
SCIENCE CHINA
Information Sciences

April 2024, Vol. 67, Iss. 4, 142101:1–142101:18

https://doi.org/10.1007/s11432-022-3794-1

c© Science China Press 2024 info.scichina.com link.springer.com

. RESEARCH PAPER .

Jigsaw-Sketch: a fast and accurate algorithm for
finding top-k elephant flows in high-speed networks

Boyu ZHANG1, He HUANG1*, Yu-E SUN2, Yang DU1 & Dan WANG1

1School of Computer Science and Technology, Soochow University, Suzhou 215006, China;
2School of Rail Transportation, Soochow University, Suzhou 215006, China

Received 17 December 2022/Revised 17 March 2023/Accepted 2 June 2023/Published online 20 March 2024

Abstract Finding top-k elephant flows in high-speed networks is one of the most fundamental network

measurement tasks. It is more challenging than per-flow size estimation since the IDs and sizes of top-k flows

must be tracked simultaneously. Most existing studies only record the IDs of a small number of elephant

flows to fit their estimators in the extremely limited high-speed on-chip memory. However, these solutions

need too many memory accesses when a packet arrives to track the elephant flows with high accuracy, which

limits their practicability. Therefore, this paper proposes Jigsaw-Sketch, a new algorithm to find the top-k

elephant flows with much fewer memory accesses while achieving high memory efficiency and accuracy. In

this design, we propose a novel two-stage jigsaw storage scheme, which can capture the candidate top-k

flows from massive network steams efficiently, and further find the top-k elephant flows with high memory

efficiency and only a few memory accesses for each packet. Extensive experimental results based on real

network traces show that Jigsaw-Sketch improves the packet processing throughput by at least 86%, while

achieving smaller memory footprints and higher accuracy compared to the SOTA.

Keywords sketch, top-k, network measurement, elephant flow, high-speed networks

1 Introduction

Traffic measurement in high-speed networks plays an essential work in improving network performance [1–
9]. One fundamental measurement task is to find top-k elephant flows, which also has many practical
applications in databases [10,11], data mining [12,13], and security [14,15]. In practice, a flow is composed
of all the packets containing the same flow ID, and a flow ID is usually defined as a combination of packet
headers, e.g., the network five tuples1). The number of packets in each flow is described as the flow size.
In real networks, the flow size distribution is always highly skewed: most flows are mouse flows with small
sizes, while a few flows are elephant flows which contribute a large portion of the network traffic. Finding
top-k elephant flows is quite significant because the network managers can perform fine-grained network
management on these top-k flows, such as load balancing, congestion control, and anomaly detection.

Different from counting the number of packets (i.e., per-flow size measurement [6, 7, 16–19]), finding
top-k flows is more challenging because it requires tracking the IDs and sizes of top-k flows simultaneously.
Accurately tracking the information of all flows is unrealizable due to the mismatch between the limited
high-speed on-chip memory (like static random access memory (SRAM)) and the extremely high line rates
of modern networks. For example, a one-minute real Internet trace downloaded from CAIDA contains
more than one million flows. At the same time, SRAM is usually smaller than 8.25 MB [20] and is shared
among many essential network functions. Consequently, only recording the IDs of a small portion of flows
(i.e., top-k flow candidates) gains wide acceptance. This method processes each arrival packet to identify
elephant flows and select the candidates from them to record IDs. When the measurement ends, the IDs
and sizes of top-k flows can be reported based on the recorded candidates.

*Corresponding author (email: huangh@suda.edu.cn)

1) The network five-tuple consists of source IP, destination IP, source port, destination port, and protocol, whose size is 13

bytes.

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-022-3794-1&domain=pdf&date_stamp=2024-3-20
https://doi.org/10.1007/s11432-022-3794-1
info.scichina.com
link.springer.com

Zhang B Y, et al. Sci China Inf Sci April 2024, Vol. 67, Iss. 4, 142101:2

The recent work puts much effort into improving the accuracy of identifying elephant flows. For
example, HeavyKeeper [9, 21] actively removes mouse flows to make room for elephant flows; Heavy-
Guardian [22] only allows mouse flows to decay the smallest tracked flows’ counters so that the noises
introduced to elephant flows can be reduced. However, they can hardly be adapted to high-speed network
links since they ignore the memory access bottleneck. For instance, a 40 Gbps link fed by minimum-
size Ethernet packets (512 bits per packet) has to forward each packet in about 12 ns, allowing only a
small number of memory accesses in SRAM. Since many other network functions also require memory
accesses, a single traffic measurement function should reduce its memory accesses as much as possible.
Unfortunately, existing solutions require too many memory accesses. HeavyKeeper [21] employs a min-
heap with k slots to track the largest k flows it has identified. To check whether the arrival flow has
been tracked, it needs to perform O(k) memory accesses to traverse the min-heap. ElasticSketch [23],
HeavyGuardian [22], and WavingSketch [24] employ a bucket array to identify the candidates and record
their IDs and flow sizes. In their design, each flow is mapped to one bucket, and each bucket usually
contains eight or more candidates. When a packet arrives, they traverse the corresponding bucket to
update the candidates. Since each bucket can reach thousands of bits when storing the entire five-tuple
IDs, traversing a whole bucket requires a dozen memory accesses. There are also some methods that
employ a Stream-Summary instead of the min-heap [9, 25–27]. The Stream-Summary achieves an O(1)
average time complexity to insert or update a flow, but the pointer operations in its design lead to a
number of discontiguous memory accesses. Besides, the pointers consume much memory, making the
scheme not memory efficient and decreasing its accuracy. In brief, existing work ignores the importance
of tracking elephant flows with fewer memory accesses, which has become a bottleneck in state-of-the-art
sketches.

In this paper, we propose Jigsaw-Sketch, a new algorithm that can simultaneously achieve high accuracy
and high speed. Our algorithm divides packet processing into two stages. The first stage records the
fingerprints2) and flow sizes in a bucket array to capture the elephant flows and select the candidate top-k
flows from them. Then, the second stage records the ID information of the candidate flows in an auxiliary
list. The prior methods obtain bucket indexes and fingerprints through Hash functions, and we have to
store an entire ID and an extra fingerprint for each candidate flow if following their methods, which is not
memory efficient. Therefore, we propose a novel jigsaw storage scheme to realize our two-stage design.
It implements the conversion between flow ID and jigsaw, where the jigsaw pieces are a bucket index, a
fingerprint, and a residual part. Through this scheme, we can employ bucket indexes and fingerprints
to store parts of the ID information and only store the residual parts rather than the entire IDs in the
second stage. It reduces the memory consumption to track the candidates and improves our memory
efficiency and algorithm accuracy.

Our two-stage design reduces the memory accesses from the following aspects. On the one hand, most
packets will only get through the first stage, i.e., they only retrieve the fingerprints rather than the entire
IDs. It significantly reduces the data each packet retrieved. On the other hand, when a candidate flow
gets to the second stage, its recording position has been determined by the position it is identified in
the first stage. In other words, we do not need to perform extra memory accesses to find the recording
position. To improve algorithm speed and accuracy further, we adopt another technique: probabilistic
replacement strategy. It employs lightweight computations to keep the elephant flows and makes mouse
flows easily replaced by elephant flows, enabling us to quickly and accurately capture the elephant flows
in each bucket. With the above techniques, Jigsaw-Sketch can simultaneously achieve higher accuracy
and packet processing throughput than state-of-the-art algorithms.

This paper makes the following contributions:
• We propose Jigsaw-Sketch, a new algorithm for finding top-k elephant flows. It is based on a novel

two-stage design and a novel jigsaw storage scheme, which allow our algorithm to reduce memory accesses
while achieving high memory efficiency and accuracy.

• We mathematically prove the error bound of Jigsaw-Sketch and implement Jigsaw-Sketch on software
(central processing unit, CPU) and hardware (field programmable gate array, FPGA) platforms3).

• We conduct extensive experiments with real Internet traces. Experimental results show that Jigsaw-
Sketch is at least 86% faster than the fastest prior work while achieving higher accuracy than the most
accurate work using smaller memory footprints.

2) A fingerprint is a string much shorter than the flow ID and lossily compresses the ID information of a flow.

3) The source code of Jigsaw-Sketch and other related algorithms have been made available at https://github.com/duyang92/

jigsaw-sketch-paper.

https://github.com/duyang92/jigsaw-sketch-paper
https://github.com/duyang92/jigsaw-sketch-paper

Zhang B Y, et al. Sci China Inf Sci April 2024, Vol. 67, Iss. 4, 142101:3

2 Related work

2.1 Per-flow size estimation

The per-flow size estimation task aims to answer the query for each flow’s size. State-of-the-art solutions
employ various bit/counter sharing strategies in the sketches to reduce memory consumption [6,7,16–19].
For example, CM sketch [16] employs a pool of counters to record flow sizes. For each arrival packet, it
hashes the packet’s flow ID into d counters and increases each of them by 1. When querying a flow’s size,
it returns the smallest value of the d hashed counters as the estimation. Since counters are shared between
different flows, CM sketch can employ much fewer counters than the flows for estimation. However, most
per-flow size estimation methods do not store the flow IDs. In other words, they must rely on external
means to record the flow IDs, while the means are rarely described.

2.2 Finding top-k elephant flows

Finding top-k elephant flows aims to find the k flows with the largest sizes. Unlike per-flow size estimation,
this task requires tracking the flow IDs and sizes of top-k elephant flows simultaneously, making it more
challenging. To introduce the state-of-the-art methods and their limitations, we divide them into the
following categories according to their flow ID storage schemes.

2.2.1 Min-heap storage scheme

It is straightforward to employ a per-flow size estimation structure to estimate all flows’ sizes, then use
a min-heap with k slots to track top-k elephant flows (e.g., [28, 29]). However, these methods easily
misclassify mouse flows as elephant flows due to the counter sharing strategies, limiting their accuracy
for top-k finding.

To solve this problem, HeavyKeeper [21] combines each counter with a fingerprint field as a bucket,
where the fingerprint is employed to identify flows. Then, it leverages an exponential decay strategy
to capture elephant flows. Suppose all the hashed buckets record other flows rather than the arrival
flow. The exponential decay strategy will decay the smallest bucket containing counter value c with a
probability of b−c, where b is a predefined constant number (e.g., b = 1.08). Then, if the counter is
decayed to 0, the new flow will be inserted into the bucket. Though this strategy can capture elephant
flows accurately, its exponential computation is quite expensive, which limits algorithm speed.

Except for the above limitations, the methods based on min-heap are limited in packet processing
throughput due to the large number of memory accesses required by min-heap. In order to track the
largest k flows, existing methods always need to check whether the arrival flow has been tracked. In
other words, they need to lookup the arrival flow in the min-heap. The lookup process needs to traverse
the min-heap and requires O(k) memory accesses, which is unacceptable for high-speed networks. Some
studies add a Hash table to accelerate the lookup process. However, the methods still need to access the
Hash table and min-heap multiple times to update a tracked flow, which still constrains algorithm speed.

2.2.2 Stream-Summary storage scheme

Stream-Summary has the same function as a min-heap, but it employs linked lists and a Hash table to
achieve an O(1) average time complexity when inserting a new flow or increasing a tracked flow’s size
by 1. It is employed in Space Saving [25], Unbiased Space Saving [27], and the extended version of
HeavyKeeper [9]. The former methods employ a Stream-Summary as the whole data structure, while
HeavyKeeper employs it to replace the min-heap to improve algorithm speed.

However, Stream-Summary is still limited in speed and has low memory efficiency. The pointer op-
erations in its insertion and update operations will access discontiguous memory multiple times, which
decreases its speed. Besides, Stream-Summary needs to store about 7 pointers for each tracked flow, which
consumes a significant amount of memory and makes Stream-Summary not memory efficient. Compact
Space Saving [26] redesigns Stream-Summary to reduce memory consumption by replacing pointers with
array indexes and employing a compact Hash table [30]. Nevertheless, storing indexes still consumes a
large amount of memory.

Zhang B Y, et al. Sci China Inf Sci April 2024, Vol. 67, Iss. 4, 142101:4

2.2.3 Bucket storage scheme

The methods following this scheme employ buckets to capture candidate flows and directly store the
flow IDs along with the counters in each bucket [22–24, 31–35]. Specifically, there are two main ways
to configure the buckets. The first way only records one flow in each bucket and hashes each flow to
multiple buckets to update flow information (e.g., [31–35]). ElasticSketch [23], HeavyGuardian [22],
and WavingSketch [24] employ the other way, which hashes each flow to one bucket, where each bucket
contains multiple cells to record the IDs and sizes of multiple flows simultaneously. When each packet
arrives, these methods traverse the hashed bucket to find whether the flow has been tracked and determine
how to update the bucket.

The packet processing speed of the methods following this scheme is faster but still unsatisfactory.
The former way has multiple Hash computations and discontiguous memory accesses, which limits its
speed. Instead, the latter way only has one Hash computation, and the accessed memory is continuous.
However, it usually needs to configure long buckets to achieve high accuracy due to the flow collision
problem, which incurs a number of memory accesses. For example, from our experiments, WavingSketch
needs to set 16 or more cells in each bucket to achieve high accuracy. Then, each bucket can reach
thousands of bits when recording the entire network five-tuple flow IDs, which requires a dozen memory
accesses to traverse the bucket. Therefore, methods following this scheme are still limited in packet
processing throughput and can hardly fit in high-speed networks.

3 Preliminary

3.1 Problem statement

Consider a packet stream P = {P1,P2, . . . ,PN} during a measurement period. Each packet P ∈ P belongs
to a flow, and the definition of flow ID is configured based on application interests, which is usually a
combination of packet headers, e.g., the network five tuples. We model the packet stream as a set of flows
F = {f1, f2, . . . , fM}, and each flow fi consists of all the packets carrying its flow ID.

The objective of finding top-k elephant flows is to find the k flows with the largest sizes (i.e., number
of packets). Let ni be the actual size of flow fi, and n̂i be the estimated value of ni. Given an integer k,
the output is a list of k flows and their estimated sizes, i.e., {(fj1 , n̂j1), (fj2 , n̂j2), . . ., (fjk , n̂jk)}, where
fji is the flow with the i-th largest estimated size n̂ji .

3.2 Our goals

We aim to design a new algorithm for finding top-k elephant flows, which should achieve high throughput
while maintaining high accuracy. Specifically, it should satisfy the following properties:

(1) High throughput. In order to fit in high-speed networks, we want our sketch to achieve high packet
processing throughput by reducing the memory accesses for each packet.

(2) High accuracy. Our algorithm should achieve high accuracy to support upper-layer applications.
We want it to be more accurate than the most accurate prior work.

(3) High memory efficiency. In order to fit in the limited memory, our design should be memory
efficient, which means it can work well even when using very small memory footprints.

4 Algorithm design

4.1 Approach overview

Jigsaw-Sketch aims to achieve a high packet processing throughput while providing high accuracy. To this
end, we propose a novel two-stage design along with the jigsaw storage scheme and adopt a probabilistic
replacement strategy.

We first introduce the strawman version of the two-stage design to explain its rationale. The two-stage
design separates the top-k finding task into a capturing stage and a storage stage. The capturing stage
aims to capture candidate top-k flows. For this purpose, we store fingerprints and flow sizes in a bucket
array to identify the flows with large sizes. Since the fingerprints are much shorter than flow IDs, this
design can significantly reduce the data to be retrieved compared to storing entire IDs, which means the

Zhang B Y, et al. Sci China Inf Sci April 2024, Vol. 67, Iss. 4, 142101:5

memory accesses can be reduced. As the capturing stage only stores fingerprints, we need to store the
IDs of the candidate top-k flows in the storage stage. To avoid performing extra memory accesses for
finding the storage position, we design a one-to-one position mapping, which enables each captured flow
to directly locate its storage position according to the position it is captured. Such a two-stage design
also allows us to select only a few packets of the candidate flows to store the IDs, reducing memory
accesses for most packets.

Though the employment of fingerprints in the strawman two-stage design reduces the memory accesses,
we need to store a flow ID and an extra fingerprint for each candidate top-k flow, which means extra
memory consumption. We propose a novel jigsaw storage scheme to improve this design. It can convert
each flow ID to three jigsaw pieces: a bucket index, a fingerprint, and a residual part, and the original
flow ID can be recovered from the corresponding pieces. Through this scheme, we can employ the bucket
indexes and fingerprints in the capturing stage to store parts of the ID information and store the residual
parts rather than the entire IDs in the storage stage. Since the bucket indexes do not occupy memory,
the storage of jigsaw pieces can even consume less memory than storing the original ID, improving our
memory efficiency and algorithm accuracy.

Besides, we adopt a probabilistic replacement strategy to improve algorithm speed and accuracy fur-
ther. In the capturing stage, the flows mapped to each bucket will significantly exceed the bucket capacity.
In order to capture the candidate top-k elephant flows, the replacement strategy employs the new arrival
flow to replace the recorded smallest flow in the mapped bucket using a probability that decreases with
the increased recorded flow size. Thus, this strategy tends to keep the elephant flows and replace the
mouse flows with new flows. Moreover, the probability calculation formula in the strategy is lightweight,
enabling us to capture the elephant flows with high accuracy and high speed.

4.2 Two-stage data structure of Jigsaw-Sketch

As shown in Figure 1, the data structures of Jigsaw-Sketch contain a bucket array B with w buckets and
an auxiliary list L with u slots, which are separately employed in the two stages of our algorithm. In
bucket array B, each bucket comprises λ cells: the first λh cells are heavy cells, and the other λ−λh cells
are light cells. The physical structure of each cell is the same, consisting of two fields: a fingerprint field
for identifying flows and a counter field to record flow sizes. We will discuss the difference between heavy
cells and light cells later. For convenience, we use B[i][j] to represent the j-th cell of the i-th bucket in
B, and use B[i][j].FP and B[i][j].C to represent its fingerprint field and counter field, respectively.

We build a one-to-one mapping between the slots in the auxiliary list L and the heavy cells in bucket
array B. Each heavy cell B[i][j] is bound to slot L[iλh + j]. Thus, the number of slots is relevant to the
number of heavy cells, i.e., u = wλh. Each slot has a residual part field and a signal field. The former
stores the residual part of the ID information, and the latter is a 2-bit counter for handling fingerprint
collisions. Similarly, the residual part field and signal field of the i-th slot in the auxiliary list L is
represented as L[i].RP and L[i].S respectively.

It is worth noting that there are no slots bound to light cells due to the different functionality of light
cells compared with heavy cells. We set multiple cells in each bucket to collect the size information of
more flows when determining which flows should be tracked. It also reduces the collisions among elephant
flows. However, most cells will record mouse flows, and storing the residual parts for them is unnecessary.
To improve memory efficiency, we let part cells be light cells without bounding to slots and employ them
to track the potential candidate top-k flows and find the candidate flows from them. The experiments in
Subsection 6.4 also demonstrate the effectiveness of this design.

4.3 Techniques

4.3.1 Jigsaw storage scheme

We propose the jigsaw storage scheme to improve the memory efficiency of our algorithm. It implements
the conversion between flow ID and jigsaw, where the jigsaw pieces are a bucket index, a fingerprint,
and a residual part, respectively. The design of our jigsaw storage scheme has to meet the following
requirements. (1) It must be able to recover the flow IDs from the corresponding jigsaw pieces, like
operating a jigsaw. (2) The bit length of the jigsaw should not exceed the ID length. Otherwise, the
memory efficiency of our sketch will be compromised. (3) The bucket indexes and fingerprints generated
by the scheme have to be well-randomized since their randomness can significantly affect the performance

Zhang B Y, et al. Sci China Inf Sci April 2024, Vol. 67, Iss. 4, 142101:6

Bucket array B

(w buckets)

Auxiliary list L

(u slots)

λ
h
 heavy cells λ−λ

h
 light cells

Cell/slot structure:

Data structure

…

Incoming packets

85 97 17 29

……

0 0 0 1 3

Fingerprint Residual part Signal

FingerprintBucket index Residual part

Capturing stage

Storage stage

f
5 f

7
f
i

b
i

b
i

F
i

F
i

F
i

F
3

F
12

F
8

F
6

F
i

Disassemble ()

Assemble ()
′

′ F
1
′ F

3
′ F

4
′′

Counter

… …

……

Figure 1 Data structure of Jigsaw-Sketch.

of our algorithm. (4) The scheme must be lightweight in computation overhead so that it will not constrain
packet processing throughput.

It is challenging to meet all the requirements simultaneously, and existing methods, such as encryption
algorithms and Hash algorithms, can only meet a part of them. For example, aiming to protect the plain
text, the encryption algorithms usually output longer encrypted messages or have heavy computation
overhead. Besides, they do not consider the problem of generating well-randomized bucket indexes and
fingerprints. The Hash algorithms can generate well-randomized bucket indexes and fingerprints, while
they do not support recovering the Hash values to original IDs.

To achieve the requirements, we design a simple and invertible disassembling algorithm (Algorithm 1)
using the theory of modular inverses, shifting operations (represented by ≪ and ≫), and exclusive or
(XOR) operations (represented by ⊕); and the assembling algorithm is the inverse process (Algorithm 2).
In the disassembling algorithm, we first randomize the flow ID as shown in line 2 of Algorithm 1. The
inverse process is shown in line 11 of Algorithm 2. This invertible randomization step employs the theory
of modular inverses: for a pair of modular inverses a and a′ with regard to 2l (i.e., aa′ mod 2l = 1, which
requires a to be relatively prime to 2l), they can be employed to randomize and recover the flow ID fi
according to the following formulas, where l is the bit length of flow ID.

x = fia mod 2l, fi = xa′ mod 2l.

This randomization is actually a remapping for the flow ID, avoiding similar IDs getting similar or even
the same bucket indexes and fingerprints. However, the value x is not randomized enough to generate well-
randomized bucket indexes and fingerprints since the lowest bits of x cannot summarize the information
of the entire ID. XOR is widely employed in Hash algorithms for randomization, which is fast and can
output the same number of bits as the operands. Thus, we employ XOR to randomize the ID and
summarize all ID information to the lowest bits. As shown in lines 3–10 of Algorithm 1, we carefully
design the XOR steps to make this process invertible, and the inverse codes are shown in lines 3–10 of
Algorithm 2. After the two randomization steps, the randomized value still has the same number of
bits as the flow ID, and we can get well-randomized bucket indexes and fingerprints using the modular
operations (lines 11 and 12 in Algorithm 1).

Zhang B Y, et al. Sci China Inf Sci April 2024, Vol. 67, Iss. 4, 142101:7

Algorithm 1 Disassembling method of the jigsaw storage scheme

Input: Flow ID fi.

Output: Bucket index bi, fingerprint Fi, residual part F
′

i.

Params: ID bit length l, fingerprint bit length l′, integer a that is relatively prime to 2l.

1: Function Disassemble(fi):

2: x← fia mod 2l;

3: y1 ← (x≫ 0) mod 2
l
4 ; y2 ← (x≫ l

4) mod 2
l
4 ;

4: y3 ← (x≫ l
2) mod 2

l
4 ; y4 ← (x≫ 3l

4) mod 2
l
4 ;

5: y′

1 ← y1;

6: y′

2 ← y1 ⊕ y2;

7: y′

3 ← y1 ⊕ y2 ⊕ y3;

8: y′

4 ← y1 ⊕ y2 ⊕ y3 ⊕ y4;

9: y′

4 ← y′

4 ⊕ (y′

4 ≫
l
8);

10: z ← (y′

1 ≪
3l
4) + (y′

2 ≪
l
2) + (y′

3 ≪
l
4) + y′

4;

11: bi ← z mod w; z ← ⌊ z
w
⌋;

12: Fi ← z mod 2l
′

; z ← ⌊ z

2l
′
⌋;

13: F
′

i ← z;

14: Return bi, Fi, F
′

i.

Algorithm 2 Assembling method of the jigsaw storage scheme

Input: Bucket index bi, fingerprint Fi, residual part F
′

i.

Output: Flow ID fi.

Params: ID bit length l, fingerprint bit length l′, integer a′ that is the modular inverse of a with regard to 2l.

1: Function Assemble(bi, Fi, F
′

i):

2: z ← ((F′

i ≪ l′) + Fi)w + bi;

3: y′

1 ← (z ≫ 3l
4) mod 2

l
4 ; y′

2 ← (z ≫ l
4) mod 2

l
4 ;

4: y′

3 ← (z ≫ l
2) mod 2

l
4 ; y′

4 ← (z ≫ 0) mod 2
l
4 ;

5: y′

4 ← y′

4 ⊕ (y′

4 ≫
l
8);

6: y1 ← y′

1;

7: y2 ← y′

1 ⊕ y′

2;

8: y3 ← y′

2 ⊕ y′

3;

9: y4 ← y′

3 ⊕ y′

4;

10: x← y1 + (y2 ≪
l
4) + (y3 ≪

l
2) + (y4 ≪

3l
4);

11: fi ← xa′ mod 2l;

12: Return fi.

Next, we analyze the improved memory efficiency of our scheme compared to directly storing finger-
prints and flow IDs. For each candidate flow, our scheme can save ⌊l′ + log2 w⌋ bits, where l′ is the
bit length of fingerprints and w is the number of buckets. For example, when the fingerprints are set to
16 bits and buckets are more than 512 (common in existing work), our scheme can save at least 25 bits for
each candidate flow. It significantly improves our algorithm’s memory efficiency and allows it to achieve
high accuracy using small memory footprints.

4.3.2 Probabilistic replacement strategy

In the bucket array of the capturing stage, the flows mapped to each bucket are much more than the
cells in the bucket, and we want to keep the elephant flows and expel the mouse flows. Therefore,
when a new flow arrives and all the cells in the bucket are occupied, we need to determine whether to
replace the smallest recorded flow with the new flow or to keep the recorded flows. The exponential
decay strategy [9, 21, 22] has high accuracy, while its exponential computation is expensive, which limits
algorithm speed. In contrast, the unbiased replacement strategy [27,33] and waving counter strategy [24]
have light computation overhead, while they have larger estimation errors.

In order to capture the elephant flows accurately with light computation overhead, we adopt a prob-
abilistic replacement strategy. Suppose the new arrival flow is fi, and the smallest cell in the bucket
belongs to fj, which has a counter value of c. Our strategy will try to replace fj with fi using a prob-
ability of pr = 1

c
. This strategy is similar to but different from the unbiased replacement strategy. The

unbiased replacement strategy will always increase the counter of fj from c to c + 1 and then try to
replace fj with a probability of pr = 1

c+1 . This “always increment” choice will incur extra errors on the
smallest counter, and the rapid increment on the smallest counter will also lead to lower accuracy for
finding top-k flows. Overall, the probabilistic replacement strategy we employ has two main advantages.
First, its computation is lightweight and will not compromise algorithm throughput. Second, the strategy

Zhang B Y, et al. Sci China Inf Sci April 2024, Vol. 67, Iss. 4, 142101:8

will not change the flow sizes of the recorded flows if the replacement fails, i.e., a failed replacement will
not introduce estimation errors to the recorded flows.

4.4 Operations for finding top-k elephant flows

In this subsection, we give the details of the insertion and query operations for finding top-k elephant
flows. Before each measurement, the bucket array and auxiliary list of Jigsaw-Sketch have to be initialized,
i.e., we have to set all fingerprints, counters, and the fields in slots to 0.

4.4.1 Insertion

The pseudo-code of the insertion operation is shown in Algorithm 3. For each arrival packet, we first
process it in the first stage. Specifically, we extract the packet’s flow ID fi and employ the disassembling
method of the jigsaw storage scheme to turn fi into three pieces: bucket index bi, fingerprint Fi, and the
residual part F′i (line 4). According to the bucket index bi, we can find the mapped bucket B[bi] of flow
fi and then apply different operations for the following three cases:

Algorithm 3 Insertion

Input: Flow ID fi.

1: Function Insert(fi):

2: m← 0; //capture the smallest heavy cell

3: m′ ← 0; //capture the smallest cell

4: bi, Fi, F
′

i ← Disassemble(fi);

5: for j ← 0 to λ − 1 do

6: if B[bi][j].C = 0 then //Case 1

7: B[bi][j].FP← Fi;

8: B[bi][j].C ← 1;

9: if j < λh then

10: ALSet(bi, j, F
′

i);

11: end if

12: Return;

13: end if

14: if B[bi][j].FP=Fi then //Case 2

15: B[bi][j].C ← B[bi][j].C + 1;

16: if j > λh and B[bi][j].C > B[bi][m].C then

17: Exchange values of B[bi][j] and B[bi][m];

18: ALSet(bi,m, F′

i);

19: end if

20: if j < λh and (B[bi][j].C = T or (B[bi][j].C > T and

Rand()< 1
B[bi][j].C

)) then

21: ALUpdate(bi, j, F
′

i);

22: end if

23: Return;

24: end if

25: if j < λh and B[bi][j].C < B[bi][m].C then

26: m← j;

27: end if

28: if B[bi][j].C < B[bi][m
′].C then

29: m′ ← j;

30: end if

31: end for

32: if Rand()< 1
B[bi][m

′].C
then //Case 3

33: B[bi][m
′].FP← Fi;

34: if m′ < λh then

35: ALSet(bi,m
′, F′

i);

36: end if

37: end if

38: Function ALSet(bi, j, F
′

i):

39: L[biλh + j].RP← F
′

i;

40: L[biλh + j].S ← 0;

41: Function ALUpdate(bi, j, F
′

i):

42: if L[biλh + j].RP = F
′

i then

43: L[biλh + j].S ← L[biλh + j].S + 1;

44: else if L[biλh + j].S > 0 then

45: L[biλh + j].S ← L[biλh + j].S − 1;

46: else

47: L[biλh + j].RP← F
′

i;

48: end if

Case 1 (lines 6–13). There exists no cell storing fingerprint Fi, and there remain empty cells. Suppose
the first empty cell is B[bi][j]. We will set the fingerprint field B[bi][j].FP to Fi and the counter field
B[bi][j].C to 1. Then, if B[bi][j] is a heavy cell, i.e., 0 6 j < λh, we need to access the auxiliary list in
the second stage to record F

′
i. As shown in the ALSet() function (lines 38–40), the corresponding slot

of heavy cell B[bi][j] is L[biλh + j], and we set the residual part field L[biλh + j].RP and the signal field
L[biλh + j].S to F

′
i and 0, respectively.

Case 2 (lines 14–24). There exists a cell B[bi][j] storing fingerprint Fi. In this case, we increase the
cell’s counter field B[bi][j].C by 1 (line 15). Then, if B[bi][j] is a light cell, we have to find the smallest
heavy cell in the bucket and compare it with B[bi][j]. Suppose the smallest heavy cell is B[bi][m]. If
B[bi][m].C is smaller than B[bi][j].C, we will exchange the contents of B[bi][j] and B[bi][m], and set
corresponding slot L[biλh +m] to 〈F′i, 0〉 in the second stage.

If B[bi][j] is a heavy cell, we still need to access the second stage and update the auxiliary list due
to the fingerprint collision problem. Considering that the fingerprint of an elephant flow collides with a
mouse flow, the recorded flow size will be the sum of their sizes. Moreover, if the mouse flow occupies
the elephant flow’s slot in the second stage, we can only recover the mouse flow and lose the elephant
flow. In order to alleviate the fingerprint collision problem, we choose to access the second stage again
when B[bi][j].C = T , and then sample the packets to access the second stage with a probability of 1

T

when B[bi][j].C > T . The value T is employed to filter out the mouse flows applications do not care

Zhang B Y, et al. Sci China Inf Sci April 2024, Vol. 67, Iss. 4, 142101:9

about, which can be set to a value much smaller than the concerned elephant flows’ sizes and larger than
the mouse flows’ sizes. Also, it blocks most packets from accessing the auxiliary list in the second stage.
The update process on the auxiliary list is shown in the ALUpdate() function (lines 41–48), which can
be divided into the following three situations: (1) If L[biλh + j].RP equals F′i, we increase L[biλh + j].S
by 1. (2) If L[biλh + j].RP is different from F

′
i and L[biλh + j].S > 0, we decrease L[biλh + j].S by 1.

(3) If L[biλh + j].RP is different from F
′
i and L[biλh + j].S = 0, we set L[biλh + j].RP to F

′
i. Apparently,

an elephant flow tends to update the slot multiple times. Then, even though a mouse flow updates the
slot by coincidence, it can hardly decrease the signal field to 0 and update the residual part field. In
contrast, it is easy for an elephant flow to update the residual part field when a mouse flow occupies it.
Thus, this design can further avoid the mouse flow occupying the slot when it collides with an elephant
flow.

Case 3 (lines 32–37). There exists no cell storing fingerprint Fi, and all cells are occupied. In this case,
we employ the probabilistic replacement strategy to capture the elephant flows. Suppose B[bi][m

′] is the
smallest cell in the bucket. We try to use Fi to replace B[bi][m

′].FP with a probability of pr =
1

B[bi][m′].C .

Then, if the replacement succeeds and B[bi][m
′] is a heavy cell, we will access the second stage and set

L[biλh +m′] to 〈F′i, 0〉.

4.4.2 Top-k query

At the end of each measurement period, we traverse each heavy cell in bucket array B and the cor-
responding slot in auxiliary list L to get top-k elephant flows. For each heavy cell B[i][j], we get the
counter value c, bucket index i, fingerprint F, and find the residual part F

′ stored in its corresponding
slot L[iλh + j]. Then, we employ the assembling method of the jigsaw storage scheme (Algorithm 2) to
recover the flow ID and employ c as the estimated flow size. After recovering all candidate top-k flows
captured by the heavy cells, we report the k flows with the largest estimated sizes as the top-k elephant
flows.

5 Mathematical analysis

In this section, we conduct a mathematical analysis of our algorithm. We show the properties of the
probabilistic replacement strategy first and then give two estimation error bounds of our algorithm.

5.1 Theoretical properties of the probabilistic replacement strategy

We analyze the probabilistic replacement strategy in two folds. First, we analyze the replacement strategy
from the view of the flows to be replaced.

Theorem 1. The efforts of other flows to replace flow f will cause a downward biased estimation error
on the flow size of f . Let X be this estimation error, then the expectation of X is

E(X) <= r, (1)

where r is the number of times other flows try to replace f .

Proof. Consider a moment t where flow f has the smallest recorded flow size n̂(t) in the bucket.
Suppose there are r(t) > 1 packets of other flows that try to replace flow f before the next appearance
of flow f . Let X(t) be the downward biased estimation error added on n̂(t). Obviously, if all the r(t)
replacements fail, flow f will keep its recorded size n̂(t) unchanged, i.e., X(t) = 0. Otherwise, once flow
f is replaced by another flow successfully, flow f will lose its recorded size, i.e., X(t) = n̂(t). Since the

probability that all replacements fail is (1 − 1
n̂(t))

r(t)
, we have

E(X(t)) = n̂(t)

(

1−

(

1−
1

n̂(t)

)r(t)
)

6 r(t). (2)

The inequality in the above formula can be proved using the theory of derivative; thus we omit it.
Assuming that r(t) is independent of n̂(t), we have

E(X) =
∑

t

E(X(t)) 6
∑

t

r(t) = r. (3)

Zhang B Y, et al. Sci China Inf Sci April 2024, Vol. 67, Iss. 4, 142101:10

Next, we analyze the replacement strategy from the view of the flows that try to replace other flows.

Theorem 2. When a flow f tries to replace another flow, the estimation error on its flow size caused
by the replacements is unbiased.

Proof. Let f ′ be the flow with the smallest recorded size n̂min in the bucket. Once flow f tries to
replace flow f ′, the estimated flow size of f will be incremented by n̂min with probability 1

n̂min
. Therefore,

the expected increment to the size of flow f is 1, which proves the unbiasedness.

5.2 Estimation error bound analysis

We analyze the estimation error bound of our algorithm when processing a packet stream with N packets
that belong to M distinct flows. Let fi be the i-th largest flow, whose actual size is ni. The final estimated
flow size of fi is

n̂i = ni −Xi + Y ′i − Y ′′i + Zi, (4)

where Xi is the decrement from being replaced; Y ′i and Y ′′i are upward and downward estimation errors
caused when replacing other flows; Zi is the increment from fingerprint collision.

5.2.1 Upper estimation error bound analysis

Theorem 3. Given the i-th largest flow fi whose actual flow size is ni, for any ǫ > 0, the upper bound
of estimation error is

Pr{n̂i − ni > ǫN} 6
1

ǫ

(

1

4λw
−

1

4N
+

1

w2l′

)

, (5)

where l′ is the bit length of the fingerprint fields.

Proof. For any two distinct flows fi and fj , we use Ii,j to indicate that they are mapped to the same
bucket and have the same fingerprint. Then we have E(Ii,j) =

1
w2l′

. Since Zi equals the total number of
collisions occurring to fi, we have

E(Zi) = E

M
∑

j=1,j 6=i

Ii,jnj

 =

M
∑

j=1,j 6=i

E(Ii,j)nj 6 E(Ii,j)

M
∑

j=1

nj =
N

w2l′
. (6)

Next, we analyze the upward estimation error Y ′i caused when replacing other flows. Let N̂min be
the random variable representing the recorded smallest flow size in the bucket when flow fi successfully
replaces the smallest flow. Suppose flow fi has tried the replacement for α times before the success, and
the smallest flow sizes at the failed replacements are separately n̂α1 , n̂α2 , . . . , n̂αα

. Note that we only

consider the upward estimation error, which means α 6 N̂min − 1. Therefore,

E(Y ′i |N̂min = n̂min) =

n̂min−1
∑

α=0

α
∏

β=1

(

1−
1

n̂αβ

)

n̂min − α− 1

n̂min
6

n̂min−1
∑

α=0

n̂min − α− 1

n̂min
=

n̂min − 1

2
. (7)

Let N̂′min be the random variable representing the smallest flow size recorded in the bucket when answering
a query after the measurement ends. We assume that when flow fi successfully replaces the smallest flow,
the value of the smallest recorded flow size is uniformly distributed within the range [1, N̂′min] before the

query time. Then the probability that N̂min equals any integer within this range is 1
N̂′

min

, and we have

E(Y ′i |N̂
′
min = n̂′min) =

n̂′

min
∑

n̂min=1

E(Y ′i |N̂min = n̂min)
1

n̂′min

6
n̂′min − 1

4
. (8)

Let Pr{N̂′min = n̂′min} denote the probability that N̂′min equals n̂′min, we have

E(Y ′i) =
∑

n̂′

min

E(Y ′i |N̂
′
min = n̂′min)Pr{N̂

′
min = n̂′min} 6

E(N̂′min)− 1

4
6

N
λw

− 1

4
=

N

4λw
−

1

4
. (9)

Zhang B Y, et al. Sci China Inf Sci April 2024, Vol. 67, Iss. 4, 142101:11

Then, we can use Markov inequality to transform the bound of expectation into the bound of possibility:

Pr{n̂i − ni > ǫN} = Pr{−Xi + Y ′i − Y ′′i + Zi > ǫN} 6 Pr{Y ′i + Zi > ǫN}

6
E(Y ′i) + E(Zi)

ǫN
6

1

ǫ

(

1

4λw
−

1

4N
+

1

w2l′

)

. (10)

5.2.2 Lower estimation error bound analysis

Theorem 4. Given the i-th largest flow fi whose actual size is ni, for any ǫ > 0, the lower estimation
error bound is

Pr{ni − n̂i > ǫN} 6
1

ǫ

(

(

i− 1

λ− 1

)(

1

w

)λ(

1−
1

w

)i−λ

+
1

4λw
−

1

4N

)

. (11)

Proof. For flow fi, other flows try to replace it only when fi is the smallest flow recorded in the bucket.
In other words, λ− 1 flows among the largest i− 1 flows are mapped to the bucket of flow fi. Let U be
the random variable representing the number of flows that is one of the largest i − 1 flows and mapped
to the same bucket with fi. Obviously, U follows a binomial distribution B(i− 1, 1

w
), and we have

Pr{U = λ− 1} =

(

i− 1

λ− 1

)(

1

w

)λ−1(

1−
1

w

)i−λ

. (12)

Let R be the random variable representing the number of times that other flows try to replace fi. As
proved in Theorem 1, given the value of R, the expectation of the decrement caused by being replaced is
E(Xi|R = r) = r. When flow fi is the smallest flow recorded in the bucket, the expectation number of
times that other flows try to replace it is

E(R|U = λ− 1) =
1

w

M
∑

j=i+1

nj

 6
N

w
. (13)

Besides, the expectation of R is

E(R) = E(R|U = λ− 1)Pr{U = λ− 1} 6 N

(

i− 1

λ− 1

)(

1

w

)λ(

1−
1

w

)i−λ

. (14)

Then, we can get the expectation of the decrement caused by being replaced as follows:

E(Xi) =
∑

r

E(Xi|R = r)Pr{R = r} =
∑

r

rPr{R = r} = E(R). (15)

Next, we analyze the downward estimation error Y ′′i . Notice that the estimation error caused by
replacing other flows is unbiased, as proved in Theorem 2. Therefore, the downward error’s expectation
should equal the upward error’s expectation.

E(Y ′′i) = E(Y ′i) 6
N

4λw
−

1

4
. (16)

We use Markov inequality to get the lower estimation error bound

Pr{ni − n̂i > ǫN} = Pr{Xi − Y ′i + Y ′′i − Zi > ǫN} 6 Pr{Xi + Y ′′i > ǫN}

6
E(X ′i) + E(Y ′′i)

ǫN
6

1

ǫ

(

(

i− 1

λ− 1

)(

1

w

)λ(

1−
1

w

)i−λ

+
1

4λw
−

1

4N

)

. (17)

We can find that the estimation error bounds are tightly relevant to the number of cells in each bucket.
Besides, the lower estimation error caused by being replaced is also relevant to the ranking of the flow.

Zhang B Y, et al. Sci China Inf Sci April 2024, Vol. 67, Iss. 4, 142101:12

6 Experimental results

In this section, we evaluate the performance of our algorithm through extensive experiments using real
Internet traffic traces downloaded from CAIDA. We first introduce our experimental setup. Next, we
prove that the disassembling method of our jigsaw storage scheme can generate well-randomized bucket
indexes and fingerprints. Then, we conduct experiments on the parameter settings. At last, we evaluate
the performance of Jigsaw-Sketch with different values of k and memory size.

6.1 Experimental setup

Platform. We implement our algorithm on software (CPU) and hardware (NetFPGA) platforms. Specif-
ically, we conduct our evaluation on a server equipped with two Intel Xeon E5-2643 v4 @3.40 GHz CPU
and 256 GB RAM. Besides, we also implement our algorithm on a NetFPGA-1G-CML development
board containing 16 Mbits Block RAM. When implementing our algorithm with 200 kB memory, we use
8199 of the 203800 total available LUTs. The estimated Fmax given by Vivado HLS is 115.55 MHz,
meaning the processing throughput is 115.55 Mps.

Dataset. We use two real Internet traces downloaded from CAIDA4) as our datasets, where flow IDs
are defined as the network five-tuples carried by the packets. The two traces are collected at different
links and times. For the CAIDA-2016 dataset, we employ one minute of the traces collected at the link
from Seattle to Chicago in 2016, which contains 30078201 packets and 1102525 distinct flows, where the
largest flow contains 185668 packets. For the CAIDA-2019 dataset, we employ one minute of the traces
collected at the link from Sao Paulo to New York in 2019, which contains 36144349 packets and 2607500
distinct flows, where the largest flow contains 162540 packets.

Implementation. We implement our Jigsaw-Sketch (JS for short) and the following solutions (base-
lines) for comparison: HeavyKeeper (HK) [9, 21], WavingSketch (WS) [24], HeavyGuardian (HG) [22],
UA-Sketch (UA) [34], and ChainSketch (CS) [35]. Since the stream-summary version of HeavyKeeper [9]
has low memory efficiency, we choose to implement its min-heap version [21] and add a Hash table to
accelerate its lookup process, which performs as fast as the stream-summary version and is more memory
efficient. All the solutions are implemented in C++ and compiled by a g++ compiler. Besides, the Hash
functions are implemented by a well-known fast Hash function, Murmur Hash5). Since the baselines
we implement have been proven superior to some other classical methods, such as Space Saving [25],
Unbiased Space Saving [27], and ElasticSketch [23], we do not implement them.

Default parameters. The network managers usually get the maximum flow sizes from historical
statistics to set the counter size in practice. Considering the largest flow sizes in both datasets are
between 217 and 218, we set the normal counters to 18 bits in all algorithms. We can also implement the
counters by active counter techniques [6] to count larger values with fewer bits, while it is beyond this
paper’s scope. We set the fingerprint fields to 16 bits, which can ensure a small enough error caused by
fingerprint collision, as proved in (6). In JS, the number of cells in each bucket is 8, and the number
of heavy cells is 4. Besides, we set T to 512 because the sizes of top-k flows in high-speed networks are
always much larger, and network managers usually do not care about the mouse flows whose sizes are
smaller than 512. Similarly, the Hash chain threshold in ChainSketch is also set to 512. The min-heap
capacity of HK is set to k, and the numbers of bucket arrays in HK, UA, and CS are set to 2, 4, and
4 separately. Besides, the maximum Hash chain length in CS is set to 3. Considering the precision and
throughput, each bucket of WS and HG contains 16 and 8 cells separately.

6.2 Evaluation metrics

We employ relative standard deviation (RSD) and collision ratio (CR) to evaluate the performance of our
jigsaw storage scheme’s disassembling method in generating bucket indexes and fingerprints, and employ
precision (PR), average relative error (ARE), average absolute error (AAE), and throughput to evaluate
our algorithm’s performance in finding top-k elephant flows.

RSD. Let xi be the number of distinct flows mapped to the i-th bucket in a bucket array. The RSD

of the number of distinct flows mapped to each bucket is RSD = 1
x̄

√

1
w

∑w

i=1 (xi − x̄)2, where x̄ = M
w
,

M is the total number of distinct flows, and w is the number of buckets.

4) The CAIDA dataset can be achieved at http://www.caida.org/data/passive.

5) The source code of Murmur Hash is at https://github.com/aappleby/smhasher/tree/master/src/MurmurHash3.cpp.

http://www.caida.org/data/passive
https://github.com/aappleby/smhasher/tree/master/src/MurmurHash3.cpp

Zhang B Y, et al. Sci China Inf Sci April 2024, Vol. 67, Iss. 4, 142101:13

Table 1 RSD and CR with different numbers of buckets on CAIDA-2016

Ours Murmur Hash Bob Hash BKDR Hash

w RSD (×100) CR (×100) RSD (×100) CR (×100) RSD (×100) CR (×100) RSD (×100) CR (×100)

512 2.15 3.22 2.15 3.22 2.17 3.24 2.17 3.37

1024 3.07 1.62 3.07 1.63 3.02 1.62 3.05 1.77

2048 4.30 0.82 4.30 0.81 4.28 0.82 4.31 0.96

4096 6.07 0.41 6.07 0.41 6.08 0.42 6.08 0.56

8192 8.59 0.21 8.59 0.21 8.62 0.21 8.59 0.35

CR. Let Mc be the number of collided flows, namely, the number of distinct flows that share bucket
indexes and fingerprints with other flows. The CR is defined as CR = Mc

M
.

PR. Precision is defined as |Ψ∩Ω|
k

, where Ψ is the estimated set of the top-k elephant flows, and Ω is
the actual set.

ARE. ARE is defined as 1
k

∑

fi∈Ψ
|n̂i−ni|

ni
, where n̂i is the estimated size of flow fi, and ni is the actual

flow size. ARE evaluates the error rate of the estimated flow sizes reported by the algorithm.
AAE. AAE is defined as 1

k

∑

fi∈Ψ
|n̂i − ni|, which is similar to ARE.

Throughput. We record the total time used to insert all packets and then calculate the throughput.
The throughput is defined as N

t
, where N is the total number of packets, and t is the total time used to

insert all packets. We use million of insertions per second (Mps) to measure the throughput.

6.3 Experiments on the disassembling method of the jigsaw storage scheme

We argue that the disassembling method of our jigsaw storage scheme can generate well-randomized
bucket indexes and fingerprints. To prove this, we compare our method with three typical Hash functions:
Murmur Hash, Bob Hash, and BKDR Hash. All the compared Hash functions output 32-bit Hash values.
Then, we calculate the bucket index b and fingerprint F as follows: b = h mod w, F = ⌊h/w⌋ mod 2l

′

,
where h is the Hash value, w is the number of buckets, and l′ is the bit length of the fingerprint.

To evaluate the performance of generating bucket indexes and fingerprints, we first employ the RSD
of the number of distinct flows mapped to each bucket as the metric, which shows the uniformity of the
distribution of the generated bucket indexes. Then, we compare the CR to evaluate the randomness of
fingerprints. When comparing the metrics, we set the fingerprint bit length l′ to 16 and vary the bucket
number w from 512 to 8192. Each experiment is repeated ten times with different Hash seeds or modular
inverses, and the final results are the average values. The Hash seeds of Murmur Hash and Bob Hash,
and the modular inverses of our methods are randomly generated. Since the Hash seed of BKDR Hash
cannot be set randomly, we set it to the recommended particular values like 31, 131, 1313, and 13131.
We employ both datasets to perform the experiments. Due to the space limitation, we omit the results
on CAIDA-2019 since they are similar to that on CAIDA-2016.

As shown in Table 1, the RSD and CR of our method are very close to that of the compared Hash
functions. Besides, we can find that the CR of our method is even lower than BKDR Hash, since BKDR
Hash has poor performance when its Hash seed is set to 31. The results indicate that our method can
generate well-randomized bucket indexes and fingerprints as typical Hash functions.

6.4 Experiments on parameter settings

In this subsection, we analyze our parameter settings. Jigsaw-Sketch has three key parameters: the
number of buckets w, the number of cells λ in each bucket, and the number of heavy cells λh in each
bucket. Given a fixed total memory, w is decided by λ and λh. Thus, we only conduct experiments on λ
and λh. Since we can get similar conclusions on both datasets, we only show the results on CAIDA-2016.

Experiments on λ. In this part, we set λ to 4, 8, and 16 to compare the precision and throughput
on finding top-1000 elephant flows. λh is set to the value that achieves the highest precision. As shown
in Figure 2, the precision of Jigsaw-Sketch increases as λ increases. However, a large value of λ leads to
a longer bucket, and we need to access memory more times when traversing the bucket. Therefore, the
throughput decreases as λ increases. In order to achieve both high precision and high throughput, we
select the intermediate value 8 as the default value of λ.

Experiments on λh. In this part, we set λ to 8, and compare the precision on finding top-1000
elephant flows for different values of λh. As shown in Figure 3(a), Jigsaw-Sketch can achieve the highest

Zhang B Y, et al. Sci China Inf Sci April 2024, Vol. 67, Iss. 4, 142101:14

(a) (b)1.00

0.98

0.96

0.94

P
R

50 100 150 200 250

Memory (kB)

50 100 150 200 250

Memory (kB)

35

30

25

20

15

10

T
h
ro

u
g
h
p
u
t

(M
p
s)

λ=4

λ=8

λ=16

λ=4

λ=8

λ=16

Figure 2 PR and throughput with different values of λ when k = 1000. (a) PR; (b) throughput.

(a)
(b)

1.00

0.98

0.96

0.94

0.92

0.90

0.88

P
R

2 3 4 5 6 7 8

Number of heavy cells

2 3 4 5 6 7 8

Number of heavy cells

1.00

0.95

0.90

0.85

0.80

P
R

50 kB 200 kB

250 kB100 kB

150 kB

JS-NL (50 kB)

JS-NL (250 kB)

JS (250 kB)

JS (50 kB)

Figure 3 Impact of λh when k = 1000. (a) PR of JS; (b) PR comparison between JS and JS-NL.

(a)

(b)

(c)
(d)

1.0

0.9

0.8

0.7

0.6

0.5

P
R

50 100 150 200 250

Memory (kB)

50 100 150 200 250

Memory (kB)

50 100 150 200 250

Memory (kB)

50 100 150 200 250

Memory (kB)

102

101

100

101

102

103

10−1

10−2

A
R

E

A
A

E

25

20

15

10T
h
ro

u
g
h
p
u
t

(M
p
s)

HK WS HG CS UA JS

Figure 4 Metrics for varying memory size when k = 1000 for CAIDA-2016. (a) PR; (b) ARE; (c) AAE; (d) throughput.

(c)(b)

(a)

(d)1.0

0.9

0.8

0.7

0.6

P
R

50 100 150 200 250

Memory (kB)

50 100 150 200 250

Memory (kB)

50 100 150 200 250

Memory (kB)

50 100 150 200 250

Memory (kB)

102

102

103

101

100

10−2

A
R

E

A
A

E

25

20

15

10T
h
ro

u
g
h
p
u
t

(M
p
s)

HK WS HG CS UA JS

Figure 5 Metrics for varying memory sizes when k = 1000 for CAIDA-2019. (a) PR; (b) ARE; (c) AAE; (d) throughput.

precision when λh is around half of λ. Besides, we can find that the value of λh that achieves the highest
precision tends to decrease with the increase of memory size. This situation also happens when λ is 4 or
16. This is because a larger memory size can allocate more buckets, and fewer heavy cells can still contain
all the top-k elephant flows mapped in each bucket. Considering the precision under limited memory, we
set λh to 4 as the default value when λ = 8.

Remember that each bucket of Jigsaw-Sketch also contains light cells. In order to explain the effec-
tiveness of light cells, we compare two types of Jigsaw-Sketch: Jigsaw-Sketch with light cells (JS) and
Jigsaw-Sketch with no light cells (JS-NL). Since the situations are similar with different memory, we
only show the results when the memory size is 50 and 250 kB. As shown in Figure 3(b), JS achieves
higher precision than JS-NL. For JS-NL, it performs better when it sets more cells in each bucket since
it can simultaneously record more flows’ sizes. However, most cells record the sizes of mouse flows, and
storing the residual part for them is unnecessary. Therefore, replacing some heavy cells with light cells
can improve memory efficiency and precision.

Zhang B Y, et al. Sci China Inf Sci April 2024, Vol. 67, Iss. 4, 142101:15

(c)(b)

k

(a)

(d)
1.00

0.95

0.90

0.85

0.80

0.75

0.70

P
R

1000 2000 3000 4000 5000

k

1000 2000 3000 4000 5000

k

1000 2000 3000 4000 5000

k

1000 2000 3000 4000 5000

102

102

103

101

100

10−1

10−2

A
R

E A
A

E

25

20

15

10T
h
ro

u
g
h
p
u
t

(M
p
s)

HK WS HG CS UA JS

Figure 6 Metrics for varying k when memory size is 200 kB for CAIDA-2016. (a) PR; (b) ARE; (c) AAE; (d) throughput.

(c)(b)

k

(a)

(d)
1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

P
R

1000 2000 3000 4000 5000

k

1000 2000 3000 4000 5000

k

1000 2000 3000 4000 5000

k

1000 2000 3000 4000 5000

102

102

101

100

10−2

A
R

E

A
A

E

25

20

15

10T
h
ro

u
g
h
p
u
t

(M
p
s)

HK WS HG CS UA JS

Figure 7 Metrics for varying k when memory size is 200 kB for CAIDA-2019. (a) PR; (b) ARE; (c) AAE; (d) throughput.

6.5 Experiments on precision

In this part, we compare the precision for varying memory size and k. For experiments of varying memory
size, we set k = 1000 and vary memory size from 50 to 250 kB. We do not set a larger memory size since
250 kB is enough for all the compared algorithms to get high precision. For experiments of varying k, we
set the memory size to 200 kB and vary k from 1000 to 5000. We argue that our algorithm outperforms
the other methods since it can achieve higher precision while using less memory.

PR vs. memory size. As shown in Figures 4(a) and 5(a), the precision of JS is always the highest,
and ChainSketch is the next. For the CAIDA-2016 dataset, the highest precisions of other baselines
are 0.762 and 0.961 when the memory size is 50 and 250 kB, separately. In contrast, JS can achieve a
precision of 0.962 when the memory size is just 50 kB. This result also outperforms the 0.905 precision
of ChainSketch. Besides, when the memory size is 250 kB, the precision of JS reaches 0.997. The gap
between the precision values gets smaller as memory increases. However, it is worth noting that it is hard
to improve the precision when the precision is already extremely close to 1. Similarly, for the CAIDA-
2019 dataset, the precision of JS reaches 0.973 and 0.998 when the memory is 50 and 250 kB separately,
significantly outperforming the baselines. These results imply that JS performs much better than the
baselines from the view of precision when using the same memory.

PR vs. k. As shown in Figures 6(a) and 7(a), as k increase from 1000 to 5000, the precision of JS
decreases from 0.996 to 0.961 for the CAIDA-2016 dataset, and decreases from 0.998 to 0.968 for the
CAIDA-2019 dataset. In other words, the precision of JS is always higher than 0.96. The gap between JS
and the baselines gets larger as k increases, and JS can improve the precision by at most 0.330 compared
to the baselines. This demonstrates that our algorithm can capture the larger flows more accurately from
the packet stream.

6.6 Experiments on ARE and AAE

In this part, we focus on the ARE and AAE of the estimated sizes of the reported top-k elephant flows.
We also conduct experiments with varying memory sizes and k, and the parameter settings are the same
as that in Subsection 6.5.

ARE vs. memory size. As shown in Figures 4(b) and 5(b), the AREs of JS, HK, and HG are very
close. This is because the AREs of them are already very small, which are always smaller than 0.02.
Specifically, as the memory increases, the AREs of JS, HK, and HG separately decreases from 0.016,
0.009, 0.014 to 0.002, 0.004, 0.007 for the CAIDA-2016 dataset, and decreases from 0.009, 0.005, 0.008
to 0.001, 0.002, 0.003 for the CAIDA-2019 dataset. Apparently, such AREs are small enough to satisfy
most applications’ requirements. Though CS also has low AREs when the memory size is sufficient, its
ARE is much larger when the memory size is not more than 100 kB. This is because there are always
some mouse flows misclassified as elephant flows in CS when the memory is tiny.

AAE vs. memory size. As shown in Figures 4(c) and 5(c), when the memory is larger than 100 kB,
the AAEs of JS, HK, HG, and CS are all smaller than 100, and JS achieves the smallest AAE among

Zhang B Y, et al. Sci China Inf Sci April 2024, Vol. 67, Iss. 4, 142101:16

all the methods. As the memory size increases, the AAE of JS decreases from 81.14 to 12.72 for the
CAIDA-2016 dataset, and decreases from 68.28 to 7.90 for the CAIDA-2019 dataset. We can find that
HG has a larger AAE than HK, though they employ the same exponential decay strategy. One reason is
that HK only records the IDs of k flows and can allocate more memory for capturing the elephant flows
and estimating their sizes.

ARE vs. k. As shown in Figures 6(b) and 7(b), as k increases from 1000 to 5000, the ARE of JS
increases from 0.003 to 0.014 for the CAIDA-2016 dataset, and increases from 0.001 and 0.008 for the
CAIDA-2019 dataset, which is always the smallest among all the methods. For CS, the situations that
misclassify mouse flows as elephant flows occur more frequently when k increases, significantly increasing
its ARE. For HK, the memory consumed by the min-heap and Hash table increases with k. In other
words, the memory allocated for buckets to capture elephant flows decreases, which leads to the increase
of its ARE.

AAE vs. k. As shown in Figures 6(c) and 7(c), JS achieves the smallest AAE among all the methods.
As k varies from 1000 to 5000, the AAE of JS is between 16.65 and 20.08 for the CAIDA-2016 dataset,
and between 10.71 and 16.32 for the CAIDA-2019 dataset. In contrast, the AAEs of the baselines are
higher than 22.83. These results indicate the accuracy of our algorithm.

6.7 Experiments on throughput

In this part, we compare Jigsaw-Sketch and the related work from the view of throughput. We first vary
the memory size from 50 to 250 kB to compare the insertion throughput when k = 1000. Then, we set
the memory size to 200 kB and vary k from 1000 to 5000. We argue that Jigsaw-Sketch is much faster
than the baselines.

Throughput vs. memory size. As shown in Figures 4(d) and 5(d), JS is always the fastest among
all the methods. For the CAIDA-2016 dataset, the average throughput of JS is 27.46 Mps, which is
2.89, 2.03, 2.06, 2.03, and 1.87 times as large as that of HK, WS, HG, UA, and CS, respectively. For
the CAIDA-2019 dataset, the average throughput of JS is 24.81 Mps, which is 2.83, 2.04, 2.14, 2.01,
and 1.86 times as large as the baselines. We can find that the throughput of HK is the lowest, though
we have added a Hash table to accelerate its lookup process. This is because HK still needs to access
discontiguous memory multiple times, limiting its throughput. Since JS, WS, HG, UA, and CS do not
need to perform extra memory accesses to find the storage position of a candidate top-k flow, they have
higher throughputs. JS is much faster than them since it leverages the advantages of contiguous memory
in the “multiple cells in one bucket” strategy and reduces memory accesses by reducing the bit length of
each bucket through our two-stage design. We can also find that the throughput of HG is close to WS,
though the bucket length in HG is nearly half of that in WS. It is because the exponential decay strategy
employed by HG is expensive on computation and consumes more time than WS’s strategy.

Throughput vs. k. As shown in Figures 6(d) and 7(d), JS always outperforms the other algorithms
when k varies from 1000 to 5000. Specifically, when using the CAIDA-2016 dataset, the average through-
put of JS is 27.51 Mps, which is 3.12, 2.02, 1.96, 2.06, and 1.86 times as large as that of HK, WS, HG, UA,
and CS, respectively. When using the CAIDA-2019 dataset, the average throughput of JS is 24.42 Mps,
which is 2.99, 2.02, 1.98, 2.06, and 1.86 times as large as the baselines. The parameters in JS, WS, HG,
UA, and CS do not change when varying k. Thus, their throughputs are unchanged. For HK, increasing
k will increase the memory of the min-heap and Hash table, and reduce the buckets in its bucket arrays,
slightly decreasing its throughput since the exponential decay operations are performed more frequently.

7 Conclusion

In this paper, we propose a new algorithm for finding top-k elephant flows, called Jigsaw-Sketch, which
can simultaneously achieve high accuracy and high packet processing speed. Jigsaw-Sketch is based on a
novel two-stage design and a new jigsaw storage scheme, which can significantly reduce memory accesses
while improving our algorithm’s memory efficiency. In addition, we adopt a lightweight and accurate
probabilistic replacement strategy to capture elephant flows, further improving the accuracy and speed
of our algorithm. We implement Jigsaw-Sketch on both CPU and FPGA platforms. The experimental
results show that Jigsaw-Sketch can always achieve the highest accuracy and speed compared to the
state-of-the-art.

Zhang B Y, et al. Sci China Inf Sci April 2024, Vol. 67, Iss. 4, 142101:17

Acknowledgements This work was supported in part by National Natural Science Foundation of China (Grant Nos. 62332013,

62072322, U20A20182, 62202322), Natural Science Foundation of Jiangsu Province (Grant No. BK20210706), and Jiangsu Planned

Projects for Postdoctoral Research Funds (Grant No. 2021K165B).

References

1 Sivaraman A, Subramanian S, Alizadeh M, et al. Programmable packet scheduling at line rate. In: Proceedings of ACM

SIGCOMM Conference, Florianopolis, 2016. 44–57

2 Huang H, Sun Y E, Chen S, et al. You can drop but you can’t hide: k-persistent spread estimation in high-speed networks.

In: Proceedings of IEEE Conference on Computer Communications (INFOCOM), Honolulu, 2018. 1889–1897

3 Rottenstreich O, Tapolcai J. Optimal rule caching and lossy compression for longest prefix matching. IEEE ACM Trans Netw,

2016, 25: 864–878

4 Yu M, Jose L, Miao R. Software defined traffic measurement with OpenSketch. In: Proceedings of USENIX Symposium on

Networked Systems Design and Implementation (NSDI), Lombard, 2013. 29–42

5 Sun Y E, Huang H, Ma C, et al. Online spread estimation with non-duplicate sampling. In: Proceedings of IEEE Conference

on Computer Communications (INFOCOM), Toronto, 2020. 2440–2448

6 Zhou Y, Zhou Y, Chen S, et al. Highly compact virtual active counters for per-flow traffic measurement. In: Proceedings of

IEEE Conference on Computer Communications (INFOCOM), Honolulu, 2018. 1–9

7 Zhao Y, Yang K, Liu Z, et al. LightGuardian: a full-visibility, lightweight, in-band telemetry system using sketchlets.

In: Proceedings of USENIX Symposium on Networked Systems Design and Implementation (NSDI), 2021. 991–1010

8 Du Y, Huang H, Sun Y E, et al. Self-adaptive sampling for network traffic measurement. In: Proceedings of IEEE Conference

on Computer Communications (INFOCOM), Vancouver, 2021. 1–10

9 Yang T, Zhang H, Li J, et al. HeavyKeeper: an accurate algorithm for finding top-k elephant flows. IEEE ACM Trans Netw,

2019, 27: 1845–1858

10 Ilyas I F, Beskales G, Soliman M A. A survey of top-k query processing techniques in relational database systems. ACM

Comput Surv, 2008, 40: 1–58

11 Soliman M A, Ilyas I F, Chang K C C. Probabilistic top-k and ranking-aggregate queries. ACM Trans Database Syst, 2008,

33: 1–54

12 Cheung Y L, Fu A W C. Mining frequent itemsets without support threshold: with and without item constraints. IEEE Trans

Knowl Data Eng, 2004, 16: 1052–1069

13 Alsaudi A, Altowim Y, Mehrotra S, et al. TQEL: framework for query-driven linking of top-k entities in social media blogs.

Proc VLDB Endow, 2021, 14: 2642–2654

14 Lakhina A, Crovella M, Diot C. Characterization of network-wide anomalies in traffic flows. In: Proceedings of the 4th ACM

SIGCOMM Conference on Internet measurement (IMC), Taormina Sicily, 2004. 201–206

15 Zhang Y, Fang B X, Zhang Y Z. Identifying heavy hitters in high-speed network monitoring. Sci China Inf Sci, 2010, 53:

659–676

16 Cormode G, Muthukrishnan S. An improved data stream summary: the count-min sketch and its applications. J Algorithms,

2005, 55: 58–75

17 Lu Y, Montanari A, Prabhakar B, et al. Counter braids: a novel counter architecture for per-flow measurement. SIGMETRICS

Perform Eval Rev, 2008, 36: 121–132

18 Chen M, Chen S, Cai Z. Counter tree: a scalable counter architecture for per-flow traffic measurement. IEEE ACM Trans

Netw, 2016, 25: 1249–1262

19 Li H, Chen Q, Zhang Y, et al. Stingy sketch: a sketch framework for accurate and fast frequency estimation. Proc VLDB

Endow, 2022, 15: 1426–1438

20 Yang T, Xu J, Liu X, et al. A generic technique for sketches to adapt to different counting ranges. In: Proceedings of IEEE

Conference on Computer Communications (INFOCOM), Paris, 2019. 2017–2025

21 Gong J, Yang T, Zhang H, et al. HeavyKeeper: an accurate algorithm for finding top-k elephant flows. In: Proceedings of

USENIX Annual Technical Conference (ATC), Boston, 2018. 909–921

22 Yang T, Gong J, Zhang H, et al. HeavyGuardian: separate and guard hot items in data streams. In: Proceedings of the 24th

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, London, 2018. 2584–2593

23 Yang T, Jiang J, Liu P, et al. Elastic sketch: adaptive and fast network-wide measurements. In: Proceedings of the ACM

SIGCOMM Conference, Budapest, 2018. 561–575

24 Li J, Li Z, Xu Y, et al. Wavingsketch: an unbiased and generic sketch for finding top-k items in data streams. In: Proceedings

of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2020. 1574–1584

25 Metwally A, Agrawal D, Abbadi A E. Efficient computation of frequent and top-k elements in data streams. In: Proceedings

of International Conference on Database Theory, Edinburgh, 2005. 398–412

26 Ben-Basat R, Einziger G, Friedman R, et al. Heavy hitters in streams and sliding windows. In: Proceedings of IEEE

Conference on Computer Communications (INFOCOM), San Francisco, 2016. 1–9

27 Ting D. Data sketches for disaggregated subset sum and frequent item estimation. In: Proceedings of International Conference

on Management of Data (SIGMOD), Houston, 2018. 1129–1140

https://doi.org/10.1109/TNET.2016.2611482
https://doi.org/10.1109/TNET.2019.2933868
https://doi.org/10.1145/1391729.1391730
https://doi.org/10.1145/1386118.1386119
https://doi.org/10.1109/TKDE.2004.44
https://doi.org/10.14778/3476249.3476309
https://doi.org/10.1007/s11432-010-0053-5
https://doi.org/10.1016/j.jalgor.2003.12.001
https://doi.org/10.1145/1384529.1375472
https://doi.org/10.1109/TNET.2016.2621159
https://doi.org/10.14778/3523210.3523220

Zhang B Y, et al. Sci China Inf Sci April 2024, Vol. 67, Iss. 4, 142101:18

28 Homem N, Carvalho J P. Finding top-k elements in data streams. Inf Sci, 2010, 180: 4958–4974

29 Charikar M, Chen K, Farach-Colton M. Finding frequent items in data streams. In: Proceedings of International Colloquium

on Automata, Languages, and Programming, Malaga, 2002. 693–703

30 Einziger G, Friedman R. Counting with tinytable: every bit counts! In: Proceedings of International Conference on Distributed

Computing and Networking (ICDCN), Singapore, 2016. 1–10

31 Yu X, Xu H, Yao D, et al. CountMax: a lightweight and cooperative sketch measurement for software-defined networks. IEEE

ACM Trans Netw, 2018, 26: 2774–2786

32 Tang L, Huang Q, Lee P P C. MV-Sketch: a fast and compact invertible sketch for heavy flow detection in network data

streams. In: Proceedings of IEEE Conference on Computer Communications (INFOCOM), Paris, 2019. 2026–2034

33 Zhang Y, Liu Z, Wang R, et al. CocoSketch: high-performance sketch-based measurement over arbitrary partial key query.

In: Proceedings of the ACM SIGCOMM Conference, 2021. 207–222

34 Ye J, Li L, Zhang W, et al. UA-Sketch: an accurate approach to detect heavy flow based on uninterrupted arrival.

In: Proceedings of the 51st International Conference on Parallel Processing, Bordeaux, 2022. 1–11

35 Huang J, Zhang W, Li Y, et al. ChainSketch: an efficient and accurate sketch for heavy flow detection. IEEE ACM Trans

Netw, 2022, 31: 738–753

https://doi.org/10.1016/j.ins.2010.08.024
https://doi.org/10.1109/TNET.2018.2877700
https://doi.org/10.1109/TNET.2022.3199506

	Introduction
	Related work
	Per-flow size estimation
	Finding top-k elephant flows
	Min-heap storage scheme
	Stream-Summary storage scheme
	Bucket storage scheme

	Preliminary
	Problem statement
	Our goals

	Algorithm design
	Approach overview
	Two-stage data structure of Jigsaw-Sketch
	Techniques
	Jigsaw storage scheme
	Probabilistic replacement strategy

	Operations for finding top-k elephant flows
	Insertion
	Top-k query

	Mathematical analysis
	Theoretical properties of the probabilistic replacement strategy
	Estimation error bound analysis
	Upper estimation error bound analysis
	Lower estimation error bound analysis

	Experimental results
	Experimental setup
	Evaluation metrics
	Experiments on the disassembling method of the jigsaw storage scheme
	Experiments on parameter settings
	Experiments on precision
	Experiments on ARE and AAE
	Experiments on throughput

	Conclusion

