CrossMark
& dlick for updates

SCIENCE CHINA
Information Sciences @

April 2024, Vol. 67, Tss. 4, 142103:1-142103:18
« RESEARCH PAPER - https://doi.org/10.1007/s11432-022-3611-3

What can we learn from quality assurance badges in
open-source software?

Feng LI', Yiling LOU?, Xin TAN?, Zhenpeng CHEN?, Jinhao DONG!,
Yang LI', Xuanzhi WANG!, Dan HAO'" & Lu ZHANG!

'MoE Key Lab of HCST, School of Computer Science, Peking University, Beijing 100871, China;
2Department of Computer Science, Purdue University, West Lafayette IN 47907, USA;
3School of Computer Science & Engineering, Beihang University (BUAA), Beijing 100191, China;
4Department of Computer Science, University College London (UCL), London WCI1E 6BT, UK

Received 2 May 2022/Revised 26 August 2022/Accepted 18 October 2022/Published online 26 March 2024

Abstract In the development of open-source software (OSS), many developers use badges to give an
overview of the software and share some key features/metrics conveniently. Among various badges, quality
assurance (QA) badges make up a large proportion and are the most prevalent because QA is of vital impor-
tance in software development, and ineffective QA may lead to anomalies or defects. In this paper, we focus
on QA badges in open-source projects, which present quality assurance information directly and instantly,
and aim to produce some interesting findings and provide practical implications. We collect and analyze
100000 projects written in popular programming languages from GitHub and conduct a comprehensive em-
pirical study both inside and outside QA badges. Inside QA badges, we build a category classification for all
QA badges based on the properties they focus on, which shows the types of QA badges developers use. Then,
we analyze the frequency of the properties that QA badges focus on, and property combinations, too, which
present their use status. We find that QA badges focus on various properties while developers give different
preferences to different properties. The use status also differs between different programming languages. For
example, projects written in C focus on Security to a great extent. Our findings also provide implications for
developers and badge providers. Outside QA badges, we conduct a correlation analysis between QA badges
and some software metrics that have potential relationships with code quality, contribution quality, and
popularity. We find that QA badges have statistically significant correlations with various software metrics.

Keywords quality assurance, badge, open-source software, code quality, empirical study

1 Introduction

Open-source software (OSS) is prevalent [1-3], providing a range of services and products for companies,
governments, and educational organizations [3]. Meanwhile, various OSS development platforms have
been developing rapidly, such as GitHub). To help developers better maintain and understand software
evolution, OSS development platforms often encourage the Documentation of each project with a basic
introduction. For example, on the most popular OSS platform, GitHub, developers often maintain a
profile README to describe an overview of each project, such as its basic information, installation
guidelines, or announcements, which can help users and contributors get to know the project more easily.

In addition to the traditional textual descriptions, more and more projects have included badges in
their README files. A badge is an image like [ESIEEST, describing a certain property/properties
of the project. Each badge is supported by an external service provider, who provides the image and
presents information on it. Typically, a badge can describe information on quality assurance (QA) and
dependency management.

The increasing popularity of badges has also gained attention from researchers. In particular, Trockman
et al. [4] presented the first large-scale empirical study on badges in the npm ecosystem and confirm

* Corresponding author (email: haodan@pku.edu.cn)
1) https://github.com/. Since this paper covers many tools and websites, we do not give their links whenever they occur but
put them in Appendix A together.

(© Science China Press 2024 info.scichina.com link.springer.com

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-022-3611-3&domain=pdf&date_stamp=2024-3-26
https://doi.org/10.1007/s11432-022-3611-3
info.scichina.com
link.springer.com
https://github.com/

Li F, et al. Scit China Inf Sci April 2024, Vol. 67, Iss. 4, 142103:2

that many badges are indeed reasonably reliable signals for both users and contributors. Their work
further summarizes five common types of badges, detailing QA, dependency management, information,
popularity, and support. Among them, QA badges are the most prevalent and make up the largest
proportion of all badges. For example, 31.5% of their studied projects adopt the Build Status badges
that are provided by Travis CI. Such an observation is expected since QA is essential for OSS. To date,
QA has been studied extensively in [5-9], and various QA tools have been proposed and integrated into
OSS platforms, which further leads to the prevalence of QA badges.

However, although QA badges have been widely used in practice, their use status in the wild or their
practical impact on QA remains unknown. While Trockman et al. [4] performed the first study on overall
badges, no previous work has focused specifically on QA badges. Inspired by them, in this paper, we
present the first comprehensive study on QA badges in OSS to investigate their use status and implications
in practice. We first construct a large-scale dataset consisting of 57363 QA badges collected from the top
100000 popular GitHub projects in 10 popular programming languages. Then, we build a categorization
of the properties that QA badges focus on. Based on these data, we conduct our empirical study both
inside and outside QA badges.

First, we conduct analyses inside QA badges. Specifically, facing various QA badges in an open-source
ecosystem, we are curious about what software properties (e.g., Maintainability, Security) developers are
focusing on and the use status of different badges and properties. Since we do not even know what kinds of
QA badges developers commonly use, we first describe the full picture of existing QA badges by building
a category classification of the properties that QA badges focus on, which can help in understanding well
the current state of QA in OSS projects. Then, after having an overall understanding of QA badges and
building a category classification, we observe the frequency of each badge category. We aim to find their
use patterns, including the use status of properties, property combinations, and use status in projects
written in different programming languages. We find that QA badges focus on various properties while
developers assign different preferences to different properties. The use status in different programming
languages also differs; for example, projects written in C focus on Security to a large extent. Our findings
also have implications for developers and badge providers.

Second, besides analyses inside QA badges, we conduct analyses outside QA badges, that is, to
investigate the correlation between QA badges and some software metrics. We select some metrics that
should have a potential relationship with software code quality, contribution quality, and popularity. We
expect the metrics to have correlations with QA badges or be impacted by QA badges. We conduct
correlation analysis on QA badges and software metrics, and the experiments are conducted (1) between
projects with and without QA badges and (2) between projects with QA badges and their previous
versions, where QA badges have not been introduced. We find that QA badges are correlated with
bug-related metrics, metrics related to Testing Code contributions, and popularity-related metrics.

In summary, we contribute (1) a large dataset containing 100000 popular GitHub projects written in
10 popular programming languages and their 57363 badges, (2) a categorization of all the properties that
QA badges focus on, (3) a large-scale and in-depth analysis of the use status of QA badges/properties,
and (4) analyses of the correlation between QA badges and other project metrics that have potential
relationships with software code quality, contribution quality, and popularity. Our replication package is
available on our website?).

2 Background, methodology, and research questions

In this section, we briefly introduce badges and QA badges and then present our research methodology
and research questions.

2.1 Background

Badge. In OSS development practice, to give an overview of the project and share some overall infor-
mation, developers usually create a profile README. As the README is often the first item a visitor
will see when visiting the repository, it is important to write it well. README files typically address
(1) what the project does, (2) why the project is useful, (3) how users get started with the project,
(4) where users can get help with the project, and (5) who maintains and contributes to the project.

2) https://github.com/Spiridempt/Badge.

https://github.com/Spiridempt/Badge

Li F, et al. Scit China Inf Sci April 2024, Vol. 67, Iss. 4, 142103:3

Identifying popular languages

Collecting projects]

Extracting badges

Analyzing categories
Analyzing frequency
Statistical analysis]—>

Figure 1 Methodology overview.

QOLLLO

To show such information clearly and conveniently, lots of projects introduce badges in their README
files. Specifically, a badge is a special image like (SIS , and each badge usually has a service provider
that provides the specific information of a project, and the service provider also provides the image of a
badge. For dynamic badges, the information is dynamically updated by the provider and the image is
also dynamically updated. Then, through the Image Link in the README file, the project can present
current information. Typical examples of dynamic badges are those showing the number of downloads or
the current Code Coverage. For static badges, the information is often fixed, and the image need not be
updated dynamically. Typical examples of static badges are those badges showing the License or giving
links for donations.

QA badge. Among the many badges, some are related to the QA of the project. In this paper, we
define these kinds of badges as QA badges. For example, is a badge provided by Travis CI,
which shows the current Build Status of the project, and is a badge provided by Coveralls,
which shows the current Code Coverage.

The reasons developers use QA badges include but are not limited to: (1) using badges is a better
way to present characteristics than providing some links for inspection; (2) the metrics on badges can
encourage developers to optimize their code to show better metrics (values); (3) clear badges and good
metrics can attract more contributors to participate in project development [4,10].

In contrast to the wide use of badges in practice, few studies have investigated badges (especially QA
badges) and their use in practice. To our knowledge, Trockman et al. [4] presented the only large-scale
empirical study on badges in the npm ecosystem and confirm many badges are indeed reasonably reliable
signals for users and contributors. Among the various badges, QA badges are the most prevalent, making
up the largest proportion of all badges because QA is of vital importance in OSS. Therefore, we focus on
QA badges in this paper and aim to make in-depth analyses.

2.2 Methodology and research questions

Before analyzing QA badges in open-source projects, we illustrate our experimental methodology and
research questions in this subsection. Figure 1 shows the overview. Note that all data and analyzing
scripts are on our website for reproduction.

Following previous study [4], we collect a dataset from GitHub. Since GitHub is widely used by
developers to host open-source projects, it reflects real-world development practice.

Step 1: identifying popular languages. As different programming languages have different QA
characteristics, it is natural to consider programming languages when collecting data (i.e., stratified
sampling [11]). According to the State of the Octoverse Report®, we select the top 10 most popular
programming languages in 2021, i.e., JavaScript, Python, Java, TypeScript, C#, PHP, C++, C, Shell,
and Ruby.

Step 2: collecting projects. To conduct stratified sampling, for each programming language, we
select 10000 projects with the largest number of stars, which results in amassing 100000 projects in total.
The reason we choose popular projects is that they are relatively active and mature and are expected
to have good QA status, but this is a source of potential bias that may affect the degree to which we
can generalize from the findings. The discussion of this threat is in Section 6. It is worth noting that in
the collecting process, to avoid unclonable and repeated repositories, we skip private repositories, forked

3) https://octoverse.github.com/.

https://octoverse.github.com/

Li F, et al. Scit China Inf Sci April 2024, Vol. 67, Iss. 4, 142103:4

repositories, and non-software repositories as previous work [4,12,13] has done and stop until we succeed
in gathering 10000 projects for each programming language. For each of these projects, we clone it locally
and collect its metadata, such as #commits, #watches, #stars, and #forks. The collecting date is August
5, 2021.

Step 3: extracting badges. After manual checking, we follow previous work [4] to extract QA
badges in Steps 3 and 4. Most projects use Markdown expressions in README to insert badges, i.e.,
[![Badge Name](Badge Image Link)|(Service Link). However, some projects use HTML tags or other
methods to insert badges. Therefore, to avoid the loss of badges, we first convert all README files to
an HTML format using Pandoc®. With this step, all kinds of badges are said to be converted to img
tags in HTML files.

Then, we regard “Badge Name + Domain Name (in Service Link)” as the identifier of a badge. Note
that images other than badges also have three corresponding components (Image Name, Image Link,
and Image Service Link). Therefore, this procedure introduces lots of other images, which cannot be
distinguished automatically. The manual process is stated in Step 4.

We need to distinguish QA badges and non-QA badges further. If the information that a badge focuses
on contains any aspects related to QA (e.g., Code Coverage, defects, Code Smells), it is regarded as a QA
badge. Otherwise, if the information contains nothing about QA (e.g., version, dependency, chat room),
it is regarded as a non-QA badge. The manual process is also stated in Step 4.

Next, we introduce our research questions (RQ1-3) and their corresponding steps (Steps 4-6).

First, we conduct analyses inside QA badges. Specifically, facing various QA badges in an open-source
ecosystem, we are curious about what aspects (properties) they focus on and their use status. This leads
to RQ1 and RQ2.

RQ1: category. What kinds of QA badges do developers use? Since we do not know what kinds of QA
badges developers commonly use, RQ1 first describes a full picture of existing QA badges. Specifically,
we build a category classification of aspects (properties) that QA badges focus on, which can help in
understanding the current state of QA in open-source projects well.

Step 4: constructing the category classification. As illustrated in Step 3, using “Badge Name +
Domain Name (in Service Link)” as the identifier of a single badge, we acquire in total 24982 “badges”
(actually images) from all projects. Intuitively, images that are not badges were hard to repeat many
times. Therefore, from the total images, we first choose 500 randomly that occur less than 10 times and
find that 93.8% (469/500) of them are not QA badges. At the same time, 31 QA badges can be merged
into other badges that occur at least 10 times. Then, to make the results more representative while
reducing our manual efforts, two of the authors review the remaining 1033 badges (images) that occur at
least 10 times and merge and classify them.

We aim to build a category classification of existing QA badges and analyze what kind of QA badges
developers use and what aspects developers focus on. Therefore, we follow an open coding procedure [14].
(1) Two of the authors read and reread all 1033 identified badges (images), check the links behind each
image, and exclude 63 non-badges and 682 non-QA badges. (2) Due to different naming rules, many
badges are, in fact, the same. For example, developers may give Travis CI Build Status badges different
names, such as “Travis Build” and “Build Result”; therefore, during the process, we merge them manually.
Detailed explanations are given in Section 3. (3) For subsequent analysis, we build a category classification
based on the properties that QA badges focus on, such as Code Coverage and Code Smells. We first
jointly build the category classification based on 30% of the QA badges. We generate initial nodes by
checking the focused properties of each badge. (4) We group the initial nodes into inner nodes that
are conceptually similar. For example, Code Coverage and Mutation Score are both related to Testing
Code. (5) Then, we keep modifying the nodes and merging similar nodes. (6) Finally, we define the final
category. After defining the final category, the two authors classify each of the remaining 70% of QA
badges into one or more nodes. The inter-rater agreement was 0.891 (Cohen’s kappa), indicating almost
perfect agreement [15] and demonstrating the Reliability of our procedure. All encountered conflicts were
resolved through discussions. In particular, as many badges with different names can be merged into one
badge, during the process, we also design a text-matching approach to automatically merge those badges.

Two things are worth noting. First, after our procedure, most badges can be merged, and the total
number of QA badges is 45, which is consistent with previous work [4]. Second, the category classification
is based on properties that badges focus on. A detailed explanation is given in Section 3.

4) https://github.com/jgm/pandoc.

https://github.com/jgm/pandoc

Li F, et al. Scit China Inf Sci April 2024, Vol. 67, Iss. 4, 142103:5

RQ2: frequency. What is the use status of QA badges?

Step 5: analyzing frequency. After having an overall understanding of QA badges and building a
category classification, it is natural to observe the frequency of each badge category. We aim to find their
use patterns, including the use status of properties, property combinations, and the use status in projects
in different programming languages. This research question helps us have an in-depth understanding of
the use status of QA badges.

Besides analyses inside QA badges, we also conduct analyses outside QA badges to investigate the
correlation between QA badges and some software metrics. This procedure is as outlined in RQ3.

RQ3: correlation. Are QA badges correlated with some software metrics?

In RQ3, we select some metrics that should have a potential relationship with software code quality,
contribution quality, and popularity, which we expect to have correlations with QA badges. We conduct
a correlation analysis between QA badges and these software metrics.

Step 6: statistical analysis.

Considering the reasons why developers use QA badges, QA badges may have correlations with code-
quality-related, contribution-quality-related, and popularity-related characteristics. Therefore, we first
choose the following metrics that have a potential relationship with code/contribution quality and pop-
ularity and show how to collect them.

e Number of bug-fixing commits. Following previous work [16,17], we use “fix” and “bug” as keywords
(the case is insensitive) to search all historical commit messages and use the number of matched commits
as its indicator.

e Number of bug issues. QA badges may help developers improve code quality, resulting in fewer bug
issues. On the other hand, QA badges may accelerate the exposure of bugs and bug issues. Following
previous work [16], if the label of an issue contains keyword “bug” (the case is insensitive), we regard it
as a bug issue.

e Test lines of code (TLOC) [4]. We use CLOC? to calculate the total and for TLOC. Specifically, due
to the Complex Code structures in different projects, we simply regard file paths that contain keyword
“test” (case-insensitive) as testing files. We calculated only code written in the primary language.

e Number of commits containing Testing Code [4] reflects the frequency of developers contributing
to improving Testing Code, which indicates contribution quality. The intuition is that QA badges set
expectations of contribution quality for new contributors. As previous work [4] says, “pull requests with
new functionality tend to include new tests, so as not to decrease coverage.” We also regard file paths
containing keyword “test” (case-insensitive) as testing files.

e Numbers of Stars, Forks, and Watchers [4,16,18] reflect the software popularity. They can be directly
obtained through the project homepage.

The above metrics are commonly used in previous work and have a potential relationship with code
quality, contribution quality, and popularity.

Because many other key features may have correlations with our metrics, following previous studies [16,
19,20], we include the following variables as control variables: lines of code (LOC), number of commits,
number of issues, number of contributors, and age. In our statistical analysis process, we regard them as
covariates to obtain reliable results.

The analysis consists of two parts. In the first part, we analyze projects with/without QA badges.
We adopt generalized additive models (GAM) to perform correlation analysis. In the second part, we
conduct a longitudinal analysis between projects having QA badges and their previous versions, in which
the QA badges have not been introduced, and GAMs are performed. The detailed statistical procedures
are illustrated in Section 5.

3 RQ1: categories of the aspects that QA badges focus on

In RQ1, we conduct analyses inside QA badges, i.e., to see what kinds of QA badges developers use in
open-source communities.

5) https://github.com/AlDanial/cloc.

https://github.com/AlDanial/cloc

Li F, et al. Scit China Inf Sci April 2024, Vol. 67, Iss. 4, 142103:6

Code quality properties (45)

A. Source Code (38) B. Testing Code (9)

D. License (2)

C. Documentation (3)

[I 1
[AL Buildability (18) | | [ALReliability 6) | [A.llLSecurity 8) | [.1 Completeness (2) | [D.I Compliance (1) |
—
I A.IV.Maintainability (15) | | A.V.Legality (1) | | B.I. Code Coverage (8) | | C.II. Help to Write (1) | | D.IL. Completeness (1) |
[T I]
| A.IV.1 Code Style (9) | | AIV.2 COdIC Smells (7) | | B.II. Mutation Score (1) | ‘ | Duplicated Code | | Complex Code | I Unused Code

Figure 2 category classification of code quality properties that QA badges focus on.

3.1 Categorization

After manually checking all badges that occur at least 10 times, we obtain 29845 projects with at least one
QA badges among all the 100000 projects, indicating an unignorable percentage (i.e., 29.8%) of projects
with QA badges.

For each of the identified 45 QA badges, we check its functionality and service provider to learn more
details. We find that QA badges usually focus on certain code quality property/properties. Here, code
quality refers to any aspects related to software defects, Maintainability, testing effectiveness, efficiency,
and clarity. For example, a badge shows the current Code Coverage like o :0% |. It is provided by
Coveralls, a web service to help developers track the Code Coverage over time. Another badge shows the
number of vulnerabilities currently like . It is provided by Snyk, a platform that focuses
on software Security.

To dive into various QA badges, we define code quality properties as the various aspects that QA
badges focus on and organize them into different categories. Because different tools focus on different
code quality properties, they have overlaps to some extent. Also, many tools provide an “overall” badge,
which is an overall evaluation of multiple properties. We manually check each QA badge following the
procedures in Step 4 in Subsection 2.2 and give a category classification of all kinds of properties that
QA badges care about in Figure 2. Note that the number after each node represents how many badges
it is covered by.

The root category is divided into four categories, Source Code, Testing Code, Documentation, and
License, reflecting the component that the property of a badge is related to.

Source code (A) contains properties related to the Source Code in a project, including Buildability
(A.T), Reliability (A.IT), Security (A.IIT), Maintainability (A.IV), and Legality (A.V).

Buildability (A.I) represents badges that show the current Build Status, which reflects whether the
current code under test is correct. Nowadays, many projects adopt continuous integration/continuous
delivery (usually abbreviated as CI/CD) to automate the building, testing, and deployment stages of
software development. These CI/CD tools often integrate with GitHub and when specific events happen
(e.g., commit, pull request), they start a new building process and return the Build Status. To let
developers know their Build Status more clearly, these tools often provide a badge that show the latest
building result. For example, Travis CI provides a badge like [[SFIEEEM. This kind of badges gives QA
by instant feedback of build results, which could let developers fix their code soon if the build fails.

Reliability (A.IT) represents badges that show the software defects detection results, which could cause
a program to crash or produce invalid output. A typical example is the badge provided by DeepScan.
One of its evaluation metrics is software bugs.

Security (A.IIT) represents badges that check the potential Security issues (vulnerabilities) in a project.
Vulnerability is a term in computer Security, which is a weakness that can be exploited by a threat actor,
such as an attacker. A typical example is the badge provided by Snyk, which shows the number of
vulnerabilities.

Maintainability (A.IV) represents badges that focus on evolvability, modifiability, technical debt, and
Code Smells® [21]. Specifically, it has two main sub-categories in the context of existing QA badges,
Code Style (A.IV.1) and Code Smells (A.IV.2). Code Style (A.IV.1) represents better code formats.
Many tools help developers reorganize their code to comply to specific Code Style, e.g., Prettier, StyleCI.
Code Smells (A.IV.2) refers to any symptom in the Source Code of a program that possibly indicates
a deeper problem (e.g., Duplicated Code, over-Complex Code, Unused Code). Platforms such as Code
Climate and Codacy provide such badges.

6) https://en.wikipedia.org/wiki/Maintainability.

https://en.wikipedia.org/wiki/Maintainability

Li F, et al. Scit China Inf Sci April 2024, Vol. 67, Iss. 4, 142103:7

Legality (A.V) contains problems that are related to intellectual properties or violate GDPR"). Plat-
forms such as SymfonylInsight provide badges focusing on Legality.

Testing code (B) consists of Code Coverage (B.I) and Mutation Score (B.II), both of which measure
the testing adequacy.

Code Coverage (B.I) is a testing adequacy measurement that calculates what fraction of code is covered
by a test suite. Tools like Coveralls provide badges to present the current Code Coverage to help developers
optimize their test suite.

Mutation Score (B.II) is another testing adequacy measurement, which calculates the percentage of
program mutants killed /revealed by a test suite. For example, Stryker Mutator gives a badge on Mutation
Score.

Besides Source Code and Testing Code, Documentation and License are also important components
in OSS.

Documentation (C) refers to written text or diagram accompanying software or inserted in the
Source Code, which either describes how to use the software or how the software works. Many tools
focus on the software Documentation instead of the code. Inch CI focuses on Completeness (C.I) and
gives a badge showing the overall evaluation on Documentation. Read the Docs Help to Write (C.II)
Documentation and gives a badge showing the current status of Documentation generation.

License (D) allows OSS to be freely used, modified, and shared. The License checking mainly consists
of two categories, Compliance (D.I) and Completeness (D.II). Typical examples are FOSSA for the former
and CII Best Practice for the latter.

It is worth noting that the category classification in Figure 2 is based on properties rather than badges.
In other words, any QA badge can be broken into one or more nodes in Figure 2. The detailed classification
results of each badge are on our website.

Finding. Quality assurance badges focus on various aspects in OSS, including Buildability, Reliability,
Security, Maintainability, and testing adequacy.

Implications. (1) For developers. Software developers could learn that there exist various different QA
badges that focus on different aspects of software. This helps developers notice the common practice of the
usage of QA badges. In fact, the intention of adopting badges includes presenting project characteristics,
motivating developers to improve the shown metrics, and recruiting more contributors. Therefore, when
developing OSS, developers could also choose badges that cover as more aspects as possible. (2) For badge
providers. Because our category classification is merely based on existing QA badges, we could notice
the gap between the category and the underlying complete taxonomy. As we can see, many aspects have
not been covered by existing QA badges. For example, dependency bugs, concurrency bugs, performance
bugs, and efficiency bugs, are frequent bug types [22-24] and perhaps need tool support. Badges related
to Reliability and Security are small in number and need to be improved. Badges showing more test
adequacy criteria (e.g., MC/DC [25], TCQA [26]) are also necessary.

3.2 Discussion

Discussion on badge providers. During our analysis process, we find that many platforms provide
more than one kind of badges for developers. To make an in-depth analysis, we discuss this scenario here.
On one hand, instead of only providing an “overall” badge that makes a comprehensive evaluation, many
tools give separate badges that can present detailed information for different properties. For example,
Code Climate provides badges for Code Smell, Code Coverage, and overall evaluation, respectively.
SonarCloud provides badges for bugs, Code Smells, and Code Coverage, respectively. On the other hand,
some CI/CD platforms not only build the project automatically and give a Build Status badge, but also
conduct some analysis and provide some other QA badges. For example, Scrutinizer provides a badge
to show real-time building status and two badges for the analysis results of Code Coverage and Code
Smells.

Discussion on programming languages. Furthermore, we present the statistics of QA badges with
various programming languages in Table 1. In Table 1, the first row shows the programming languages,
and the remaining four rows show the number and ratio of projects containing QA badges and badges,
respectively.

From Table 1, on average, about 40.3% open-source projects adopt badges, while 29.3% projects adopt
at least one QA badge among the total 100000 projects, which indicates developers pay attention to QA.

7) GDPR refers to the General Data Protection Regulation (EU) 2016/679.

Li F, et al. Scit China Inf Sci April 2024, Vol. 67, Iss. 4, 142103:8

Table 1 Usage status of quality-assurance badges in different programming languages

Programming language JavaScript Python Java TypeScript C# PHP C++ C Shell Ruby Total

. . 3944 3363 2347 4116 2108 3852 2491 1793 1281 4023 29318
#Projects with QA badges

(39.4%) (33.6%) (23.5%) (41.2%) (21.1%) (38.5%) (24.9%) (17.9%) (12.8%) (40.2%) (29.3%)

5454 4338 4429 5563 3419 4853 3238 2320 2070 4571 40255

#Projects with badges
(54.5%) (43.4%) (44.3%) (55.6%) (34.2%) (48.5%) (32.4%) (23.2%) (20.7%) (45.7%) (40.3%)

Table 2 Number of projects that focus on different aspects

Badge type A. Source Code B. Testing Code C. Documentation D. License Total
#Projects with badges 28673 9687 1464 375 29318

Table 3 Number of badges in each project

Badge type A. Source Code B. Testing Code C. Documentation D. License Total
Metrics Min Max Avg Total | Min Max Avg Total | Min Max Avg Total | Min Max Avg Total | Min Max Avg Total
#Badges 0 125 1.47 43063| O 37 0.42 12199 0 9 0.05 1564 | O 3 0.02 537 1 125 1.96 57363

This is also consistent with previous study [4] that QA badges occupy a large part among all badges.
Further, different languages have different usage status. In JavaScript, TypeScript, PHP, and Ruby, the
number of projects that use QA badges is larger than that in other languages. In particular, among
TypeScript projects, about 41% adopt QA badges. However, in C and Shell, fewer projects take the
use of QA badges. On one hand, this reflects that differences exist in the development practice among
different languages. One the other hand, this may also reflect the demand of satisfying QA badges in
some languages.

Finding. On average, in our dataset, 29.3% projects adopt at least one quality-assurance badge. At
the same time, different programming languages have different adoption ratio, ranging from 12.8% to
41.2%.

4 RQ2: usage frequency of QA badges

In RQ2, we analyze the use status of QA badges. In particular, we only consider projects using at least
one QA badge from now on.

4.1 Overall analysis

Tables 2 and 3 present the overall use status of four main categories of QA badges. In Table 2, the first
row shows the categories and the second row shows the number of projects having the corresponding QA
badges. From the table, among the projects that have at least one QA badge, 97.80% (28673/29318) use
QA badges that focus on Source Code, while 33.04% (9687/29318) use QA badges that focus on Testing
Code. The usage of QA badges focusing on Documentation and License is relatively less frequent. One
one hand, this is consistent with common sense that Source Code should be paid more attention. On
the other hand, badge providers also tend to design more QA badges related to Source Code and Testing
Code.

Table 3 presents the statistics of the number of QA badges focusing on different categories within a
project. For A. Source Code, the number of QA badges ranges from 0 to 125, with an average 1.47. After
carefully checking, there exists a project called elasticsearch-sql whose README file contains the Build
Status badges of all its 125 versions. In total, the number of QA badges ranges from 1 to 125, with an
average 1.96. Based on the table, we can find that each project often uses more than one QA badge, and
QA badges related to Source Code are used the most extensively.

Finding. In our dataset, the usage of badges related to Source Code and Testing Code is the most
frequent. One project often uses more than one QA badge.

Then, we are curious about the usage patterns of various QA badges. Specifically, for the categories
in Section 3, we analyze their frequency and investigate what aspects developers focus on.

Because A. Source Code and B. Testing Code have many sub-categories, we analyze the categories in
the following granularities: Buildability (A.I), Reliability (A.II), Security (A.III), Code Style (A.IV.1),

Li F, et al. Scit China Inf Sci April 2024, Vol. 67, Iss. 4, 142103:9

Table 4 #Occurrences of code quality properties (categories)

Property name Buildability (A.I) Code Coverage (B.I) Code Smells (A.IV.2) Security (A.III) Code Style (A.IV.1)
#Occurrences and ratio 27486 (93.75%) 9680 (33.02%) 4178 (14.25%) 2354 (8.03%) 2245 (7.66%)

Property name Reliability (A.II) Documentation (C) License (D) Legality (A.V) Mutation Score (B.II)
#Occurrences and ratio 1784 (6.08%) 1464 (4.99%) 375 (1.28%) 277 (0.94%) 19 (0.06%)

Code Smells (A.IV.2), Legality (A.V), Code Coverage (B.I), Mutation Score (B.II), Documentation (C),
and License (D).

The results are presented in Table 4, which shows the property (category) name, how many projects it
occurs in, and the ratio of occurrence, respectively. The code quality properties are listed based on the
descendent order of their occurrence. As we can see, the most frequent property is Buildability, which
represents badges that show the current Build Status. In fact, it is common practice for open-source
developers to adopt continuous integration platforms. At the same time, mainstream platforms usually
design badges for developers to check real-time Build Status conveniently. Therefore, it becomes the most
frequent QA badge.

Code Coverage, as an effective measurement of testing adequacy, also receives much attention among
all properties. Besides the importance of Code Coverage in practice, another possible reason is that the
calculation of Code Coverage is relatively simple and easy to be integrated with a CI platform, so, many
analysis tools take Code Coverage as their basic functionality.

Developers mainly focus on Source Code-related problem, which is consistent with our intuition.
Among them, Code Smells, Vulnerabilities (Security), and Code Style are the most popular ones. Avoid-
ing Code Smells and using good Code Style are both approaches to achieve high software quality and
productivity. Many tools focus on them from various aspects. For example, badges provided by Codacy,
SonarCloud, and CodeBeat use Code Smells as part of their analyses. Badges provided by StyleCI,
Prettier, and HoundCI focus on code styling. The results also show that open-source projects attach
importance to software Security.

Although Code Coverage and Mutation Score are both testing adequacy measurements, the latter is
rarely measured, especially compared with the former, which may indicate more efforts on mutation
testing (e.g., research on addressing its limitations or tool supports) are needed.

Finding. Buildability (Build Status badge) is most concerned among all properties (categories), occur-
ring in 93.75% projects. Besides, developers care about Code Coverage (33.02%) and Source Code-related
properties, i.e., Code Smells (14.25%), Security (8.03%), and Code Style (7.66%). On one hand, this re-
flects the preference of different properties in OSS development. On the other hand, this shows different
tool support situations of badges focusing on different properties, which leads to different numbers of
badges in various categories.

Implications. For developers, we provide current usage patterns of badges (properties). If developers
want to follow common practice in open-source ecosystem, they could refer to our analyses. Otherwise,
developers may pay attention to those less concerned properties, which could be drawbacks in their
software and have large spaces to improve. For badge providers, on one hand, they could pay attention
to frequently used badges (properties) and provide better services. On the other hand, they could focus
on less concerned badges (properties), design possible badges, and occupy the underlying markets.

4.2 Analysis on property combinations

We further observe the combinations of properties (categories) in open-source projects. Specifically, as
the combinations of two properties are more frequent than the combinations of more than two properties,
and also in order to reduce the problem complexity, we consider the combinations of two properties in
this subsection. Note that one property can be combined with itself if it occurs more than once in a
project.

Table 5 shows property combinations and the number (and ratio) of projects they occur.

In many projects, rather than focusing on a certain property, developers often care about property
combinations. It is not surprising that the most frequent combinations consist of those properties that
are frequent in Table 4. Concretely, the most frequent combination consists of Buildability and Code
Coverage. In fact, many Code Coverage tools have been integrated with many (one or more) continuous
integration (CI) platform. On one hand, this could make the adoption of Code Coverage tools more
convenient, which means developers need not to configure their repositories to communicate to those tools

Table 5 #Occurrences of code quality property combinations

Combinations Code Coverage Buildability Code Coverage Code Smells Code Coverage Reliability Documentation Reliability Buildability Code Style

Buildability Buildability Code Smells Buildability Code Coverage Buildability Buildability Code Coverage Security Code Smells

#Occurrences 7760 (26.47%) 3922 (13.38%) 3645 (12.43%) 2726 (9.30%) 2026 (6.91%) 1419 (4.84%) 1239 (4.23%) 1034 (3.53%) 1013 (3.46%) 992 (3.38%)

Combinations Security Code Style Reliability Security Buildability Buildability Security Security Documentation Reliability
Reliability Buildability Code Smells Buildability Code Coverage Code Smells Code Smells Code Coverage Code Coverage Security

#Occurrences 992 (3.38%) 953 (3.25%) 935 (3.19%) 903 (3.08%) 878 (2.99%) 871 (2.97%) 857 (2.92%) 851 (2.90%) 799 (2.73%) 773 (2.64%)

Combinations Code Coverage Code Smells Reliability Code Coverage Buildability Security Code Style Code Smells Security Code Smells

Security Code Smells Code Style Code Style Code Style Code Style Code Coverage Security Security Reliability

#Occurrences 764 (2.61%) 722 (2.46%) 706 (2.41%) 699 (2.38%) 697 (2.38%) 695 (2.37%) 663 (2.26%) 503 (1.72%) 469 (1.60%) 366 (1.25%)

Combinations Code Smells Documentation Code Coverage Code Style Documentation Reliability Code Style Legality Buildability Documentation

Code Coverage Code Smells Reliability Code Style Security Reliability Security Security License Reliability

#Occurrences 319 (1.09%) 309 (1.05%) 291 (0.99%) 272 (0.93%) 242 (0.83%) 233 (0.79%) 216 (0.74%) 214 (0.73%) 212 (0.72%) 202 (0.69%)

Combinations Legality Legality Legality Legality Code Style License Code Coverage Documentation Documentation Reliability
Reliability Code Smells Code Coverage Buildability Reliability License License License Code Style License

#Occurrences 193 (0.66%) 183 (0.62%) 165 (0.56%) 162 (0.55%) 161 (0.55%) 158 (0.54%) 128 (0.44%) 127 (0.43%) 111 (0.38%) 107 (0.36%)

Combinations Code Smells License Reliability Buildability Documentation Security Code Style Security Code Smells Code Style
Legality Security Legality Legality Documentation License Documentation Legality License License

#Occurrences 94 (0.32%) 92 (0.31%) 84 (0.29%) 82 (0.28%) 81 (0.28%) 77 (0.26%) 67 (0.23%) 63 (0.21%) 61 (0.21%) 58 (0.20%)
Combinations License License Buildability License Legality License Code Coverage Code Coverage Code Coverage License

Buildability Reliability Reliability Code Coverage Code Style Code Smells Legality Documentation Mutation Score Code Style

#Occurrences 57 (0.19%) 52 (0.18%) 49 (0.17%) 44 (0.15%) 36 (0.12%) 20 (0.07%) 20 (0.07%) 16 (0.05%) 12 (0.04%) 11 (0.04%)
Combinations Buildability Reliability Legality Code Smells Code Smells Mutation Score Legality Security License Legality

Mutation Score Documentation Legality Documentation Mutation Score Mutation Score License Documentation Legality Documentation
#Occurrences 10 (0.03%) 5 (0.02%) 5 (0.02%) 4 (0.01%) 4 (0.01%) 2 (0.01%) 1 (< 0.01%) 1 (< 0.01%) 1 (< 0.01%) 1 (< 0.01%)

. . Documentation Code Style
Combinations

Legality Legality
#Occurrences 1 (< 0.01%) 1 (< 0.01%)

FERCIC R

198 fur pury) 198

0T:€0TEVT ‘¥ "SSI ‘L9 [OA ‘P20g [Ldy

Li F, et al. Sci China Inf Sci April 2024, Vol. 67, Iss. 4, 142103:11

separately. On the other hand, the combination enables instant feedback once new code is committed to
the repository and a new build process starts on the CI platform. The integration of CI and other tools
also leads to the high frequency of the combination between Buildability and other properties in Table 5.

It may be surprising that so many projects use multiple Build Status badges which focus on Buildability,
including badges from the same platforms or different platforms.

First, one project may have different build types, which differ in operating systems (e.g., Linux, Win-
dows, macOS), versions (e.g., stable, nightly, previous versions), and architectures (e.g., CPU, GPU).
Therefore, to better show the detailed building results, developers use multiple badges. Second, many
projects have multiple components, which may have different primary programming languages, different
application scenarios (e.g., mobile, web, client, server). They have different characteristics and developers
may build them separately on different/the same platforms. Third, developers may build their project on
different platforms simultaneously to get more comprehensive and accurate results, or conduct different
kinds of analysis on different platforms at the same time. As most platforms can provide certain degree
of free services, using multiple platforms is a good choice for developers.

Furthermore, the usage status of property combinations is to some extent decided by service providers.
If one provider is enough for the properties that developers want to observe, all of its properties are taken
into consideration. Otherwise, developers shall seek for other tools for compensation. In other words, in
practice, more service providers are needed to satisfy the demand of developers.

Finding. The property combinations between Buildability and others (including Buildability itself)
are the most frequent. It reflects the common practice to integrate CI platforms with other code quality
evaluation services or adopt a comprehensive service which focus on multiple aspects. At the same time,
developers also tend to use multiple CI platforms simultaneously.

Implications. For developers, it is convenient to adopt some new services given that they have used
certain CI platforms. This could bring advantages of their project while requiring no much work of
developers. When multiple CI platforms are used, the choices of new services are even more extensive.
For badge providers, because code quality properties are related to the original repository and are updated
along the code changes, it would be a good choice to integrate the tools with certain CI platforms to
promote them.

4.3 Analysis in different programming languages

Besides previous analysis, due to the different characteristics and ecosystems in different programming
languages, they are supposed to have different features when using QA badges. In this subsection, we
conduct similar experiments to previous ones in each programming language, and aim to find their unique
features.

We present the frequency of code quality properties in each programming language in Table 6. Note
that the code quality properties are listed based on the descendent order of their occurrence.

As we can see, Buildability and Code Coverage are the most frequent in almost all programming
languages. Besides, the distribution of remaining properties differ a lot among all programming languages.
Here, we take a look at Python and C.

For Python, 776 projects care about Documentation, which are much more than projects written
in other languages. Taking aio-libs/aiohttp as an example, it is an asynchronous HTTP client/server
framework and uses Read the Docs to write its Documentation, which provides a badge
showing the current Build Status of Documentation. After inspecting the real cases, we summarize
the reasons into the following aspects. First, many Python projects are packages hosted on PyPI, and
most of them are supposed to be well documented according to the demand of PyPI. Second, most of
these projects use Read the Docs to write Documentation. However, other badges that are related to
Documentation are few. Therefore, it “seems” that Python projects care more about Documentation. It
is also reported that there has been a trend in the Python community to improve code quality by dictating
“one right way” [16]. The maturity of the community and the effort of adhering to best practices may
result in this scenario.

For C, compared to the overall results in Table 4, developers care about Security (vulnerabilities) much.
In fact, according to many online discussions®? 10 C is sometimes regarded as the most vulnerable

8) https://medium.com/hackernoon/top-5-vulnerable-programming-languages-eab3144d6db7.
9) https://thehackernews.com/2015/12/programming-language-security.html.
10) https://www.digitalinformationworld.com/2019/03/searching-for-the-most-secure-programming-language.html.

https://medium.com/hackernoon/top-5-vulnerable-programming-languages-eab3144d6db7
https://thehackernews.com/2015/12/programming-language-security.html
https://www.digitalinformationworld.com/2019/03/searching-for-the-most-secure-programming-language.html

Li F, et al.

Sci China Inf Sci

April 2024, Vol. 67, Iss. 4, 142103:12

Table 6 #Occurrences of code quality properties

Python C
Property name #Occurrences Property name #Occurrences| Property name #Occurrences Property name #Occurrences
Buildability 3080 (91.58%) Code Smells 229 (6.81%) Buildability 1702 (94.92%) Documentation 80 (4.46%)
Code Coverage 1423 (42.31%) Security 211 (6.27%) Security 325 (18.13%) Code Style 62 (3.46%)
Documentation 776 (23.07%) Reliability 156 (4.64%) Reliability 279 (15.56%) Code Smells 58 (3.23%)
Code Style 376 (11.18%) License 42 (1.25%) | Code Coverage 253 (14.11%) License 29 (1.62%)
JavaScript Java
Property name #Occurrences Property name #Occurrences| Property name #Occurrences Property name #Occurrences
Buildability 3720 (94.32%) Reliability 92 (2.33%) Buildability 2206 (93.99%) Reliability 252 (10.74%)
Code Coverage 1274 (32.30%) License 69 (1.75%) | Code Coverage 624 (26.59%) Code Style 206 (8.78%)
Code Style 338 (8.57%) Documentation 48 (1.22%) Security 300 (12.78%) Documentation 30 (1.28%)
Code Smells 274 (6.95%) Legality 3 (0.08%) Code Smells 259 (11.04%) License 28 (1.19%)
Security 207 (5.25%)
TypeScript C#
Property name #Occurrences Property name #Occurrences| Property name #Occurrences Property name #Occurrences
Buildability 3781 (91.86%) Reliability 170 (4.13%) Buildability 2012 (95.45%) Code Style 76 (3.61%)
Code Coverage 1600 (38.87%) License 78 (1.90%) | Code Coverage 319 (15.13%) License 26 (1.23%)
Code Style 1437 (34.91%) Documentation 20 (0.49%) Security 114 (5.41%) Documentation 24 (1.14%)
Security 374 (9.09%) Mutation Score 4 (0.10%) Reliability 107 (5.08%) Mutation Score 1 (0.05%)
Code Smells 346 (8.41%) Code Smells 85 (4.03%)
PHP C++
Property name #Occurrences Property name #Occurrences| Property name #Occurrences Property name #Occurrences
Buildability 3554 (92.26%) Security 354 (9.19%) Buildability 2388 (95.87%) Code Style 158 (6.34%)
Code Coverage 1799 (46.70%) Legality 274 (7.11%) | Code Coverage 455 (18.27%) Documentation 148 (5.94%)
Code Smells 1100 (28.56%) Documentation 51 (1.32%) Security 340 (13.65%) Code Smells 146 (5.86%)
Code Style 438 (11.37%) License 32 (0.83%) Reliability 295 (11.84%) License 41 (1.65%)
Reliability 355 (9.22%) Mutation Score 14 (0.36%)
Shell Ruby
Property name #Occurrences Property name #Occurrences| Property name #Occurrences Property name #Occurrences
Buildability = 1225 (95.63%) Security 33 (2.58%) Buildability 3818 (94.90%) Security 96 (2.39%)
Code Coverage 66 (5.15%) Reliability 31 (2.42%) | Code Coverage 1867 (46.41%) Code Style 95 (2.36%)
Code Style 59 (4.61%) Documentation 24 (1.87%) Code Smells 1635 (40.64%) Reliability 47 (1.17%)
Code Smells 46 (3.59%) License 18 (1.41%) |Documentation 263 (6.54%) License 12 (0.30%)

programming language. Therefore, various tools aim to ensure the Security of C and try to find possible
vulnerabilities through static analysis or dynamic execution. Developers also pay attention to software
Security and take the usage of such tools.

Finding. Projects in different languages have different concerns on code quality properties.

example, projects written in Python care more about Documentation, while projects written in C care
One possible reason is different programming languages have

more about Security (vulnerabilities).

different characteristics; therefore, developers tend to focus on different aspects. Another possible reason
is the tool support situations in different programming languages differ, which means developers may be
constrained by finite kinds of badges although they may have a demand for QA badges focusing on other

properties.

Implications. Badge providers could consider designing QA badges related to properties that are

less concerned at this time.

The infrequent usage of these badges does not definitely indicate their

unimportance. On the contrary, it may reflect the gap between existing QA badges and the requirements
of developers — badge providers could facilitate the concern about various properties of developers and
improve the Completeness of all kinds of badges.

5 RQ3: correlations between QA badges and software metrics

In RQ3, we conduct analyses outside QA badges, i.e., to see the relationship between QA badges and
other metrics that are related to code quality, contribution quality, and popularity.

For

Li F, et al. Sci China Inf Sci April 2024, Vol. 67, Iss. 4, 142103:13

Ideally, we expect QA badges to have correlations with code-quality-related, contribution-quality-
related, and popularity-related characteristics. Therefore, as we say in Subsection 2.2, we choose the
following metrics that have potential relationship with code/contribution quality and popularity. Here,
we also present how we expect the relationship between them looks like.

The number of bug-fixing commits reflects (1) the number of bugs and (2) the enthusiasm of
developers to fix bugs in their software. The relationship between this metric and QA badges is two-fold.
On one hand, QA badges may help developers improve code quality and bug-fixing commits are fewer.
One the other hand, QA badges may accelerate the exposure of bugs and bug-fixing commits are more.

The number of bug issues reflects how many bugs have been confirmed by developers. The re-
lationship between this metric and QA badges is also two-fold. On one hand, QA badges may help
developers improve code quality and bug issues are fewer. On the other hand, QA badges may accelerate
the exposure of bugs and bug issues are more.

TLOC [4] reflects the amount of Testing Code in software, where more Testing Code indicates more
efforts on QA. Intuitively, QA badges may be positively correlated with TLOC.

The number of commits containing Testing Code [4] reflects the frequency of developers con-
tributing to improve Testing Code, which indicates quality contribution. Intuitively, the usage of QA
badges lead to more contribution on Testing Code.

The numbers of stars, forks, and watchers [4,16,18] reflect the software popularity, and we expect
QA badges lead to more stars, forks, and watchers.

The above metrics are commonly used in previous studies [4,16, 18] and have potential relationship
with code quality, contribution quality, and popularity.

Because there are many other key features that may have correlations with our metrics, following
previous studies [16,19,20], we include the following variables as control variables: LOC, number of
commits, number of issues, number of contributors, and age. In our statistical analysis process, we
regard them as covariates to obtain reliable analysis results.

5.1 Analysis between projects with and without QA badges

In this subsection, we first compare the latest versions of open-source projects with and without QA
badges. Specifically, we check whether they have differences on our concerned metrics that indicate
correlations between QA badges and these metrics.

Because we cannot assume the relationship between QA badges and other metrics are linear, and other
metrics may depend linearly on unknown smooth functions of some predictor variables [27], we take the use
of GAMs [28] to perform the experiments. GAM provides a flexible and effective technique for modelling
nonlinear relationships between variables, and parameters in GAM are estimated by a quadratically
penalised likelihood type approach. Specifically, smooth terms are represented using penalized regression
splines. At the same time, we also check for multicollinearity by calculating the variabce inflation factor
(abbreviated as VIF) [29].

The experimental results are presented in Table 7, where for each metric, we present a subtable.
The first row (treatment) represents whether QA badge(s) exist in one project, which is the variable
we care about, and other rows are control variables. The columns represent the coefficient, standard
error, t value, probability (> |t|), and significance, respectively. Concretely, the sign in the coefficient of
treatment means it is positively /negatively correlated with the corresponding indicator, while significance
shows whether the relationship is statistically significant. Note that for each statistical process, we check
the multicollinearity and find low correlation between independent variables. Besides, we also compute
the adjusted R-squared (R?) which represents the deviance explained.

For #Bug-fixing commits and all other six metrics, the results are statistically significant (p < 0.001).
Specifically, first, QA badges are negatively correlated with the number of bug-fixing commits and the
number of bug issues (R? = 0.884 and 0.769), which indicates that projects having QA badges tend
to have fewer bugs, i.e., higher code quality. For TLOC, QA badges is positively correlated with it
(R? = 0.323), which means although the model is not fully fitted, QA badges potentially positively
encourage developers to write more Testing Code to better maintain their software. For the number
of commits containing Testing Code, QA badges are positively correlated with it (R? = 0.0892), which
means we cannot definitely conclude QA badges explain more contributions on Testing Code. Finally,
for the numbers of stars, forks, and watchers, QA badges are also positively correlated with them (R? =

Table 7 Statistical

analysis results on QA badges for Subsection 5.1%

#Bug-fixing commits

#Bug issues

Variable Coeff. Std. error t value Pr(> |t]) Signif. Variable Coeff. Std. error t value Pr(> |t]) Signif.
Treatment —2.620e—05 1.426e—06 —18.37 <2e—16 HAK Treatment —4.016e—02 1.937e—03 —20.735 <2e—16 Hok
LOC 3.694e—05 2.166e—06 17.05 <2e—16 HAK LOC 6.136e—02 3.638e—04 168.657 <2e—16 Hok
#Commits 4.960e—02 1.227e—04 404.40 <2e—16 Hokx #Commits 2.154e—01 3.981e—02 5.412 6.29e¢—08 Hx
#Contributors —1.953e—01 1.066e—02 —18.33 <2e—16 HAK #Contributors 5.430e+01 2.619e+-00 20.732 <2e—16 Hok
#lssues 3.223e+00 2.977e+00 1.083 0.279 F#lIssues 3.636e—02 1.535e—04 236.813 <2e—16 Hkx
Age —1.148e—07 5.023e—09 —22.86 <2e—16 HAK Age 7.858e—06 1.207e—06 6.513 7.53e—11 Hok
(Intercept) —6.436e—06 3.503e—07 —18.37 <2e—16 Hokx (Intercept) 1.303e—03 6.285¢—05 20.737 <2e—16 Hkx
TLOC #Commits containing Testing Code
Variable Coeff. Std. error t value Pr(> |t]) Signif. Variable Coeff. Std. error t value Pr(> |t]) Signif.
Treatment 7.191e—03 2.662e—04 27.02 <2e—16 ok Treatment 1.556e—04 8.979¢—06 17.33 <2e—16 Hkx
LOC 6.034e—02 4.042e—04 149.28 <2e—16 HAK LOC —2.184e—04 1.364e—05 —16.01 <2e—16 Hok
#Commits —1.127e+00 2.289e—02 —49.24 <2e—16 Hokx #Commits 2.775e—02 7.722e—04 35.94 <2e—16 HEx
#Contributors 5.373e+01 1.989e4-00 27.02 <2e—16 HAK #Contributors 1.163e4-00 6.710e—02 17.33 <2e—16 Hok
#Issues —1.788e—01 1.417e4-00 —0.126 0.900 F#lIssues 3.733e—07 2.064e—07 1.809 0.0705
Age 1.351e—05 9.373e—07 14.41 <2e—16 HAK Age 6.339e—07 3.162e—08 20.05 <2e—16 Hok
(Intercept) 1.766e—03 6.537¢—05 27.02 <2e—16 Hokx (Intercept) 3.822e—05 2.206e—06 17.33 <2e—16 Hkx
#Stars #Forks
Variable Coeff. Std. error t value Pr(> |t]) Signif. Variable Coeff. Std. error t value Pr(> |t]) Signif.
Treatment 2.739¢—03 2.449e—05 111.86 <2e—16 ok Treatment 7.128e—04 6.315e—06 112.866 <2e—16 Hkx
LOC —2.916e—04 3.720e—05 —7.84 4.58e—15 HAK LOC —7.822e—05 9.592e—06 —8.155 3.56e—16 Hok
#Commits —1.350e—01 2.106e—03 —64.11 <2e—16 Hokx #Commits —3.300e—02 5.431e—04 —60.772 <2e—16 Hkx
#Contributors 2.047e+01 1.830e—01 111.86 <2e—16 HAK #Contributors 5.326e+00 4.719e—02 112.868 <2e—16 Hok
#lssues 7.847e¢4-00 1.211e4-01 0.648 0.516846 F#lIssues 5.239e+00 3.724e+4-00 1.407 0.159
Age 3.540e—06 8.624e—08 41.05 <2e—16 HAK Age 6.614e—07 2.224e—08 29.742 <2e—16 Hok
(Intercept) 6.729e—04 6.015e—06 111.86 <2e—16 HAK (Intercept) 1.751e—04 1.551e—06 112.866 <2e—16 Hok
#Watchers
Variable Coeff. Std. error t value Pr(> |t]) Signif.
Treatment 9.174e—05 9.742e—07 94.178 <2e—16 ok
LOC —7.846e—06 1.480e—06 —5.303 1.15e—07 HAK
#Commits —4.207e—03 8.377e—05 —50.220 <2e—16 Hokx
#Contributors 6.856e—01 7.279e—03 94.180 <2e—16 HAK
#Issues 7.149e—07 1.488e—06 0.481 0.631
Age 2.054e—07 3.431e—09 59.874 <2e—16 Hokx
(Intercept) 2.254e—05 2.393e—07 94.178 <2e—16 HAK

a) Signif. codes: 0 “***7; 0.001 “**’; 0.01 “*’; 0.05 “.’;

0.1°¢

s

FERCIC R

198 fur pury) 198

PL:€0TEVT ‘¥ "SSI ‘L9 [OA ‘P20g [Ldy

Li F, et al. Sci China Inf Sci April 2024, Vol. 67, Iss. 4, 142103:15

Table 8 Longitudinal analysis results on QA badges for Subsection 5.2

#Bug-fixing commits #Bug issues
Variable Coeff. Std. error t value Pr(> [t|) Signif. Variable Coeff. Std. error t value Pr(> |t|]) Signif.
Treatment —2.314e—-08 9.766e—11 —236.976 <2e—16 A Treatment —2.163e+01 1.208e+401 —1.791 0.0734 .
LOC 6.972e—06 1.633e—06 4.269 1.97e—05 A LOC —1.251e—04 1.265e—05 —9.888 <2e—16 i
#Commits 3.636e—02 1.534e—04 236.979 <2e—16 A #Commits 8.914e—02 6.953e—04 128.210 <2e—16 HEx
Age —8.257e—08 5.749e¢—09 —14.363 <2e—16 A Age 1.527e—07 7.939e¢—08 1.923 0.0545 .
#Issues —5.038e—07 2.840e—07 —1.774 0.0761 . #Issues 3.851e—09 9.165e—12 420.160 <2e—16 i
(Intercept) 1.280e—07 5.403e—10 236.981 <2e—16 A (Intercept) 7.306e4-01 1.857e+401 3.934 8.37e—05 HAE
TLOC #Commits containing Testing Code
Variable Coeff. Std. error t value Pr(> [t|) Signif. Variable Coeff. Std. error t value Pr(> |t|]) Signif.
Treatment 3.431e—07 1.587e—08 21.62 <2e—16 Ak Treatment 4.557e—08 3.539e—10 128.794 <2e—16 HAE
LOC 4.854e—02 2.655e—04 182.86 <2e—16 A LOC —6.367e—06 5.918e—06 —1.076 0.282
#Commits 5.393e—01 2.494e—02 21.63 <2e—16 A #Commits 7.161e—02 5.560e—04 128.795 <2e—16 i
Age 1.739e—05 9.343e—07 18.61 <2e—16 Ak Age 4.890e—07 2.083e—08 23.478 <2e—16 HAE
#Issues 3.728e+00 2.894e—02 128.79 <2e—16 A #Issues 1.153e—04 8.951e—07 128.79 <2e—16 i
(Intercept) 1.900e—-06 8.780e—08 21.64 <2e—16 Ak (Intercept) 2.521e—07 1.957e—09 128.796 <2e—16 HAE

a) Signif. codes: 0 “***’; 0.001 “**’; 0.01 “*’; 0.05 *.’; 0.1 * .

0.197,0.207,0.155), which means although the model do not fully fitted, the adoption of QA badges
potentially have relationship with more people’s attention and more popularity of their software.
Finding. Through GAM, we find that QA badges have statistically significant correlations with
many software metrics. Specifically, QA badges are negatively correlated with bug-related metrics and
positively correlated with testing-code-contribution-related metrics and popularity-related metrics.

5.2 Longitudinal analysis

Different from Subsection 5.1, in this subsection, we focus on projects that are using QA badges currently
and compare the current versions with historical versions when QA badges have not been introduced.

Specifically, we first use the git log command and keywords of each QA badge we identified to find the
commit in the history that firstly introduced QA badge(s), which is called intro-commit from now on.
The key feature of intro-commit is there is no QA badge before it while at least one QA badge is added
after it. Therefore, we compare the current version and previous version (the parent of intro-commit)
and conduct correlation analysis.

We apply GAMs [28] and inspect the correlation between QA badges and other metrics. Concretely,
the treatment variable is whether a project has introduced QA badges (1 for the current version while
0 for the previous version). Similar to Subsection 5.1, the metrics include the number of bug-fixing
commits, the number of bug issues, TLOC, and the number of commits containing Testing Code. We
also include LOC, #Commits, #Issues, #Contributors, and Age as control variables. Note that they are
of vital significance here because the current version somehow “contains” the previous version. Besides,
we also compute the adjusted R-squared (R?) which represents the deviance explained.

The results are shown in Table 8, where the meaning of each row is the same as that in Table 7. Note
that for each statistical process, we check the multicollinearity and find low correlation between indepen-
dent variables. The coefficients of treatment variables are all statistically significant (p < 0.001) except
for the analysis on #Bug issues (p < 0.1). Specifically, the adoption of QA badges is negatively correlated
with the number of bug-fixing commits (R? = 0.56), which is consistent with results in Subsection 5.1,
and it indicates the introduction of QA badges may have potential relationship with the decrease of bugs.
The adoption of QA badges is also negatively correlated with the number of bug issues although it is
only significant at a level of 0.1 (R? = 0.49). Besides, the adoption of QA badges also has “potential”
impacts on TLOC and the number of commits containing Testing Code (R? = 0.442 and 0.277).

Finding. According to the longitudinal analysis, the adoption of QA badges is correlated with the
number of bug-fixing commits (negative), TLOC (positive), and the number of commits containing Test-
ing Code (positive).

6 Threats to validity

The threats to internal validity lie in the implementation. To mitigate this threat, the first two authors
independently reviewed the experimental scripts to check their correctness.

The threats to external validity lie in the subjects used in this study. We use popular projects in
GitHub, which may not be representative of all projects and hampers the generalizability of our obser-
vations. To mitigate this threat, we select a substantial number of top-popular projects (i.e., top-10000)

Li F, et al. Sci China Inf Sci April 2024, Vol. 67, Iss. 4, 142103:16

like previous studies [16,20,30] for 10 popular programming languages, based on which we believe this
study can provide practical findings for the community. Besides, the collection date of our data is August
5, 2021, which is also not quite new. However, our dataset is still large enough to obtain convincing
findings and implications.

The threats to construct validity lie in badge identification, category classification construction, and
statistical analysis. (1) QA badges identification. According to Subsection 2.2, we automatically extract
badges based on pre-identified “img” tags and only consider the tags whose frequency is at least 10,
which may miss some badges in the dataset. To mitigate this issue, we randomly select 500 tags that
occur less than 10 times and find most of them (i.e., 93.8%) are not QA badges after our manual
inspection. Therefore, our procedure can minimize the threat while reducing manual efforts. (2) category
classification construction. To reduce threats caused by subjectivity in taxonomy construction, we follow
an open-coding procedure [14] and involve multiple participators in manual labelling. Moreover, the
inter-rater agreement is relatively high (0.863), demonstrating the high Reliability of the procedure. (3)
Statistical analysis. To mitigate the threats from indicators and statistical analysis, we adopt indicators
widely used in previous studies [4, 16, 18] with potential relationship with code quality, contribution
quality, and popularity. Moreover, we consider multiple variables as control variables [16,19,20] to avoid
the impact of unobserved variables. Moreover, the R? values can also show the fitness.

7 Related work

In this section, we summarize related work to situate our work within the literature.

Study on software QA. There exists a large body of work related to the software QA status. Rai
et al. [31] conducted an extensive review of the literature to find popular areas that receive attention
from researchers. Zhao et al. [1] explored how software QA is performed under the open-source model.
They found that open-source has certainly introduced a new dimension in large-scale distributed software
development. Holck et al. [32] investigated the use of continuous integration in FreeBSD and Mozilla and
found it challenging to balance the access required to add contributions against the need to stabilize
and mature the software before a release. Khanjani et al. [33] reviewed the literature on QA under
0SS development methods and techniques. The results show the process of QA of OSS and how it can
affect the overall QA principle. Bahamdain [3] discussed the stakeholders of the OSS community, the
QA frameworks and models, the problems that affect the quality, and the advantages and disadvantages
of OSS compared to closed-source software. Axelsson et al. [34] investigated the challenges related to
QA in software ecosystems and identified what approaches had been proposed in the literature. Hassan
et al. [35] reviewed several QA techniques that aim to improve software quality. They found that these
techniques play an important role in software quality improvement, while some vulnerabilities were also
found. Ma et al. [2] performed a large-scale study on QA, Security, and interpretation of deep learning
and pinpointed challenges and future opportunities. Felderer et al. [36] targeted the QA of Al-based
systems. They defined basic concepts of Al-based systems and characterized their artifact type, process,
and quality characteristics. They also identified eight key challenges of Al-based systems. Inspired by
these previous studies, we aim to understand the QA badges in OSS, which could look at the QA situation
from a new perspective to some extent. To the best of our knowledge, we are the first authors to conduct
such a study.

Study on badges. Many studies have examined software ecosystems in different aspects, including
communication [37-40], changes [41-43], dependencies [44-47], static analysis [48], testing and continuous
integration [49-51]. However, there exists little work focusing on badges. Trockman et al. [4] conducted
an empirical study of badges in npm packages. They found that non-trivial badges, which display the
Build Status, test coverage, and currency of dependencies, are mostly reliable signals, correlating with
more tests, better pull requests, and fresher dependencies. Legay et al. [10] analyzed repositories in
Cargo and Packagist and found that the most widespread badges convey either static information or
relay information about the Build Status of a project and are typically added early in projects. Inspired
by previous work, especially Trockman et al. [4], our study focuses on QA badges which make up a large
proportion of all badges, and presented a detailed analysis of them. Also, our dataset is more general
and representative, making our findings more reliable and generalizable.

Li F, et al. Sci China Inf Sci April 2024, Vol. 67, Iss. 4, 142103:17

8 Conclusion

In this paper, we present the first large-scale empirical study on QA badges on GitHub. We collect a
large dataset containing 100000 popular GitHub projects written in 10 popular programming languages
and their 57363 badges. Inside QA badges, we build a category classification for all QA badges based on
the properties they focus on, which shows the types of QA badges developers use. Then, we analyze the
frequency of the properties that QA badges focus on, and property combinations, too, which presents
their use status. Outside QA badges, we conduct a correlation analysis between QA badges and some
software metrics that have potential relationships with code quality, contribution quality, and popularity.
We find that QA badges have statistically significant correlations with many software metrics.

Acknowledgements This work was partly supported by National Natural Science Foundation of China (Grant No. 61872008).

References

1 Zhao L, Elbaum S. Quality assurance under the open source development model. J Syst Softw, 2003, 66: 65-75

2 Ma L, Xu F J F, Xue M, et al. Secure deep learning engineering: a software quality assurance perspective. 2018.
ArXiv:1810.04538

3 Bahamdain S S. Open source software (OSS) quality assurance: a survey paper. Procedia Comput Sci, 2015, 56: 459464

4 Trockman A, Zhou S, Késtner C, et al. Adding sparkle to social coding: an empirical study of repository badges in the npm
ecosystem. In: Proceedings of the 40th International Conference on Software Engineering, 2018. 511-522

5 Walkinshaw N. Software Quality Assurance. Berlin: Springer, 2017

6 Laporte CY, April A. Software Quality Assurance. Hoboken: John Wiley & Sons, 2018

7 Perera P, Silva R, Perera I. Improve software quality through practicing devops. In: Proceedings of the 17th International
Conference on Advances in ICT for Emerging Regions (ICTer), 2017. 1-6

8 Basu A. Software Quality Assurance, Testing and Metrics. New Delhi: PHI Learning Pvt. Ltd., 2015

9 Wong W E. Special section on software quality assurance: research and practice. IEEE Trans Rel, 2016, 65: 3

10 Legay D, Decan A, Mens T. On the usage of badges in open source packages on GitHub. In: Proceedings of the 18th
Belgium-Netherlands Software Evolution Workshop, Brussels, 2019

11 Parsons V L. Stratified Sampling. Hoboken: John Wiley & Sons, 2014

12 Avelino G, Constantinou E, Valente M T, et al. On the abandonment and survival of open source projects: an empirical
investigation. In: Proceedings of ACM/IEEE International Symposium on Empirical Software Engineering and Measurement
(ESEM), 2019. 1-12

13 Steinmacher I, Pinto G, Wiese I S, et al. Almost there: a study on quasi-contributors in open-source software projects.
In: Proceedings of the 40th International Conference on Software Engineering (ICSE), 2018. 256-266

14 Seaman C B. Qualitative methods in empirical studies of software engineering. IEEE Trans Softw Eng, 1999, 25: 557-572

15 Landis J R, Koch G G. The measurement of observer agreement for categorical data. Biometrics, 1977, 33: 159

16 Zhang J M, Li F, Hao D, et al. A study of bug resolution characteristics in popular programming languages. IEEE Trans
Softw Eng, 2021, 47: 26842697

17 Berger E D, Hollenbeck C, Maj P, et al. On the impact of programming languages on code quality. ACM Trans Program
Lang Syst, 2019, 41: 1-24

18 Borges H, Valente M T. What’s in a GitHub star? Understanding repository starring practices in a social coding platform. J
Syst Softw, 2018, 146: 112-129

19 Ortu M, Marchesi M, Tonelli R. Empirical analysis of affect of merged issues on GitHub. In: Proceedings of the 4th Interna-
tional Workshop on Emotion Awareness in Software Engineering (SEmotion), 2019. 46—48

20 Ray B, Posnett D, Filkov V, et al. A large scale study of programming languages and code quality in GitHub. In: Proceedings
of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering, 2014. 155-165

21 ISO Central Secretary. Systems and software engineering — systems and software quality requirements and evaluation (square)
— system and software quality models. Standard ISO/IEC 25010:2011. https://www.iso.org/standard/35733.html

22 Fischer-Nielsen A, Fu Z, Su T, et al. The forgotten case of the dependency bugs: on the example of the robot operating
system. In: Proceedings of the 42nd International Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP), 2020. 21-30

23 Asadollah S A, Sundmark D, Eldh S, et al. Concurrency bugs in open source software: a case study. J Int Serv Appl, 2017,
8: 4

24 Jin G, Song L, Shi X, et al. Understanding and detecting real-world performance bugs. SIGPLAN Not, 2012, 47: 77-88

25 Chilenski J J, Miller S P. Applicability of modified condition/decision coverage to software testing. Softw Eng J UK, 1994, 9:
193-200

26 Zhao Y, Feng Y, Wang Y, et al. Quality assessment of crowdsourced test cases. Sci China Inf Sci, 2020, 63: 190102

27 Stasinopoulos D M, Rigby R A. Generalized additive models for location scale and shape (GAMLSS) in R. J Stat Soft, 2007,
23: 1-46

28 Hastie T J, Tibshirani R J. Generalized additive models. Routledge, 2017. https://onlinelibrary.wiley.com/doi/pdf/10.1002/
9781118445112.stat03141

29 Mansfield E R, Helms B P. Detecting multicollinearity. Am Statist, 1982, 36: 158-160

30 Liu W, Chen B, Peng X, et al. Identifying change patterns of API misuses from code changes. Sci China Inf Sci, 2021, 64:
132101

31 Rai A, Song H, Troutt M. Software quality assurance: an analytical survey and research prioritization. J Syst Softw, 1998,
40: 67-83

32 Holck J, Jorgensen N. Continuous integration and quality assurance: a case study of two open source projects. Australas J
Inform Syst, 2003, 11: 1

33 Khanjani A, Sulaiman R. The process of quality assurance under open source software development. In: Proceedings of IEEE
Symposium on Computers and Informatics, 2011. 548-552

https://doi.org/10.1016/S0164-1212(02)00064-X
https://arxiv.org/abs/1810.04538
https://doi.org/10.1016/j.procs.2015.07.236
https://doi.org/10.1109/TR.2016.2522518
https://doi.org/10.1109/32.799955
https://doi.org/10.2307/2529310
https://doi.org/10.1109/TSE.2019.2961897
https://doi.org/10.1145/3340571
https://doi.org/10.1016/j.jss.2018.09.016
https://www.iso.org/standard/35733.html
https://doi.org/10.1186/s13174-017-0055-2
https://doi.org/10.1145/2345156.2254075
https://doi.org/10.1049/sej.1994.0025
https://doi.org/10.1007/s11432-019-2859-8
https://doi.org/10.18637/jss.v023.i07
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781118445112.stat03141
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781118445112.stat03141
https://doi.org/10.1080/00031305.1982.10482818
https://doi.org/10.1007/s11432-019-2745-5
https://doi.org/10.1016/S0164-1212(97)00146-5
https://doi.org/10.3127/ajis.v11i1.145

Li F, et al. Sci China Inf Sci April 2024, Vol. 67, Iss. 4, 142103:18

34 Axelsson J, Skoglund M. Quality assurance in software ecosystems: a systematic literature mapping and research agenda. J
Syst Softw, 2016, 114: 69-81

35 Hassan M U, Mubashir M, Shabir M A, et al. Software quality assurance techniques: a review. Int J Inform Bus Manag,
2018, 10: 214-221

36 Felderer M, Ramler R. Quality assurance for Al-based systems: overview and challenges (introduction to interactive session).
In: Proceedings of International Conference on Software Quality, 2021. 33-42

37 Bird C, Gourley A, Devanbu P, et al. Mining email social networks. In: Proceedings of International Workshop on Mining
Software Repositories, 2006. 137-143

38 Guazzi A, Bacchelli A, Lanza M, et al. Communication in open source software development mailing lists. In: Proceedings of
the 10th Working Conference on Mining Software Repositories (MSR), 2013. 277-286

39 Joblin M, Apel S, Hunsen C, et al. Classifying developers into core and peripheral: an empirical study on count and network
metrics. In: Proceedings of the 39th International Conference on Software Engineering (ICSE), 2017. 164-174

40 Singer L, Filho F F, Storey M A. Software engineering at the speed of light: how developers stay current using twitter.
In: Proceedings of the 36th International Conference on Software Engineering, 2014. 211-221

41 Bogart C, Kéastner C, Herbsleb J, et al. How to break an API: cost negotiation and community values in three software
ecosystems. In: Proceedings of the 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering,
2016. 109-120

42 Decan A, Mens T, Claes M. An empirical comparison of dependency issues in OSS packaging ecosystems. In: Proceedings of
the 24th International Conference on Software Analysis, Evolution and Reengineering (SANER), 2017. 2-12

43 Raemaekers S, van Deursen A, Visser J. Semantic versioning versus breaking changes: a study of the maven repository.
In: Proceedings of the 14th International Working Conference on Source Code Analysis and Manipulation, 2014. 215-224

44 Bavota G, Canfora G, Di Penta M, et al. How the Apache community upgrades dependencies: an evolutionary study. Empir
Softw Eng, 2015, 20: 1275-1317

45 Cox J, Bouwers E, van Eekelen M, et al. Measuring dependency freshness in software systems. In: Proceedings of the 37th
IEEE International Conference on Software Engineering, 2015. 109-118

46 Kula R G, German D M, Ouni A, et al. Do developers update their library dependencies? Empir Softw Eng, 2018, 23: 384-417

47 Mirhosseini S, Parnin C. Can automated pull requests encourage software developers to upgrade out-of-date dependencies?
In: Proceedings of the 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE), 2017. 84-94

48 Zampetti F, Scalabrino S, Oliveto R, et al. How open source projects use static code analysis tools in continuous integration
pipelines. In: Proceedings of the 14th International Conference on Mining Software Repositories (MSR), 2017. 334-344

49 Hilton M, Tunnell T, Huang K, et al. TUsage, costs, and benefits of continuous integration in open-source projects.
In: Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering (ASE), 2016. 426—
437

50 Vasilescu B, Yu Y, Wang H, et al. Quality and productivity outcomes relating to continuous integration in GitHub.
In: Proceedings of the 10th Joint Meeting on Foundations of Software Engineering, 2015. 805-816

51 Zhao Y, Serebrenik A, Zhou Y, et al. The impact of continuous integration on other software development practices: a large-
scale empirical study. In: Proceedings of the 32nd IEEE/ACM International Conference on Automated Software Engineering
(ASE), 2017. 60-71

Appendix A

(1) GitHub: https://github.com/.

(2) Bitbucket: https://bitbucket.org/.

(3) Travis CI: https://travis-ci.org/.

(4) Coveralls: https://coveralls.io/.

(5) Snyk: https://snyk.io/.

(6) DeepScan: https://deepscan.io/.

(7) Code Climate: https://codeclimate.com/.

(8) Codacy: https://www.codacy.com/.

(9) SymfonyInsight: https://insight.symfony.com/.
(10) Stryker Mutator: https://stryker-mutator.io/.
(11) Inch-CI: http://inch-ci.org/.

(12) Read the Docs: https://readthedocs.org/.
(13) FOSSA: https://fossa.com/.

(14) CII Best Practice: https://bestpractices.coreinfrastructure.org/.
(15) SonarCloud: https://sonarcloud.io/.

(16) Scrutinizer: https://scrutinizer-ci.com/.

(17) StyleCI: https://styleci.io/.

(18) Prettier: https://prettier.io/.

(19) HoundCI: https://houndci.com/.

(20) elasticsearch-sql: https://github.com/NLPchina/elasticsearch-sql.
(21) PyPI: https://pypi.org/.

(22) aiohttp: https://github.com/aio-libs/aiohttp.

https://doi.org/10.1016/j.jss.2015.12.020
https://doi.org/10.1007/s10664-014-9325-9
https://doi.org/10.1007/s10664-017-9521-5
https://github.com/
https://bitbucket.org/
https://travis-ci.org/
https://coveralls.io/
https://snyk.io/
https://deepscan.io/
https://codeclimate.com/
https://www.codacy.com/
https://insight.symfony.com/
https://stryker-mutator.io/
http://inch-ci.org/
https://readthedocs.org/
https://fossa.com/
https://bestpractices.coreinfrastructure.org/
https://sonarcloud.io/
https://scrutinizer-ci.com/
https://styleci.io/
https://prettier.io/
https://houndci.com/
https://github.com/NLPchina/elasticsearch-sql
https://pypi.org/
https://github.com/aio-libs/aiohttp

	Introduction
	Background, methodology, and research questions
	Background
	Methodology and research questions

	RQ1: categories of the aspects that QA badges focus on
	Categorization
	Discussion

	RQ2: usage frequency of QA badges
	Overall analysis
	Analysis on property combinations
	Analysis in different programming languages

	RQ3: correlations between QA badges and software metrics
	Analysis between projects with and without QA badges
	Longitudinal analysis

	Threats to validity
	Related work
	Conclusion
	

