = ǫmax/2. The time for data transmission and the frame duration are
τ = 0.05 ms and Tf = 0.1 ms, respectively. The packet size is µ = 20 bytes [30]. The packets arrive at
the BS according to the Poisson process with an average arrival rate of a = 0.2 packets/frame. Then,

SE = a
θ (e

θ − 1) packets/frame and θ = ln[1− ln(ǫmax/2)
aDmax/Tf

] [29].
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Table 1 Generating samples in training, validation and test sets

Number of users

K in samples

Number of samples

generated for each K
Total number of samples

Training set [10] 2000 2000

Validation set [10] 200 200

Test set [1,2,5,10,50,100,200] 100 700

Table 2 Hyper-parameters

Hyper-parameter
GNN

FNN Bv

PP PB Pλ

Number of neurons in hidden layers [4K] [200, 100, 100, 50]

Activation function of the hidden layers Leaky ReLU (i.e., y = x, x > 0, y = 0.01x, x < 0)

Activation function of the output layer Softmax Softplus Softplus Softplus

Learning rate 0.01
1+0.01t

0.01
1+0.001t

Batch size 10 100

Epochs 5000 2500

4.2 Sample generation and fine-tuned hyper-parameters

For notational simplicity, denote the three GNNs as PP (α; θP ) , PP , PB(α; θB) , PB Pλ(α; θλ) , Pλ

and the FNN as Bv(αk,K; θv) , Bv in the sequel.
Since the loss function in (18) is simpler than (19) and the label for pre-training Bv can be easily

obtained by solving (17) with the bi-section method, we use supervised learning to pre-train this FNN.
Denote one sample for pre-training Bv as [(αk,K), Bv∗], where αk is obtained from the path loss model
with randomly generated locations, and Bv∗ is the label. We generate 4000 samples to pre-train the
FNN, where 20 samples are generated for every K from 1 to 200.

Denote one sample for training PP , PB, and Pλ as [g,α], which is a realization of the small and large-
scale channel gains of all users. In each realization, g is randomly generated from Rayleigh distribution,
and α is obtained from the path loss model with randomly generated locations of all users. As shown in
Table 1, 2000 samples are generated for K = 10 (i.e., all these samples for the vectors g and α are of size
10) when generating training set, 200 samples are generated for K = 10 when generating validation set,
and 100 samples are generated for every K in [1, 2, 5, 10, 50, 100, 200] (i.e., 100 samples for g and α are
scalars, 100 samples for g and α are of size two, 100 samples for the vectors are of size five, etc.) when
generating test set. Therefore, the total number of samples in the training, validation, and test sets are
2000, 200, and 700, respectively.

The three datasets in Table 1 are used as follows unless otherwise specified.
The fine-tuned hyper-parameters are shown in Table 2, where [∗1, ∗2, . . . , ∗L] denotes that a DNN is

with ∗l neurons in the l-th hidden layer. To accelerate the training procedure, we scale the large-scale
channel gains as ln(α)+30 since they are usually small, and scale K as K/200 to make the input variables
in the same order of magnitude when pre-training Bv.

4.3 Size generalization performance

The system performance is measured by the availability and total bandwidth achieved by [P̂1, . . . , P̂K ]
and [B̂1, . . . , B̂K ]. Availability is the percentage of the users with satisfied QoS among all the users in
the system, which is one of the key performance metrics for URLLC [31], and total bandwidth is the
sum of the bandwidth of all users achieved by a learned policy. The two metrics are respectively defined
as AK , 1

K|NK |
∑

(g,α)∈NK

∑K
k=1 I(ǫk < ǫmax), W r

K , 1
|NK |

∑

(g,α)∈NK

∑K
k=1 B̂k MHz, where NK is a

subset in the test set containing the samples for the channel vectors with the same size, and ǫk is the
packet loss probability of the k-th user achieved by a learned policy.

Considering the randomness of small training sets, we train the GNNs 10 times. In each time, the
training set is randomly generated and the GNNs are with randomly initialized trainable parameters
while the test set remains unchanged. The values of the two metrics are obtained by selecting the second
worst test result, hence are with confidence level of 90%.

4.3.1 Reliability controlling

Despite that the learned solution is unable to satisfy the QoS with probability one, the packet loss
probability can be ensured by setting a more stringent requirement for reliability than the required
reliability ǫmax during training (i.e., ǫD < ǫmax), as suggested in [26]. With such a conservative design,



Wu J J, et al. Sci China Inf Sci April 2024, Vol. 67, Iss. 4, 142301:12

Table 3 Impact of ǫD on system performancea)

ǫD
K = 1 K = 2 K = 5 K = 10 K = 50 K = 100 K = 200

AK W r
K AK W r

K AK W r
K AK W r

K AK W r
K AK W r

K AK W r
K

10−5 0.57 0.13 0.26 0.27 0.32 0.77 0.44 1.66 0.42 10.29 0.41 22.95 0.45 51.81

8× 10−6 1.00 0.14 0.81 0.28 0.84 0.78 0.91 1.68 0.77 10.38 0.73 23.15 0.63 52.27

6× 10−6 1.00 0.14 1.00 0.28 1.00 0.79 1.00 1.70 1.00 10.55 1.00 23.53 1.00 53.14

5× 10−6 1.00 0.14 1.00 0.28 1.00 0.80 1.00 1.72 1.00 10.64 1.00 23.74 1.00 53.60

a) The bold numbers denote the conservative design that ensures availability of 1.00 in all test scenarios with the minimum

increasing total bandwidth, and the corresponding system performance under this design.

Table 4 Training complexity for achieving the availability of 1.00, ǫD = 6× 10−6

Size K of training samples Number of training samples Training time (s)

[2] 5000 1290.32

[5] 4000 1289.91

[8] 3000 1185.11

[10] 2000 875.43

even if the overall packet loss probability achieved by the learned solution exceeds ǫD, the probability of
violating the original requirement ǫmax is low (e.g., the availability is 1.00 for ǫD = 6 × 10−6 as shown
in Table 3). As shown by the simulation results in Table 3, the availability can be remarkably improved
with a slight increase of the total bandwidth by reducing ǫD. For ǫD = 6× 10−6, the availability achieves
1.00 with a bandwidth loss 53.14−51.81

51.81 ≈ 2.57% from ǫD = 10−5 when K = 200 in the test set. The
results in the table indicate that the required reliability ǫmax can be ensured when the well-trained GNNs
with K = 10 in the training set (see Table 1) are tested in the scenarios with different number of users
(i.e., K = 1, 2, 5, 50, 100 or 200) from the training set.

4.3.2 Impact of small K

In previous analytical analysis, K is assumed very large. Here we show that the designed GNNs can still
be applied to a small number of users. In Table 4, we show the minimal number of samples and the
time required to train the mean-GNNs with pre-trained activation function in the output layer when the
training samples are with different sizes for achieving the availability of 1.00 in all test scenarios, where
the test samples are generated with the size of 1, 2, 5, 10, 50, 100 or 200 in each scenario. It is shown
that the policies learned by the mean-GNNs can achieve good generalization performance for large size
(e.g., K = 200) even when it is trained with samples of small size (e.g., K = 2). However, the training
complexity increases when K is small, because the output of the pre-trained FNN, i.e., Bv, is not an
accurate approximation of B∗k, which needs more training samples to make PB to well learn the policy.

4.3.3 Performance comparison

To validate our analyses, we compare three GNNs with the PE inductive bias and an FNN that is not
with PE inductive bias, where all DNNs are with fine-tuned hyper-parameters.

• “P-GNN”. This legend denotes the mean-GNNs satisfying the size generalization condition, where
PP with Softmax in the output layer is used to learn power allocation and PB with the pre-trained
“activation function” in the output layer is used to learn bandwidth allocation, i.e., B̂k = B̂′kB̂

v
k .

• “M-GNN”. This legend denotes the existing mean-GNNs, where PP with Softmax in the output
layer is used to learn the power allocation policy (as in “P-GNN”), and a mean-GNN with SI-AFs in all
layers (which is PB without pre-trained “activation function” at the output layer and does not satisfy
the size generalization condition) is used to learn the bandwidth allocation policy, i.e., B̂k = B̂′k.

• “S-GNN”. This legend denotes the GNNs with sum-aggregator that does not satisfy the size gen-
eralization condition, where PP with Softmax in output layer is used to learn power allocation and PB

with the pre-trained “activation function” in the output layer is used to learn bandwidth allocation.
• “FNN”. The power and bandwidth allocation policies are learned by two FNNs. Each FNN is with

one hidden layer consisting of 300 neurons. Since the input of an FNN can only be with a fixed size, both
the input size and output size of each of the two FNNs are Kmax. When the training or test samples
are generated with K < Kmax, the input vector is padded with zeros. The learning rate is 0.001

1+0.001t , the
batch size is 100 and the other hyper-parameters are the same as those of the GNNs in Table 2.

For “FNN”, we use the samples with Kmax = 200 for training such that it can also be used for the test
samples with K < 200 by padding with zeros. For “M-GNN”, we respectively use the training samples
of sizes K = 10 and K = 200, and use “M-GNNK” to denote the M-GNN trained with the samples
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Table 5 Availability and total bandwidth of the learned policies in the test seta)

Method
K = 1 K = 2 K = 5 K = 10 K = 50 K = 100 K = 200

AK W r
K AK W r

K AK W r
K AK W r

K AK W r
K AK W r

K AK W r
K

P-GNN 1.00 0.14 1.00 0.28 1.00 0.79 1.00 1.70 1.00 10.55 1.00 23.53 1.00 53.14

M-GNN10 1.00 0.17 1.00 0.33 1.00 0.86 1.00 1.72 0.00 8.65 0.00 17.29 0.00 34.50

M-GNN200 1.00 0.27 1.00 0.52 1.00 1.35 1.00 2.70 1.00 13.61 1.00 27.20 1.00 54.22

S-GNN 0.83 0.12 0.65 0.22 0.77 0.72 1.00 1.71 1.00 15.06 1.00 72.24 1.00 557.34

FNN 1.00 0.42 1.00 0.78 1.00 2.02 0.98 3.78 0.91 17.16 0.88 31.04 1.00 55.19

a) These bold numbers respectively denote the total bandwidth achieved by the learned policy from M-GNN, S-GNN and FNN
in scenarios where their system performance are close to that of P-GNN.

generated in the scenario of K users. Since ǫD = 6× 10−6 is unable to control the reliability achieved by
the policies learned by “M-GNN” and “FNN”, the values of ǫD chosen for “M-GNN10”, “M-GNN200”,
and “FNN” are 5× 10−6, 3× 10−6, and 2× 10−6, respectively.

The system performance of the learned policies tested with the samples respectively generated in the
scenarios with K = 1, 2, 5, 10, 50, 100, and 200 is shown in Table 5. It is shown that when K = 10
and K = 200 in the test set where “M-GNN10” and “M-GNN200” do not need to be generalized, their
availability is 1.00 and the required total bandwidth (highlighted in boldface) is close to “P-GNN”. The
availability of “M-GNN10” is 0.00 in the test scenarios where K > 10, i.e., the QoS of all users are
not satisfied. Although the availability of “M-GNN10” is 1.00 in the test scenarios where K < 10, the
bandwidth it required is much larger than that of “P-GNN”. For the test scenarios where K < 200,
although the availability of “M-GNN200” is 1.00, the bandwidth it required is much larger than that of
“P-GNN”. This is because “M-GNN” cannot learn the scaling law of B∗k with K. When the well-trained
“M-GNN10” is used for inference in the test scenarios where K > 10, the QoS cannot be satisfied since
B̂k is lower than required. When the well-trained “M-GNN10” is used for inference in the test scenarios
where K < 10 or the well-trained “M-GNN200” is used for inference when K < 200, much larger total
bandwidth is required than “P-GNN”. The well-trained “S-GNN” only performs close to “P-GNN” when
K = 10 in the test set, but is either with lower availability or much larger total bandwidth than “P-GNN”
for other values of K. This indicates that “S-GNN” is not size generalizable, even when Softmax or the
pre-trained “activation functions” is used at the output layer, which validates Proposition 4. Similarly,
the well-trained “FNN” only performs close to “P-GNN” when K = 200 in the test set. These results
show that “P-GNN” is size generalizable, which validates the conjecture that the bandwidth allocation
policy can indeed (at least approximately) be decomposed into a size-invariant inner function and a size-
dependent outer function. As two counterexamples, the results for “M-GNN” and “S-GNN” indicate
that the PE inductive bias of a GNN does not ensure the GNN to be size generalizable.

Remark 3. We have also evaluated the scalability of the four DNNs, according to the definition of
scalability in [15,18]. To this end, we consider four scenarios each with K = 10, 50, 100, 200, respectively,
where the DNNs are first re-trained (with re-tuned hyper-parameters) and then tested in each scenario.
Our simulation results show that “P-GNN”, “M-GNN” and “S-GNN” achieve good system performance
with slightly higher training complexity while “FNN” is with high complexity for training to achieve
comparable performance, whenK is large (not provided here due to the lack of space). In other words, “P-
GNN”, “M-GNN” and “S-GNN” are scalable while “FNN” is not scalable in terms of training complexity.
These counterexamples show that a scalable GNN may not be size generalizable, e.g., “M-GNN” and “S-
GNN” are scalable but not size generalizable.

Remark 4. We also evaluated the size generalizability of “P-GNN” in the scenarios where αk, k =
1, . . . ,K are not i.i.d. by setting the users randomly located in two roads. The simulation results are the
same as in Table 5 (not provided due to the space limitation). This indicates that even when the i.i.d.
assumption in the propositions does not hold, the proposed method is still applicable.

5 Conclusion

In this paper, we showed that GNNs are not naturally size generalizable and solely embedded with PE
inductive bias does not ensure a GNN size generalizable for PE policies. We found a size generalization
condition and demonstrated that aggregators and activation functions impose an inductive bias on the
size generalizability of GNNs for learning PE policies. To showcase how to make GNNs generalizable
to the sizes by satisfying the condition, we took power and bandwidth allocation as examples. For the
power allocation policy, we showed that it can be learned by the mean-GNN with size generalization ability
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when the activation function at the output layer is selected for satisfying the total power constraint, which
happens to satisfy the size generalization condition. For the bandwidth allocation policy, we provided
a method to make the GNN generalizable to size by scaling its output with a pre-trained “activation
function”. Simulation results validated our analyses and showed that the mean-GNNs with selected
and pre-trained “activation function” can learn the power and bandwidth allocation policies with good
generalization ability to the number of users. However, our analyses and method are only applicable
to the GNNs with mean-, sum-, or max-aggregators when learning 1D-PE policies. Why the GNNs are
generalizable to the number of users when learning power control/allocation and link scheduling policies
in various interference networks and how to design GNNs for optimizing multi-user precoding with size
generalizability in various system configurations are still open.
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Appendix A Proof of Proposition 1

Denote [xj]j 6=k as a vector obtained by removing xk from x , [x1, . . . , xK ]. After ranking the elements in this vector in descending

(or ascending) order, the resulting vector is denoted as [xd
j ]j 6=k. Since the summation

∑

j 6=k φ(xj) is independent of the order of

each term, we have
∑

j 6=k φ(xj) =
∑

j 6=k φ(xd
j ).

When K is very large and the elements in x are i.i.d., each element in [xd
j ]j 6=k approaches to a deterministic function of K4).

Therefore,
∑

j 6=k
φ(xd

j ) can be asymptotically expressed as a function of K, i.e.,
∑

j 6=k
φ(xd

j ) ≈ f̄(K). Then, from (1) we obtain

yk = f̃
(

xk,
∑

j 6=k
φ(xd

j )
)

≈ f̃(xk, f̄(K)) , f(xk,K).

Appendix B Proof of Proposition 2

For notational simplicity but without loss of generality, the activation function in each layer is the same in this appendix, i.e.,

σl(·) = σ(·).
When K is very large and xk, k = 1, . . . ,K are i.i.d., we first prove a statement that hl

k, k = 1, . . . ,K are i.i.d. is true for

l = 0, 1, . . . , L using mathematical induction. When l = 0, we have h0
k = xk, Since xk, k = 1, . . . ,K are i.i.d., the statement is

true. Assume that the statement is true for l = n. When l = n + 1, from (3) we have

h
n+1
k = σ



U
n+1

h
n
k +

V n+1

K





∑

j 6=k

h
n
j



 + c
n+1



 . (B1)

Since hn
k , k = 1, . . . ,K are i.i.d., 1

K
(
∑

j 6=k
hn

j ) ≈ E
K(hn

k ) = E
K(hn) when K is large5), where E

K(·) denotes expectation.

Then, by substituting E
K(hn) into (B1), we have

h
n+1
k ≈ σ

(

U
n+1

h
n
k + V

n+1
E
K(hn) + c

n+1
)

, (B2)

which is a function of hn
k and hence is also i.i.d. among k. Consequently, hl

k, k = 1, . . . ,K are i.i.d. for l = 0, 1, . . . , L. Thereby,
1
K

∑

j 6=k
h

l−1
j
≈ E

K(hl−1
k

) = E
K(hl−1) when K is very large. By substituting E

K(hl−1) into (3), we can obtain

h
l
k ≈ σ

(

U
l
h

l−1
k + V

l
E
K
(

h
l−1

)

+ c
l
)

. (B3)

Then, the k-th output of the mean-GNN can be approximated as a function of K and xk, i.e.,

ŷk ≈σ
(

U
L+1

σ
(

· · ·U2
σ(U

1
xk + V

1
E
K
(x) + c

1
) + V

2
E
K
(h

1
) + c

2 · · ·
)

+ V
L+1

E
K
(h

L
) + c

L+1
)

, q̂(xk,K). (B4)

Appendix C Proof of Proposition 3

In order to prove q̂(xk,K) ≈ q̂(xk,K
′), we only need to prove E

K(hl) ≈ E
K′

(hl), l = 0, 1, . . . , L according to (4). Since

pK(x) = pK′
(x), we have E

K(x) = E
K′

(x). In the following, we prove that

pK(hl) ≈ pK′
(hl) (C1)

is true for l = 0, 1, . . . , L using mathematical induction. When l = 0, we have h0 = x, hence (C1) is true. Assume that (C1) is

true for l = n. In order to prove pK(hn+1) ≈ pK′
(hn+1), we need to prove that PrK{hn+1 6 h} ≈ PrK

′{hn+1 6 h} is true for

any h, where PrK{·} denotes probability. In other words, we need to prove PrK{hn+1
k

6 h} ≈ PrK
′{hn+1

k
6 h}. When K and

K′ are very large, from (B2) we can derive that

PrK
{

h
n+1
k 6 h

}

≈ PrK
{

h
n
k 6 AK(h)

}

, (C2)

PrK
′{

h
n+1
k 6 h

}

≈ PrK
′{

h
n
k 6 AK′

(h)
}

, (C3)

where AK(h) , 1

Un+1 (σ
−1(h) − V n+1

E
K(hn) − cn+1), and σ−1(·) denotes the inverse function of σ(·). Again, we omit the

superscript in the activation function for notational simplicity.

Since pK(hn) ≈ pK′
(hn), we have E

K(hn) ≈ E
K′

(hn). When σ(·) does not depend on K, we have AK(h) ≈ AK′
(h). Hence,

we can obtain PrK{hn
k 6 AK(h)} ≈ PrK

′{hn
k 6 AK′

(h)}, which indicates that PrK{hn+1
k

6 h} ≈ PrK
′{hn+1

k
6 h} (i.e.,

pK(hn+1) ≈ pK′
(hn+1)) according to (C2) and (C3). Hence, (C1) is true for l = 0, . . . , L. Thus, EK(hl) ≈ E

K′
(hl).

4) David H A, Nagaraja H N. Order Statistics. Hoboken: John Wiley and Sons, 2003.
5) Rice J A. Mathematical Statistics and Data Analysis. Boston: Cengage Learning, 2006.
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Appendix D Proof of Proposition 4

Again, for notational simplicity, the activation function in each layer is the same in this appendix. We first show that the input-

output relation of the GNN with the max-aggregator is not invariant to the size of the input vector. For this GNN, the relation

between hl
k and hl−1

k
can be expressed as

h
l
k = σ

(

U
l
h

l−1
k + V

lmaxK
j 6=kh

l−1
j + c

l
)

,

where maxK
j 6=k(·) denotes the maximization operation.

Analogous to Appendix B, we can derive that hl
k, k = 1, . . . ,K are i.i.d. for l = 0, . . . , L when K is very large since

xk, k = 1, . . . ,K are i.i.d.. Then, we have maxK
j 6=kh

l−1
j
≈ D−1

hl−1 (
K

K+1 ) according to4), where D−1

hl−1(·) denotes the inverse

of the probability distribution function of hl−1. Then, the relation between the output and the input of the GNN can be

approximated as
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U
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)

= q̂(xk,K).

Since the probability distribution function of the continuous random variable is a strictly monotonically increasing function,

D−1

hl
( K
K+1 ) also strictly increases monotonically. Then, we have D−1

hl
( K
K+1 ) 6= D−1

hl
( K′

K′+1
) for any K 6= K′. Thus, q̂(xk,K) 6=

q̂(xk,K
′).

We then show that the input-output relation of the GNN with the sum-aggregator is not invariant to the input size. For this

GNN, the relation between hl
k and h

l−1
k

can be expressed as

h
l
k = σ
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 .

When K is very large, again considering that xk is i.i.d. among k, we can derive that hl
k is also i.i.d. across k. According to

the central-limit theorem,
∑

K
j 6=k

h
l−1
j

follows a normal distribution, whose mean and variance increase with K. This suggests that
∑

K
j 6=k

h
l−1
j

depends on K, which can be approximated as h̃l−1(K). Then, the relation between the output and the input of the

GNN can be approximated as follows that is no longer equal to q̂(xk,K
′),

ŷk ≈ σ
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= q̂(xk,K).
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