
SCIENCE CHINA
Information Sciences

. Supplementary File .

Robust cooperative multi-agent reinforcement
learning via multi-view message certification

Lei YUAN1,2, Tao JIANG1, Lihe LI1, Feng CHEN1, Zongzhang ZHANG1 & Yang YU1,2*

1National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210000, China;
2Polixir Technologies, Nanjing 211106, China

Appendix A Product of a Finite Number of Gaussians
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It can be proved by induction.

Proof.

We want to prove Eqn. A1 is true for all N > 2.

• Base case: Suppose N = 2 and p1(x) = N (x|µ1, σ1), p2(x) = N (x|µ2, σ2), then
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Eqn. A2 can be seen as PDF of N (µ, σ) times A where µ = (
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• Induction step: Suppose it is true when N = n, and the product distribution of n Gaussian experts has mean µ̃ = (
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• Eqn. A1 has been proved by the above derivation.
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If we write Tij = (σ2
ij)

−1, then Eqn. A1 can be written as:
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and is exactly what we’re trying to prove.

Algorithm A1 CroMAC

Input: env, ϵ, κ, C MIN , C MAX, α1, α2, α3, T , Tr
Initialize: Randomly initialize θ, ψenc, ψdec, ϕenc, and initialize empty replay buffer D
1: t = 0
2: while t < T do
3: Collect trajectory h from env with θ(a|ϕenc(s)) and update replay buffer D
4: for j = 1, 2, · · · do
5: Sample a batch of Episodes from D
6: Update policy network:
7: θ ← θ − αθ∇θL(θ)
8: Update VAE ψ:
9: ψenc ← ψenc − α1∇ψenc (L(ψ) + L(θ))

10: ψdec ← ψdec − α1∇ψdec
L(ψ)

11: Update MVAE ϕ:
12: ϕenc ← ϕenc − α2∇ϕencL(ϕ)
13: Clamp: ϕenc ← clamp(ϕenc, C MIN,C MAX)
14: if t > Tr then
15: Update policy network:
16: θ ← θ − α3∇θLadv

17: end if
18: Update the target network θ− at regular intervals
19: end for
20: Update t
21: end while

Appendix B Algorithm
The whole optimization process is shown in Alg. A1. Where lines 6 to 7 are used to train policy network with only TD-error such

that it has nothing to do with robust training; lines 8 to 10 aim at encoding the state into a latent space, while lines 11 to 13 train

the MVAE with only partial observation and the received messages for decentralized execution, where clamp(input,min,max)

means clamping all elements in input into range [min,max]; we train the policy network to be robust with auxiliary loss from lines

14 to 17.

Appendix C Details about Baselines and Benchmarks
We compare CroMAC against different baselines and variants on diverse multi-agent benchmarks, and we introduce more details

about these baselines here.

AME. Ablated Message Ensemble (AME) is a recently proposed certifiable defense method for multi-agent communication,

which can guarantee agents’ robustness when only part of communication messages suffer from perturbations. Specifically, AME

makes a mild assumption that the attacker can only manipulate no more than half of the communication messages and trains a

message-ablation policy that takes in a subset of messages from other agents and outputs a base action. In deployment, an ensemble

policy is introduced by aggregating multiple base actions from multiple subsets of messages, achieving the robustness goal to some

extent. The pseudocode can be seen in Alg.C1 and Alg.C2.

We introduce four types of testing environments as shown in Fig. ?? in our paper, including Hallway [? ], Level-Based Foraging

(LBF) [? ], Traffic Junction (TJ) [? ], and two maps named 1o2r vs 4r and 1o10b vs 1r requiring communication from StarCraft

Multi-Agent Challenge (SMAC) [? ]. In this part, we will describe the details of these used environments.

Hallway. We design two instances of the Hallway environment, where agent can see nothing except its own location. In the

first instance, we apply three hallways with lengths of 4, 5, and 6, respectively. That means we let three agents a, b, c respectively

initialized randomly at states a1 to a4, b1 to b5, and c1 to c6, and require them to arrive at state g simultaneously. In the second

instance, 4 agents are distributed in four hallways with lengths of 3, 3, 4, and 4. The action space is {still, left, right}. A reward

of 1 will be given if all the agents arrive at the goal g simultaneously. However, if any agent does not reach the goal g at the same

time, the game will stop immediately, and obtain 0 reward.

Level-Based Foraging (LBF). We use a variant version of the original environment, where only one agent can observe the map

and others can see nothing. On this basis, we use two environment instances with different configurations, both of which are 8× 8
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Algorithm C1 AME in the training phase

Input: env, ablation size k
Initialize: Randomly initialize π̂i for each agent i.
1: t = 0
2: while t < T do
3: for i = 1 to N do
4: Receive a set of messages m:→i, and update local history τi
5: Randomly sample a subset of messages [m:→i]k ∼ Uniform(Hk(m:→i))
6: Take action based on τi and the message subset [m:→i]k, i.e., ai ← π̂i(τi, [m:→i]k)
7: Update replay buffer and policy π̂i
8: end for
9: end while

Algorithm C2 AME in the testing phase

Input: env, ablation size k, trained message-ablation policy π̂i for each agent i
1: for i = 1 to N do
2: Receive a set of messages m:→i with no more than C < N

2 malicious messages, and update local
history τi

3: Discrete action space:
4: Take action a← argmaxa∈A

∑
[m]k∈Hk(m) I[π̂i(τi, [m]k) = a]

5: Continuous Action Space:
6: Take action a← Median{π̂i(τi, [m]k) : [m]k ∈ Hk(m)}
7: end for

grid world, 1 foods, and at least 3 agents are required to catch the food when they gather together next to the food concurrently.

One of them contains 3 agents and they need to complete the task in 25 time-steps while the other contains 4 agents but only 15

time-steps are provided for them. The action set for each agent includes staying still and moving in one of four directions, only

when at least 3 agents catch the food, they receive a constant reward r = 1.

Traffic Junction (TJ). The simulated traffic junction consists of several cars driving on the predefined road, and they need

to avoid collisions and be as fast as possible. We use the easy version of the Traffic Junction environments as we mainly focus on

the robustness of the algorithm. The slow version has an agent number limit to 5 and the max rate at which to add cars is 0.3

while the fast version has an agent number limit to 4 and the max rate at which to add cars is 0.4. In both of these two instances,

the road dimension is 7, and the sight of the agent is limited to 0, which means each agent can only observe a 1 × 1 field of view

around it. The action space is {gas, brake}, and each active car driving on the road needs to pay a time penalty rt = −0.01 at

every time-step. When a collision occurs, there will be a collision penalty rcollision = −10.

StarCraft Multi-Agent Challenge (SMAC). We use two maps named 1o2r vs 4r and 1o10b vs 1r in SMAC, which are

introduced in NDQ [? ]. In 1o2r vs 4r, an Overseer finds 4 Reapers, and the ally units, 2 Roaches, need to reach enemies and kill

them. Similarly, 1o10b vs 1r is a map full of cliffs, where an Overseer detects a Roach, and the randomly spawned ally units, 10

Banelings, are required to reach and kill the enemy. The action set consists of moving in one of four directions, attacking one of

the enemies, and staying still, and agents receive sharing rewards when some enemy units’ hit-point drop or win the battle.

Appendix D Implemention Detail and Hyperparameters
We train our CroMAC agents based on PYMARL with its default network structure and hyperparameters setting, except that

different environments have different RNN hidden sizes. We use Adam optimizer with learning rate 0.0005 and other default

hyperparameters. For the state encoder and decoder, we use an MLP with one hidden layer and ReLU activation. For the message

encoder, we use the same structure as the state encoder with shared parameters. All the prior distributions in the experiment are

set to standard normal distribution, i.e., N (0, 1). The other hyperparameters of our proposed CroMAC for different benchmarks

are summarized in Tab. D1.

Fast Gradient Sign Method (FGSM) [? ] is a popular white-box method of generating adversarial examples, for MA-Dec-

POMDP-Com, agent i receives multiple messages mt
ij from teammate j ∈ {1, · · · , i − 1, i + 1, · · · , N} at time t, we can compute

perturbations for each mt
ij with individual Q-network θi:

η
t
ij = ϵ · sign(∇mt

ij
J(θi,m

t
ij , y)),

where y is the originally selected action and the perturbed example is:

m̂
t
ij = m

t
ij + η

t
ij .

Projected Gradient Descent (PGD) [? ] can be regarded as an advanced version of FGSM where we implement it by adding

perturbations within budget ϵ
3 to original message 3 times.
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Table D1 Hyperparameters in experiments.

Hyperparameter
Hallway: 4x5x6

Hallway: 3x3x4x4

LBF: 3p-1f

LBF: 4p-1f

TJ: slow

TJ: fast

1o10b vs 1r

1o2r vs 4r

RNN Hidden Dim 16 32 32 64

Z Dim 16 32 32 64

VAE Hidden Dim 32 64 64 128

α1 0.1 0.01 0.01 0.01

α2 0.001 0.001 0.001 0.01

α3 0.3 0.3 0.3
0.3

0.1

κ
5

10

5

10
10 10

C MAX
0.1

0.2
0.3

0.3

0.6

0.3

0.2

Robust Start Time Tr 0.7M 0.8M 1.0M 1.0M

ϵ of FGSM (1)
0.3

\
0.02

\
0.0003

\
0.0055

\

ϵ of FGSM (2)
0.4

\
0.25

\
0.0004

\
0.0065

\

ϵ of FGSM 0.5
0.03

0.05

0.0005

0.001

0.0075

0.015

ϵ of FGSM (3)
0.6

\
0.35

\
0.0006

\
0.00875

\

ϵ of FGSM (4)
0.7

\
0.4

\
0.0007

\
0.01

\


