CrossMark
&click for updates

SCIENCE CHINA
Information Sciences @

April 2024, Vol. 67, Tss. 4, 141101:1-141101:43
« REVIEW - https://doi.org/10.1007 /s11432-022-3803-9

When debugging encounters artificial intelligence:
state of the art and open challenges

Yi SONG!, Xiaoyuan XIE' & Baowen XU?"

LSchool of Computer Science, Wuhan University, Wuhan 430072, China;
2State Key Laboratory of Novel Software Technology, Nanjing University, Nanjing 210023, China

Received 12 July 2022/Revised 21 September 2022/Accepted 15 March 2023 /Published online 21 February 2024

Abstract Both software debugging and artificial intelligence techniques are hot topics in the current field
of software engineering. Debugging techniques, which comprise fault localization and program repair, are an
important part of the software development lifecycle for ensuring the quality of software systems. As the
scale and complexity of software systems grow, developers intend to improve the effectiveness and efficiency
of software debugging via artificial intelligence (artificial intelligence for software debugging, AI4SD). On
the other hand, many artificial intelligence models are being integrated into safety-critical areas such as
autonomous driving, image recognition, and audio processing, where software debugging is highly necessary
and urgent (software debugging for artificial intelligence, SD4AT). An Al-enhanced debugging technique could
assist in debugging Al systems more effectively, and a more robust and reliable AI approach could further
guarantee and support debugging techniques. Therefore, it is important to take AI4SD and SD4AI into
consideration comprehensively. In this paper, we want to show readers the path, the trend, and the potential
that these two directions interact with each other. We select and review a total of 165 papers in AI4SD and
SD4AI for answering three research questions, and further analyze opportunities and challenges as well as
suggest future directions of this cross-cutting area.

Keywords software debugging, fault localization, program repair, artificial intelligence, machine learning

1 Introduction

Faults (also known as bugs, errors, defects, and flaws) are growing increasingly common as the software
industry expands, and the losses they cause have drawn a lot of attention from software practitioners.
The global cost of localizing and removing faults from software systems has risen to $312 billion annually
in 2013 [1]. Nevertheless, according to recent research, there can be far more software faults in the world
than we will likely ever know about [2]. The software has eaten the world, according to Silicon Valley’s
entrepreneur Marc Andreessen and researcher Monperrus, but each bite comes with faults [3], which
further exacerbates people’s anxieties about software quality.

To assure and improve software quality, developers typically employ testing and debugging techniques
iteratively throughout the software lifecycle. During software testing, a failure is detected when the actual
output differs from the expected result, indicating that the current program has at least one fault [4-7].
The dynamic information about failure(s) collected during testing will be delivered to the debugging
process [8], where the potential fault(s) will be localized (fault localization, FL) and fixed (program
repair, PR) successively in order to restore the normal function of the program under test. Traditional
FL techniques such as setting breakpoints, printing statements, and monitoring variables require a long
time yet are still error-prone, whereas traditional PR techniques like manual code inspection rely on
the developer’s development experience and domain knowledge heavily [9]. To tackle these challenges, a
significant number of studies have tried to utilize efficient artificial intelligence (AI) models to improve
the effectiveness of FL and PR techniques [10-12]. The mentioned effort, which aims to reduce the labor
cost and time cost of the debugging process, has yielded promising results in recent years.

* Corresponding author (email: xxie@whu.edu.cn, bwxu@nju.edu.cn)
tSong Y and Xie X Y have the same contribution to this work, and are co-first authors.

(© Science China Press 2024 info.scichina.com link.springer.com

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-022-3803-9&domain=pdf&date_stamp=2024-2-21
https://doi.org/10.1007/s11432-022-3803-9
info.scichina.com
link.springer.com

Song Y, et al. Sci China Inf Sci April 2024, Vol. 67, Iss. 4, 141101:2

Although AI techniques are becoming increasingly significant in supporting software debugging activ-
ities, they are also a sort of software that can contain faults. With the accumulation of massive volume
of data and improvements in hardware computing power, Al techniques have been widely implemented
in daily life and industrial development including image processing, audio recognition, and even safety-
critical fields such as autonomous driving and aerospace. Once Al systems fail, the consequences are
typically disastrous since Al applications often exhibit erroneous or unexpected behaviors which can lead
to dangerous situations [13]. Evidently, debugging AI systems is critical and urgent, thus studies on this
topic have sparked the interest of both academia and industry, and a growing number of researchers are
considering how to assure and improve the quality of Al systems.

When artificial intelligence and software debugging collide, two distinct research directions emerge:
artificial intelligence for software debugging (AI4SD) and software debugging for artificial intelligence
(SD4AT). The former involves incorporating AT techniques into the traditional software debugging process;
i.e., Al is used as an auxiliary tool for SD. The latter is to treat AI models as debugging objects so as to
localize and repair potential faults that reside in them. In our opinion, comprehensively taking AI4SD
and SD4AI into account is non-trivial and the reason partly lies in two points.

e Techniques in the fields of AI4SD and SD4AI could be further improved by each other. An Al-
enhanced debugging technique could assist in debugging Al systems more effectively, and a more robust
and reliable Al approach could further guarantee and support traditional debugging techniques. For
example, a community workshop themed on the intersection of Al and SE (software engineering) was
held at ASE’19 (the 34th ITEEE/ACM International Conference on Automated Software Engineering), and
the participants jointly pointed out that debugging Al-based systems is essential for their interpretability,
and an Al-assisted debugging tool to traditional fault localization or repair tasks will be also beneficial
from high interpretability [14].

e Despite the encouraging amount of prior literature reviews on a similar topic, they mainly focus on
the intersection of Al techniques and software fault prediction [15-17], software testing [18-24], or other
tasks in software engineering [25-30]. Their research objects mainly involve Al techniques’ application
in other software engineering activities, or software engineering practices in the lifecycle of Al systems,
without being absorbed in the intersection of artificial intelligence techniques and software debugging
(i.e., fault localization and program repair). Besides, although there are some studies emerging recently
that involve both SD and Al, they tended to be domain-specific or just summarized some opportunities
and challenges based on materials from open-source platforms (e.g., StackOverflow and GitHub) [31-35].
A comprehensive and general literature review on the intersection of Al and SD is still a gap.

In this paper, we first collect a total of 165 primary studies in the fields of AT4SD (131 papers) and
SD4AI (34 papers), then analyze opportunities, challenges, and trends as well as suggest future directions
of the intersection of AI and SD, to provide a big picture of this hybrid domain").

The rest of this paper is organized as follows. We provide the research background, as well as outline
the general workflows of AI4SD and SD4AI in Section 2. We propose our research questions, report on
the paper selection process, and analyze the distribution of research popularity in Section 3. Collected
papers in the fields of AT4SD and SD4AI are classified and summarized in Sections 4 and 5, respectively.
The widely-used experimental configuration is listed in Section 6. Finally, we identify potential future
research directions in the intersection of Al and SD in Section 7 and conclude this work in Section 8.

2 Background

The research background, mainstream techniques, and challenges of AI4SD and SD4AT are briefly dis-
cussed in this section. The abbreviations used in this paper with high frequency are shown in Table 1.

2.1 Artificial intelligence for software debugging

When a software system fails, a developer has to troubleshoot the root cause(s) of the failure(s) before
trying to fix it (them). As for fault localization, developers typically establish linkages between textual
documents and root causes depending on the given bug report [36], which records error descriptions,

1) Because the term “artificial intelligence” is too broad to be dived deeply, we only focus on machine learning, deep learning,
and some other popular AI techniques (such as evolutionary algorithms and constraint solving). And the scope of debugging is
limited to fault localization and program repair in this paper.

Song Y, et al. Sci China Inf Sci April 2024, Vol. 67, Iss. 4, 141101:3

Table 1 Frequently used abbreviations in this paper

Abbreviation Meaning Abbreviation Meaning
DNN Deep neural network CNN Convolutional neural network
MLP Multi-layer perceptron RNN Recurrent neural network
LSTM Long short-term memory SVM Support vector machine
RF Random forest DT Decision tree
EA Evolutionary algorithm GA Genetic algorithm
GP Genetic programming LtR Learn to rank
BPNN Back propagation neural network SMT Satisfiability modulo theory

stack traces, and other failure-related information (information retrieval-based FL, IRFL). Alternatively,
dynamic information acquired during testing can also be used to sort all program entities? according
to their possibility of being faulty (spectrum-based FL, SBFL). As for program repair, an intuitive yet
typical method is to manually fix the suspicious code based on the fault context, domain knowledge, or
requirement documents, and then re-run the fault-reveal test case to verify if the anomalous behaviors
have been eliminated. To achieve automated program repair (APR), developers tend to regard patch
generation as a search task, in which an automatic framework searches for candidate patches in a given
area followed by evaluating each patch’s effectiveness against a set of test cases [37,38], i.e., determining
whether a patch passes or fails [39].

The explosion of data and the surge in hardware computing power liberate a broad class of Al techniques
that were born in the last century, which enables them to dramatically enhance the performance of many
state-of-the-art techniques in speech recognition, object detection, image processing, and other fields [40].
One of the most significant advantages of Al is that it can mine potential correlations and patterns in
data without the need for human intervention, which makes it ideal for many software engineering jobs
including FL and APR. As early as 1981, Barr and Feigenbaum [41] discussed the idea of combining Al
and software engineering. Furthermore, Durelli et al. [18] pointed out that AI has successfully reduced
effort in numerous software engineering activities, and Feldt et al. [42] also believed that there is “ample
opportunity” to apply AI models to promote software engineering tasks. Many studies published on
leading venues have demonstrated Al techniques’ promise in software engineering tasks [43-45].

2.1.1 Artificial intelligence for fault localization (AIJFL)

Fault localization is widely acknowledged as one of the most important, but error-prone and resource-
consuming tasks in software debugging [46-55]. Many advanced FL approaches have been developed
to minimize costs and maximize effectiveness [56], such as slice-based [57-59], spectrum-based [60-64],
statistics-based [65], data mining-based [66], and information retrieval-based techniques [67-69]. Al-
though these automated FL techniques can produce promising results with less overhead than manual
checking such as setting breakpoints and inserting print statements, they do have many limitations that
must be taken into account. For example, slice-based FL. may produce dices that contain a large num-
ber of irrelevant statements (for static slicing) or fail to capture execution omission errors (for dynamic
slicing) [56]. Many entities become indistinguishable due to the same suspiciousness in SBFL because
it only uses the coverage information without any other auxiliary complement [70]. Some traditional
statistics-based FL techniques require a breadth-first search on the program dependence graph, which
adds a considerable amount of time to the process. Despite the fact that data mining-based FL has
abundant historical data to endorse it, it is these huge volumes of valuable resources that keep it from
being extensively adopted in practice. In the context of IRFL, keywords that are present in faulty ele-
ments (file, function, etc.) must also be included in the bug report, otherwise, it will be difficult to get a
reasonable sorting result.

In view of the benefits of AI techniques and the needs of FL tasks, Zhang et al. [71] pointed out
that, deep learning may open a new perspective for fault localization by using its learning ability of data
to construct a localization model. There has been numerous research concerning Al for FL in recent
years. For example, coverage information and test case results in classic SBFL are utilized as training
data for AT algorithms including BPNN, DNN, CNN, RNN, and MLP, which calculate the suspiciousness
of all executable statements using artificially built virtual test cases (each test case covers only one
statement) [72-74]. Because the effectiveness of FL at the statement granularity is often low, and the

2) Statement, branch, basic block, function, and file, etc.

Song Y, et al. Sci China Inf Sci April 2024, Vol. 67, Iss. 4, 141101:4

7 J:L% J:Lk [Word embedding } { MLP J { SVM

__|Executio Case

coveragd results
{ Encoder } { Decoder }

& & ‘ AST ‘ Data/ COHUO] [Random forest }

| Bug Faulty flow diagram
reports elements| [L . .]
earn to ran
2 i Methods

e

Genetic programming

& & ‘ Intermediate representation ‘

Fixed Targeted|
bugs locationg

Autoencoder

Static / Dynamic features ‘

Extracted features

Input Feature extraction Training

Training phase

L
2
<
=
a,
-
|
8 Unseen
g
§ bugs
a,
L
(=)

Trained AI model

Y v v

Fault localization results

Figure 1 (Color online) General AI4FL workflow.

impact of fault context and developers’ subjective experience is generally overlooked, researchers began
to focus on file and method granularities. Specifically, they try to use Al techniques like DNN, LSTM,
CNN, and LtR to bridge the lexical gap between search queries and retrieved files or methods, so as
to establish linkages between semi-structured bug reports and source code with syntactic and semantic
features [75-77].

To make use of the data-driven property of Al techniques, researchers and developers typically gather
a large amount of unstructured or less structured data from historical software repositories, and then
implement a specific technique to extract structured information, i.e., intermediate representation, based
on predefined or automatically found features, which is finally fed into a constructed AI model for training
its capability to localize faults. For example, execution coverage of test cases and their results can be used
as training data and labels, respectively, to train a DL model like CNN or DNN, and then manufactured
virtual test cases that each covers one statement can be fed into the trained model to evaluate the risk
of program statements being faulty [71,73]. The general AI4FL workflow is shown in Figure 1.

2.1.2 Artificial intelligence for automated program repair (AI4APR)

Once a fault has been detected and localized, the next step is to fix it [78-81]. However, the manual
repair usually requires programming experience and domain knowledge, as well as takes a long time for
developers. Based on the suspicious location delivered by the FL phase, APR techniques generate a
series of candidate patches along with iteratively verifying whether these patches succeed in making the
actual output of the program consistent with the expected output without human intervention, until
one patch is found that can pass all test cases, or no new patches can be verified [82]. APR techniques
have drawn the attention of a rising number of developers from the industry since they can effectively
tackle the limitations of high labor costs and time costs seen in manual repair [83], as a result, they have
been smoothly implemented in practical development. For example, Facebook, an American multinational
technology company, integrates two APR tools, Sapfix [84] and Getafix [85], into its products for obtaining
fault patches automatically.

Nevertheless, this emerging technology is also faced with many challenges. According to Motwani et

Song Y, et al. Sci China Inf Sci April 2024, Vol. 67, Iss. 4, 141101:5

al. [86], APR techniques may produce some low-quality patches, and they are also difficult to generalize
to the intended specification. Smith et al. [87] claimed that the existing APR techniques suffer from
overfitting (i.e., generated patches only pass the test cases that determine if they are plausible, but
fail the additional independent tests). They further observed that only 68.7%, 72.1%, and 64.2% of
patches generated by three popular APR techniques (GenProg [88], TRPAutoRepair [89], and AE [90],
respectively) passed independent tests.

The effectiveness of APR depends heavily on the precision of the upstream FL phase, only when the
location of the fault is precisely pinpointed can APR techniques have the basis for effective fixing [91,92].
Unfortunately, the FL technique itself may be biased, thus the APR technique based on it faces the
risk of “bias plus bias”, as Liu et al. [93] argued, and FL is possibly one of the challenging steps in the
repair pipeline. Furthermore, although APR techniques have stronger repair capabilities for predefined
fault types (a family of faults with the same symptoms, root cause, or solution [94]), their capability to
repairing some undefined or other specific types of faults is often limited [95]. As Motwani et al. [96]’s
conclusion, APR techniques do not exhibit satisfactory results on faults requiring manual add loops and
new function calls, or change method signature to repair.

It makes sense to use Al to help alleviate the bottleneck that APR techniques suffer. For example, re-
searchers observed a vast amount of historical software repair data in issue, pull request, and commitment
in open-source communities such as GitHub (or counterparts on other platforms), where many potential
fixing patterns (also known as fixing templates) can be extracted. As a result, some strategies use Al
techniques such as CNN, RNN, and encoder-decoder to learn the aforementioned templates from prior
bug fixes, and then apply them to fix unseen bugs [97,98]. In addition, AT techniques such as Sequence-to-
Sequence model and ensemble learning have also been used in research to mine the rich semantic features
contained in the fault context [99,100], which can be used to capture long-range dependencies, thus assist
in generating higher-quality patches.

In general, Al-based APR techniques represent buggy code, the context of buggy code, and fixed code as
intermediate forms guided by specified rules; then input these structured code fragments to the training
phase to obtain an AI model that can automatically generate patches for unseen faults. The general
AT4APR workflow is illustrated in Figure 2. s1—s, is a ranking list of program statements delivered by
the FL phase, where all executable statements are sorted by their possibility of being faulty. An APR
technique will attempt to fix these statements from the riskiest statement to the safest one (producing m
candidate patches for each statement) until the program passes all test cases. The lower the statement’s
ranking, the less possible it is to contain a fault and to be modified by the APR technique. This intuition
is illustrated in Figure 2 by different levels of saturation of suspicious statements and candidate patches.

2.2 Software debugging for artificial intelligence

While AT techniques have been proven to be valuable in a variety of fields, they are also a sort of software
that can contain faults [101]. In particular, numerous AI models have been embedded as modules in a
wide range of software systems, including safety-critical applications [102,103]. If these AI models run
anomalously, not only will they be interrupted, but the entire system into which they are integrated will
be threatened. For example, autonomous driving systems, one of the hottest application fields of Al,
have frequently exposed flaws: a tesla driver was killed when his vehicle struck an overturned semi in
May, 2021, according to a recent piece of news [104]. As a result, when an AT model fails, it is necessary
to localize the root cause(s) and fix it (them) as quickly as possible to assure the quality of the AT model
and the related system.

However, in contrast to traditional software that has explicit code and well-defined control flows, an
AT model is generally recognized as a black box since the logic that drives its behaviors is inferred from
training data [105-107], as a result, developers are only aware of that it can work well in specific tasks,
without knowing why it works well. Specifically, a recent trend in the Al field is to use deep neural
networks, which further increases the difficulty of localizing and fixing faults that reside in Al systems
due to the explosive complexity of the model [108]. As Lourenco et al. [109] concluded, faults in an Al
model can reside in many sources including code, input data, and improper parameter settings, which
highlighted the difficulties in debugging Al systems.

The factors that influence AI techniques’ effectiveness mainly include training data (e.g., wrong for-
mats or dimensions, polluted data), model architecture (e.g., an improper number of layers/neurons and
problematic activation functions), and Al libraries (e.g., wrong API usage and incorrect configurations).

Song Y, et al. Sci China Inf Sct April 2024, Vol. 67, Iss. 4, 141101:6

Fault localization results

s, S, S, s, s S, coe ‘ s,
! | | | | | s
I I I I I I I
| | | | | | i
| | | | | | i
I I
Suspicious Suspicious
ves
statement 6 statement »

Bag-of-
LSTM abstracted-terms

Candidate

Candidate !

Patch 6-1 oo Patch n-1
Patch 6-2 Patchn2
Patch 6-m Patch n-m

Test suite (oracle)

v A 4 v v
l End

v v S

Figure 2 (Color online) General AI4APR workflow.

Fault localization/automated program repair

¢ ? Misprediction
Model architecture Al model
of layers
Autonomous ol S
vehicle LearningRate
Activation functions
- AR
..‘ Image
u recognition Al library
m TensorFlow CNN DNN
) - e
‘\ Audio PyTorch RNN (LSTM)

\‘ processing Caffe Keras e

Figure 3 (Color online) An overview of software debugging for AI models.

The majority of existing studies on debugging Al systems are also carried out for these three parts, as
shown in Figure 3.

2.2.1 Training data-oriented debugging

AT models are driven by data; a high-quality model cannot be produced with low-quality training data.
When an AI model gives mispredictions [110], it is reasonable to inspect the training data used in the

Song Y, et al. Sci China Inf Sci April 2024, Vol. 67, Iss. 4, 141101:7

model-building process. In general, a developer performs training data-oriented debugging as follows:
(1) establish a linkage between training data and mispredictions to determine which part of data con-
tributed the most to the present failure [111,112], (2) identify and clean up polluted training data (that
is, the sub-sets that cause the most misclassifications) [113], and (3) divide the training data multiple
times to iteratively repair the AT model [114,115]. It is worth emphasizing that training data-oriented
debugging can be used to not only localize and repair faults in Al models, but also increase the inter-
pretability of predictions [116], which will boost user confidence in Al models thus making developers
integrate them into their system without worries.

2.2.2 Model-oriented debugging

Although data is crucial in the development of an AI model, the architecture of the model and the
parameters it utilizes are both essential factors in determining an AI model’s overall performance. To
that end, many researchers have proposed new ideas or developed novel approaches to debug Al models.
For example, Eniser et al. [117] built hit spectrum for neurons in neural networks to identify and pinpoint
highly erroneous neurons, while Guidotti et al. [118] used transfer learning to repair CNN, exemplifying
the concept of Al debugs Al

2.2.3 Al libraries-oriented debugging

Open-source libraries on which AT models depend are an essential basis for their quality assurance, we find
that researchers tend to analyze and summarize common faults and symptoms that occur in mainstream
AT libraries, such as TensorFlow, PyTorch, Caffe, and Keras. The real-world Al applications on GitHub
and code snippets on StackOverflow [34,119-121] are also used to extract the most common types of
faults, root causes of faults, and impacts of faults [120]. These artificially summarized fault patterns are
abstractions of fault features in real-world Al models; thus they can provide developers with pertinent
guidance for localizing and fixing similar faults.

It is worth mentioning that we have not discovered a unified workflow for debugging AI models,
indicating that there is not yet a mature framework in this area.

3 Methodology

We present the research questions, introduce the paper selection process, and statistically analyze the
selected papers in this section.

3.1 Research questions

The definition of research questions is the core innovation of a secondary study, as they clearly convey
the authors’ perspective on the subject under investigation and the study’s goal [122]. Inspired by the
Goal-Question-Metric approach proposed by Basili et al. [123] and Durelli et al.’s previous work [18], we
characterize the purpose, the major research topics, and the scope of this paper as follows.

Analyze the Al techniques used in software debugging and the debugging activities aimed at AI models,
for the purposes of investigation, summarization, and refinement with respect to the most commonly-
used Al algorithms and their usage, the types and features of training data as for AI4LSD, the mainstream
techniques, the most frequently occurring fault types in AI models, and off-the-shelf libraries as for SD4AI,
as well as the popular datasets, programming languages, and metrics employed in experiments, along with
the opportunities, challenges, and potential future directions from the point of view of researchers in the
context of AIJSD and SD4AI fields.

Three research questions of this survey are presented below according to the preceding definitions.

RQ1: How can AI techniques improve the effectiveness of SD?

A significant number of empirical studies have demonstrated that incorporating AI into SD can con-
siderably improve the latter’s effectiveness. However, only a few research has mined in-depth details
behind such improvements. This research question focuses on how Al techniques can assist in software
debugging from two perspectives: Al techniques and training data.

e RQ1.1: How and which AI techniques are typically used in software debugging?

e RQ1.2: What types of data do researchers tend to use as the input of Al models in the context of
software debugging?

Song Y, et al. Sci China Inf Sci April 2024, Vol. 67, Iss. 4, 141101:8

RQ2: How can SD be used to assure the quality of AI systems?

To alleviate the difficulty of debugging Al systems caused by their black-box property, various re-
searchers have attempted to leverage traditional SD techniques to guarantee Al systems quality in recent
years. The goal of this research question is to extract common points in the field of SD4AI from two
perspectives: mainstream techniques and commonly occurring faults.

e RQ2.1: How software debugging techniques are used to localize or repair faults in Al systems?

e RQ2.2: What types of faults occur frequently in Al systems and Al libraries?

RQ3: What configuration do researchers prefer to use in AI4SD and SD4AI experiments?

The evaluation and assessment of novel approaches and techniques are intimately tied to well-designed
experiments in both AI4SD and SD4AI. What do researchers have in common when designing experi-
ments? We investigate this research question from two aspects: experimental datasets and metrics.

e RQ3.1: Which datasets (programming languages) are most commonly used?

e RQ3.2: Which metrics are most commonly used?

3.2 Paper selection

We first identify three Al-related terms and three SD-related terms, then combine these two categories of
terms by logical ORs to create nine search strings. After specifying the range the papers were published:
2016—March 2021, we deliver these nine search strings to two databases, Google Scholar and Scopus, to
collect related papers in the intersection of AI and SD.

The defined search terms are as follows:

[AI] OR [Deep learning] OR [Machine learning]

AND
[Software debugging] OR [Fault localization] OR [Program repair].

After obtaining 253 papers, we use backward snowballing to find 65 additional ones. Our initial pool
of 318 papers is filtered using the following inclusion criteria (IC) and exclusion criteria (EC):

[v'] IC1: Peer-reviewed paper.

[v'] IC2: Primary study.

[v'] IC3: The paper discusses how Al techniques empower classic debugging processes, or conducts
empirical studies or proposes novel approaches in the field of debugging Al software systems.

[0 EC1: The paper focuses on testing or defect prediction, rather than debugging techniques.

[0 EC2: The duplicate version of a selected paper (only the most comprehensive or recent version of
each study should be included).

[0 EC3: The length of the paper is less than 6 pages.

[0 EC4: Paper written in a language other than English.

A total of 165 papers are included in the scope of our research. Figure 4 illustrates the year distribution
range. The number of papers published in the AI4SD and SD4AT fields has increased by 44% annually in
the predefined time range, from a minimum of 16 in 2016 to a maximum of 66 in 2020 and the first quarter
of 2021. However, the number of studies on SD4AlI is significantly lower than that on AI4SD: 131 and
34 papers relevant to AI4SD and SD4AI were published between 2016 and 2021.3, respectively, with the
latter accounting for just 26% of the former, revealing that researchers prefer to employ the Al technique
as a tool for tackling difficulties in debugging, instead of debugging Al systems themselves. Nonetheless,
we can also observe that researchers are becoming more enthusiastic about SD4Al: the number of SD4AT
studies published in 2020 and the first quarter of 2021 exceeds those published between 2016 and 2019.

3.3 Paper analysis

We conduct non-technical analyses of all the 165 papers from three perspectives, i.e., publication venues,
the number of citations, and contributions by countries.

3.3.1 The main venues

Several well-known journals and conferences in software engineering are listed in Tables 2 and 3, respec-
tively, the selection criterion is how many times they appear in our paper pool. Three conclusions in
terms of researchers’ submission preferences in the intersection of AT and SD can be derived: (1) Empir-
ical Software Engineering (EMSE), IEEE Transactions on Software Engineering (TSE), and Journal of

Song Y, et al. Sci China Inf Sci April 2024, Vol. 67, Iss. 4, 141101:9

70
B AI4SD mSD4AI
60
50
40
30
47
20
0 33
10 20
16 15
0
2016 2017 2018 2019 2020-2021.3
Figure 4 (Color online) Number of publications per year.
Table 2 Main venues (Journal)
Acronym Name Number of publications
EMSE Empirical Software Engineering 12
TSE IEEE Transactions on Software Engineering 10
JSS Journal of Systems and Software 7
IST Information and Software Technology 6
TOSEM ACM Transactions on Software Engineering and Methodology 5
ACM PL Proceedings of the ACM on Programming Languages 3
JSEP Journal of Software: Evolution and Process 2
Table 3 Main venues (Conference)
Acronym Name Number of publications
ICSE International Conference on Software Engineering 16
FSE/ESEC ACM SIGSOFT Symposium on the Fo.unda.tlon of Software Engineering/ 10
European Software Engineering Conference
ASE International Conference on Automated Software Engineering 9
ISSTA International Symposium on Software Testing and Analysis 5
IJCAI International Joint Conference on Artificial Intelligence 5
QRS International Conference on Software Quality, Reliability and Security 5
SANER International Conference on Software Analysis, Evolution, and Reengineering 4
ICLR International Conference on Learning Representations 3

Systems and Software (JSS) are the most prevalent journals; (2) International Conference on Software
Engineering (ICSE), ACM SIGSOFT Symposium on the Foundation of Software Engineering/European
Software Engineering Conference (FSE/ESEC), and International Conference on Automated Software
Engineering (ASE) are the most prevalent conferences; (3) researchers prefer to publish their findings
through conferences compared with journals.

3.3.2 Most cited papers

The number of citations reflects the impact, visibility, and importance of a paper [124]. In order to better
understand the academic influence of the intersection of Al and SD as well as the quality of the papers
in our pool, we counted all the 165 papers’ citations from Google Scholar on June 2, 2022. The total
number of citations for all 165 papers is 8739, with an average of 52.96 per paper. More specifically, the
131 papers in AI4SD have earned a total of 5934 citations, with a median of 22, whereas the 34 papers
in SD4AI have been cited 2805 times in total, with a median of 21.

Table 4 shows the top-5 most cited papers in AI4SD: Refs. [125] and [126-129] investigated the ap-
plication of AI techniques in FL. and PR, respectively. Table 5 shows the top-5 most cited papers in

Song Y, et al. Sci China Inf Sci April 2024, Vol. 67, Iss. 4, 141101:10

Table 4 Top-5 most cited papers (AI4SD)

Year Title Venue Authors Citations

2016 Automatic patch generation by learning correct code POPL Long and Rinard [126] 533
Nopol: automatic repair of conditional statement bugs
in Java programs
2016 History driven program repair SANER Le et al. [128] 323
From word embeddings to document similarities for improved

2016 TSE Xuan et al. [127] 336

2016 . . . R . . ICSE Ye et al. [125] 304
information retrieval in software engineering
2017 Precise condition synthesis for program repair ICSE Xiong et al. [129] 248
Table 5 Top-5 most cited papers (SD4ATI)

Year Title Venue Authors Citations

2017 Understanding black-box predictions via influence functions ICML Koh and Liang [112] 1637
hat i ith i ling? And h fix it usi

2018 What is wrong with topic modeling 1.'1d ow to fix it using IST Agrawal et al. [131] 161

search-based software engineering

2018 An empirical study on TensorFlow program bugs ISSTA Zhang et al. [119] 144

2019 A comprehensive study on deep learning bug characteristics ESEC/FSE Islam et al. [120] 120
MODE: al k 1 dek i ia

2018 O automated neural network model debugging via ESEC/FSE Ma et al. [130] 101

state differential analysis and input selection

USA
%0] China
+ 70 H Singapore
o 4
g 60 Canada
22 5] Australia
g %] India N
g] 2
% % 0 i 9/ ! Republic of Korea §
£2 S8 Q/ g Luxembourg S
8% 204 | 2
S] Germany
£ 10] l/ 1 1
= i Sweden
0 T T T 1
2016 2017 2018 2019 2020-2021.3
Year

Figure 5 (Color online) Contribution by countries and years.

SD4AI: Refs. [119,120] were empirical studies on typically occurring faults in Al systems and libraries,
and Refs. [112,130,131] proposed specific techniques for debugging AT models.

3.3.3 Contribution by countries

To see which country’s researchers are most active in the intersection of Al and SD, we summarize the
countries where the authors of our selected papers are located, including Australia, Austria, Canada,
China, Denmark, France, Germany, India, Israel, Italy, Luxembourg, Nigeria, Republic of Korea, Singa-
pore, Sweden, Switzerland, The Netherlands, Turkey, UK, and USA (in alphabetical order). The top-10
countries according to our investigation are depicted in Figure 5.

It can be observed that the numbers of publications from USA and China are 73 and 66, respectively,
far exceeding that of Singapore (21 publications), which is ranked third. We further focus on the research
trends in USA and China. Since 2016 (the first year of the predefined time range), the numbers of
publications in the intersection of Al and SD as of 2016, 2017, 2018, 2019, and 2021.3 are 16, 34, 60, 99,
and 165, respectively, according to Figure 4. During the same period, the numbers of publications from
USA are 10, 17, 28, 44, and 73, respectively, with the domain shares®) of 62.5%, 50.0%, 46.7%, 44.4%,
and 44.2%, respectively. Similarly, the numbers of publications from China are 4, 10, 18, 32, and 66,
respectively, with the domain shares of 25.0%, 29.4%, 30.0%, 32.3%, and 40.0%, respectively. Although

3) We define the domain share of a country as the proportion of the publications from that country to all publications.

Song Y, et al. Sci China Inf Sci April 2024, Vol. 67, Iss. 4, 141101:11

=e=USA China
65.00% 62.50%
.,

60.00%

55.00%
50.00%

50.00% .
Nm%
. 44.40%

45.00% 44.20%

40.00%
40.00%

Domain share

35.00%

30.00% 32.30%
29.40% 30.00%

25.00%
25.00%

20.00%

15.00%
2016 2017 2018 2019 2020-2021.3

Year

Figure 6 (Color online) Domain shares of USA and China.

China’s domain share was lower in the previous period, it shows an upward trend and the gap with the
USA is narrowing, as illustrated in Figure 6.

4 How can AI techniques improve the effectiveness of SD? (RQ1)

To answer RQ1, we review 131 studies that investigate Al techniques applied in SD in this section.

4.1 How and which AI techniques are typically used in software debugging? (RQ1.1)

A variety of Al techniques applied in software debugging typically serve two purposes, AI4FL and
AT4APR. In general, Al techniques are employed by researchers to mainly tackle six sub-problems in
fault localization, i.e., feature extraction (ensemble), suspiciousness calculation, information retrieval, test
cases enhancement, multi-fault debugging, and others. For these purposes, CNN, EA, RNN (LSTM), etc.
are the most widely-used techniques. On the other hand, AI techniques are employed by researchers to
mainly tackle three sub-problems in automatic program repair, i.e., patch generation, patch ranking (fil-
tering), and code representation. For these purposes, RNN (LSTM), EA, Constraint solving, Clustering,
etc. are the most widely-used techniques.

4.1.1 How and which Al techniques are typically used in fault localization?

The AI techniques are typically used in fault localization in six categories roughly, that is, feature ex-
traction (ensemble) (25%), suspiciousness calculation (24%), information retrieval (23%), test cases en-
hancement (12%), multi-fault debugging (7%), and others (9%)*, as shown in Figure 7(a). Prominent
AT techniques in this direction include CNN (13%), EA (9%), RNN (LSTM) (9%), and so on, as shown
in Figure 7(b).

(1) Feature extraction (ensemble). To assist in their fault localization jobs, researchers prefer to
employ various Al techniques to extract or process failure-relevant features. For example, they intend
to automatically extract different forms of features from available sources, or integrate multiple features
into a comprehensive evaluation result, with the support of the mining and merging capability of Al

4) If a paper is involved in multiple categories at the same time, we either introduce it in each category independently or only
put it in one category.

Song Y, et al. Sci China Inf Sci April 2024, Vol. 67, Iss. 4, 141101:12

Others)

9%, Feature extraction

(ensemble) MLp LDA
25% BPNN 39 3%

3%
vsm~ '
4%

Multi-fault
debugging
7%

SVM
5% Others
36%

Word

embedding
7%

RF (DT)

8%

RNN (LSTM)

9% CNN
EA 13%
Suspiciousness 9%

calculation

(a) 24% (b)

Information
retrieval
23%

Figure 7 (Color online) (a) Main sub-problems solved by AI techniques and (b) prominent AI techniques in fault localization.

techniques. In this category, the commonly-used AI techniques mainly include RNN (LSTM), CNN, RF
(DT), EA, LtR, and so on.

¢ RNN (LSTM). RNN can learn dependencies over time with feedback connections, and the output
of the current state is dependent on prior ones. LSTM, a specific RNN architecture, is typically used to
handle the vanishing gradient problem. We observe that both of them have been widely used in fault
localization tasks. For example, Peng et al. [132] sought to utilize LSTM to extract static features from
source code (i.e., tokenize all program statements before feeding them into the model). Huo and Li [76]
proposed LS-CNN (LSTM based on CNN), which took advantage of the sequential nature of source code
to enhance the unified features for fault localization. Later, Huo et al. [133] stated that in IRFL, apart
from sequential information, structural and functional nature can also contain valuable semantics. As
such, they presented a novel framework in which LSTM models were utilized to capture such semantic
features. With the increases in features’ dimension and scale, Li et al. [134] attempted to automatically
identify the most effective existing/latent features for precise fault localization. They chose an RNN with
an LSTM model for their goal because different feature groups can be treated as inputs for different
time steps in RNN. Qi et al. [135] focused on automated fault localization and diagnosis in distributed
systems. In their study, the features map of system status can be fed into an RNN model, avoiding
human expertise and manual feature extraction.

e CNN. CNN can learn implicitly from training data in parallel compared with other models, and
it has been integrated into a variety of debugging tasks. To learn a unified feature representation from
both natural and programming languages, Huo et al. [136] proposed a novel CNN model that reflected
the program structure by convolution operation. TBCNN (tree-based CNN) is a type of tree-structured
neural network based on syntax trees, which is designed to improve tree coding in the original CNN model.
Liang et al. [137] argued that traditional tree-based FL techniques gave user-defined functions the same
importance as system-defined functions. Therefore, they constructed a novel customized abstract syntax
tree (AST) and integrated it into a previously proposed TBCNN-based method, to fuse various types of
features for fault localization.

¢ RF (DT). Random forests are a type of classifiers that contain multiple decision trees in ma-
chine learning. Focusing on factors that influence fault localization techniques’ effectiveness, Golagha et
al. [138] utilized RF to find the most efficient features for SBFL techniques, concluding that two static,
four dynamic, and two test metrics are influential. Gu et al. [139] trained a DT model based on 89
predefined features, for the prediction of whether a software crashing fault lies in given stack traces (i.e.,
integrating those features into a prediction result using DT given a newly-submitted crash). Experiments
demonstrated the promise of their approach in localizing such severe faults.

e EA. Both GA and GP are inspired by Darwin’s theory of natural selection. GA simulates the natural
evolutionary process to find the optimal solution, which has been widely used in fault localization, and GP
is a specialized form of GA. Wang and Lo [10] proposed to use version history, similar reports, structure,

Song Y, et al. Sci China Inf Sci April 2024, Vol. 67, Iss. 4, 141101:13

stack traces, and reporter information to achieve more accurate FL; they used GA as a composer to tune
the weights of the mentioned five features for computing final risky scores. Kim et al. [140] proposed
using GP to generate a rank model by combining multiple sets of FL input features (including dynamic
features like mutation-based and spectrum-based information, as well as static features like file, function,
and statement information). Aiming at recommending relevant locations that need to be changed for
supplementary bug fixes, Xia and Lo [141] first extracted change relationship graphs as features and
then employed GA to learn a weighting formula for combining each feature’s ranking list with regard to
candidate change locations.

e LtR. LtR is the application of machine learning in the construction of ranking models [142]. Pan
et al. [143] modified a LambdaRank model to synthesize static and dynamic features by adding a self-
attention mechanism and a transformer encoder, for ranking a list of possible faulty statements. Shi et
al. [77] conducted a short survey on IRFL techniques that utilized extra features other than the textual
similarity, followed by combining beneficial features using eight LtR algorithms, to further enhance the
effectiveness of FL techniques. Ye et al. [144] first defined and extracted 19 classes of features, and then
employed LtR techniques to automatically train the weights based on previously fixed bug reports, for
the building of the linkage between a newly-received bug report and defective files.

e Other AI techniques. SVM is a supervised binary classification model and has been used in
fault localization broadly. To rearrange developers’ schedules and efforts for more efficient debugging,
Yang et al. [145] first defined two types of high-impact faults, i.e., surprise faults and breakage faults,
and then managed to identify these risky faults using SVM based on the extracted textual features from
bug reports, under the guidance of imbalanced learning strategies. Considering that the effectiveness
of IRFL techniques could be harmed when predefined features are correlated with each other, Guo et
al. [146] first implemented a ranking-performance-based feature selection approach, and then used logistic
regression to identify the relationship between the informative features, for the boost of an off-the-shelf
technique [147]. Li et al. [148] treated each program statement’s behavior as a feature, and adopted
Fisher score, a feature selection technique, to measure its contribution to the test outcomes. Besides, if a
test case covers the faulty statement without delivering an unexpected output, the faulty statement will
likely be ranked in a lower position. Feyzi [149] proposed further analyzing program statements by an
information-theory-based feature selecting algorithm, to tackle the challenge posed by such coincidental
correctness. Amar and Rigby [150] utilized the K-nearest neighbor algorithm to extract the essential
feature of massive test logs. Their approach can find a large portion of faults with a small inspection space.
After conducting extensive experiments for answering an essential question, that is, which features of bug
reports should be matched against which features of source code files, Koyuncu et al. [151] presented
a novel ensemble approach for more accurate fault localization based on the hypothesis that various
IRFL tools have different performances for different types of features, in which prediction probabilities
of multiple classifiers are assigned by gradient boosting supervised learning. XGBoost is an effective
AT algorithm that can maintain important features during training, Yang et al. [152] integrated it into
SBFL and presented a novel XGB-FL approach for fault localization. Nath and Domingos [153] blamed
that most existing probabilistic debugging approaches employed simple statistical models and failed to
generalize across multiple programs. Therefore, they constructed tractable fault localization models based
on suspiciousness and bias term features using the relational sum-product network (RSPN), to infer the
bug location.

(2) Suspiciousness calculation. A typical way to fault localization is to calculate the suspiciousness
score (also known as the risk value) for program entities. In addition to traditional rule-based suspicious-
ness calculation strategies, more and more researchers begin to utilize Al techniques to complete such
tasks. In this category, the commonly-used Al techniques mainly include MLP, CNN, EA| LtR, RF (DT),
and so on.

e MILP. MLP is the most basic and original neural network, which connects multiple layers via full
connection (the network structure of MLP does not have any loop and the output of each node does
not affect the node itself [154]). Li et al. [134] combined their FL approach with the classic MLP
model and variants of the classic MLP model tailored for their proposed approach. They directly fed
failure-relevant data to MLP and used the produced information to calculate suspiciousness for program
elements, concluding that the enhanced MLP outperforms the traditional method for prediction in both
effectiveness and efficiency. Notice that MLP is often implemented with DNN, and one of the most
important advantages of DNN is that it can model complex non-linear relationships with multiple hidden
layers. Zheng et al. [73] presented a DNN-based approach to obtain each statement’s suspiciousness in

Song Y, et al. Sci China Inf Sci April 2024, Vol. 67, Iss. 4, 141101:14

fault localization tasks with a limited amount of sample data, emancipating the restricted capability to
extract complex functions of shallow architecture algorithms. Maru et al. [155] combined BPNN with
the traditional SBFL technique, proposing to train the BPNN model using count spectrum instead of hit
spectrum (i.e., statements that are covered multiple times should be given a larger weight than those that
are only covered once). Dutta et al. [156] attempted to gather the advantages of existing approaches and
hence proposed an ensemble of spectrum-based and neural network-based fault localization methods, in
which BPNN is employed as a sub-technique, for the suspiciousness estimation.

e CNN. Zhang et al. [71] used execution coverage and test results as CNN’s training data, so as
to combine CNN with SBFL for more effective fault localization. In their approach, the output of the
CNN model serves as suspiciousness for program statements. Additionally, Li et al. [157] considered fault
localization to be an image pattern recognition problem in crime scene investigation, and leveraged a CNN
model to exploit the full details of the code coverage matrix. Program statements will be classified into two
categories (i.e., faulty or non-faulty) according to the suspiciousness produced by the trained CNN model.
Considering that CNNs have been widely used in fault localization, the authors of [74,158] evaluated
various existing machine learning models by comparing the output suspiciousness. They discovered that
deep learning models, particularly CNN, outperformed the other models they investigated.

e EA. Mahapatra and Negi used GA to self-adaptively optimize the weights and structure of the radial
basis function (RBF) network in fault localization, which has higher precision compared with the baselines
with regard to suspiciousness calculation [159]. Sohn and Yoo attempted to overcome the limitation of
purely relying on coverage, a common shortcoming of many existing FL techniques, by extending SBFL
with code and change metrics as well as utilizing GP to learn the ranking models [160]. This approach
was extended by Choi et al. later to have multiple objectives using NSGA-II [161].

e LtR. One of the most important trends in AI4SD in recent years is to use statistical techniques to
combine different approaches. For example, as the very beginning work of this trend, Xuan and Monperrus
combined multiple SBFL risk evaluation formulas by employing RankBoost, an efficient LtR approach,
to re-calculate program entities’ suspiciousness thus relieving the challenge of no optimal formula for
all types of faults [162]. Based on program entities’ suspiciousness, Zou et al. [163] extended Xuan and
Monperrus’ work by trying to use LtR to combine various techniques from different families, rather than
a single family, to boost fault localization effectiveness. To automatically localize faulty machines when
failures are revealed in software services, Liu et al. [164] deployed an online tool at real-world applications,
where an LtR model is trained for ranking all of the potential root cause machines. Li and Zhang [46]
argued that mutation-based fault localization (MBFL) techniques will be ineffective if too many or too
few mutants can impact the outputs of failed tests, and used rankSVM with the linear kernel to analyze
various mutation information (compute different suspiciousness values) for better fault localization. Le
et al. [165] utilized rankSVM to construct a model for ranking risky program elements through learning
a statistical model based on the likely invariant differences and suspiciousness scores information.

e RF (DT). Kiiciik et al. [166] argued that measuring the correlation between execution profiles
and results in statistical fault localization might be problematic. Therefore, they used RF to perform
causal inference for alleviating this concern, in which each variable and predicate will be assigned to
a unique suspiciousness score. Experiments revealed the promise of their approach on all versions of
Defects4J (V2.0). Also inspired by causal inference, Podgurski and Kiigiik [167] performed simulated
value replacement to derive statements’ suspiciousness for helping localize faults. In their approach, an
RF model is adopted for the prediction of outcomes given a set of variables’ values, due to RF’s flexibility
and robustness.

e Other AI techniques. Lou et al. [168] stated that coverage information is often utilized in an
oversimplified manner (i.e., binary vectors), and such numerical representation prevented FL techniques
from being performed effectively. As such, they first represented coverage as a graph structure and then
employed a gated graph neural network (GNN) to rank suspicious code nodes, by mining the valuable
relationships between test cases and program entities. Maamar et al. [169] formally defined a fault lo-
calization process as a constraint programming problem; namely, they identified the most suspicious
statements by solving the arising constraints. To mitigate the negative impacts of potential software
faults, Yan et al. [170] integrated fault prediction and fault localization into a novel just-in-time frame-
work. They first identified a given change as buggy or clean by training a logistic regression classifier,
then calculated source code lines’ suspiciousness in buggy changes through an N-gram model. Zaman
et al. [171] developed an online tool to estimate the likelihood of a system call sequence (with its rel-
evant functions) being faulty in concurrency environments. During execution, they adopted principal

Song Y, et al. Sci China Inf Sci April 2024, Vol. 67, Iss. 4, 141101:15

component analysis and frequent pattern mining techniques to tackle the large scale of collected system
call traces. Hoang et al. [172] considered employing multi-modal information to cluster bug reports and
methods by applying network lasso regularization, they also developed an adaptive learning model based
on a Newton method to rank methods based on the likelihood of being buggy.

(3) Information retrieval. Bug reports and other sources written in natural languages can provide
valuable information for developers in the context of fault localization. But such a human-friendly form
hinders their use in automatic debugging. Researchers intend to employ AI techniques to tackle this
challenge. In this category, the commonly-used Al techniques mainly include DNN, CNN, EA, Word
embedding, and so on.

e DNN. Cheng et al. [173] calculated the similarity between bug reports and source files based on
information retrieval and word embedding techniques, and then used DNN to integrate them. Lam et
al. [75] used two DNNs for features reduction and relevancy estimation between a bug report and a source
file, which can assist in solving the lexical mismatch problem. Pradel and Sen [174] thought that the
natural language part in source code (e.g., variable and function names) contains useful information, thus
they proposed a name-based fault localization approach based on feed forward neural network (FFNN),
to determine whether a piece of code suffers from name-related bug patterns.

e CNN. Liu et al. [175] employed CNN to joint lexical and semantic information of source files to
learn how to localize faults from bug reports and source files. Xiao et al. [176] argued that semantic
information in bug reports and source code is useful but underutilized by many off-the-shelf approaches,
so they exploited two CNN models, one for bug reports and the other for source files, to detect features
from vectors with semantic information and then fed the hybrid features into an enhanced CNN model
to localize faulty files. Li et al. [177] stated that identifiers (i.e., terms written in natural languages) in
source code conveyed rich semantics; therefore they preprocessed and fed such data into CNN models to
automatically identify suspicious return statements.

e EA. Instead of adopting the common one level of abstraction strategy in IRFL, Zhang et al. [178] pro-
posed to represent code snippets and textual information at multiple abstraction levels by (1) combining
vector space model (VSM) and latent Dirichlet allocation (LDA) to comprehensively analyze word fre-
quency and semantics of text, and (2) employing GA to find the optimal configuration in each abstraction
level. Mills et al. [179] employed GA to explore the relationship between bug reports and queries in IRFL.
They blamed that some prior experiments in this field are improper and inflated, and recommended that
stakeholders reformulate queries in a more careful manner. Assuming that API documentation conveys
more useful information than the natural language part of source code in the scenario of IRFL, Almhana
et al. [180] employed multi-objective GA to more accurately build linkages between the given bug report
and relevant classes. Experiments indicated that their method can both maximize localization effective-
ness and minimize the labor of manual inspection. Moreover, aiming to more pertinently identify relevant
methods given a bug report, Almhana et al. [181] further proposed a heuristic framework to perform both
global and local searches, in which GA and a simulated annealing algorithm were employed to find risky
classes and methods, respectively.

e Word embedding. Word embedding refers to the re-representation of words for text analysis, which
encodes words into a vector space so that similar words are close to each other [182]. Due to its strong
mapping capability, word embedding has received broad attention of researchers in AI4SD. For example,
Ye et al. [125] trained word embeddings to bridge the lexical gap between natural and programming
languages, so that a more accurate linkage between buggy files and bug reports could be established for
IRFL based on the semantic similarity. To detect the faults in boundary conditions (for instance, “<” is
misused as “<”), Briem et al. [183] trained a Code2Vec-like model on enormous historical code snippets,
and their approach has been proven to be effective on real-world unseen code. Liu et al. [184] proposed
a novel three-module FL framework; specifically, they proposed to calculate the surface lexical similarity
between bug reports and source files using VSM in the first module, and calculate the semantic similarity
using Skip-gram and GloVe in the second module. The final score is determined based on these two
similarities to rank source files in the third module. Employing word embedding and TF-IDF, Zhang et
al. [185] used the semantic similarity, the temporal proximity, and the call dependency to achieve method
expansion (that is, augmenting a short-length representation of a method to tackle the representation
sparseness challenge), which was beneficial for enhancing method-level fault localization according to
their conclusion. Zhu et al. [186] argued that existing cross-project fault localization techniques typically
dedicate effort to transferring common characteristics, while little attention is paid to preserving the
private information of each project. Therefore, they developed an adversarial transfer learning framework

Song Y, et al. Sci China Inf Sci April 2024, Vol. 67, Iss. 4, 141101:16

to tackle this challenge, where the pre-trained GloVe was exploited for embedding, and a bidirectional
LSTM model was used to encode the sequence of bug reports.

e Other AI techniques. Zhong and Mei [187] chose LDA to classify bug reports by measuring the
similarity between a topic and a document; then a graph-based classifier integrating AdaBoost and DT
is used to determine whether a program node is buggy or clean. Moreover, Jonsson et al. [188] took
historical bug reports as input, and utilized the supervised linear Bayesian LDA model to determine
whether a fault localization prediction result is reliable. To help developers pinpoint which packages
are buggy and need to be fixed, Huang et al. [189] developed an ensemble learning-based framework
to deliver a ranking list of packages, which built linkages between a given bug report and a series of
packages that are possibly affected. Le et al. [190] were concerned that if faulty elements appear low in
the ranking list, developers could distrust the fault localization technique. As such, they first trained
four individual prediction models and then combined them via bagging-based ensemble classification,
for automatically predicting the effectiveness of IRFL tools. Considering that neighbors of suspicious
files (i.e., call relationship) may also be suspicious, Li et al. [191] proposed a multi-label distribution
learning approach to mine such dependencies for building more accurate linkages between a bug report
and program code. Safdari et al. [12] pointed out that previously fixed faults and their reports could
provide guidance for localizing current faults; thus they collected large numbers of existing bug reports for
the training of an LtR model, enabling this model to learn the dependency relationship between historical
faults and further localize unseen buggy files. Rahman and Roy [192] attempted to reformulate queries
in IRFL for more accurately pinpointing relevant files. Specifically, they first categorized a piece of bug
report into one of three classes, namely, stack traces, program elements, and natural language parts, and
then applied the PageRank algorithm to the identification of key information in it.

(4) Test cases enhancement. The quality of test suites determines the effectiveness and efficiency
of fault localization to some extent. Researchers attempt to enhance their test suites using existing Al
techniques, making them have a stronger capability of revealing or localizing faults. In this category, the
commonly-used AI techniques mainly include EA, RF (DT), and so on.

e EA. Liet al. [193] developed a GA-based framework comprising test generation and fault localization,
and experiments revealed that higher code coverage achieved by their approach can more effectively and
efficiently test and debug programs in software product lines. Chatterjee et al. [194] provided GA-based
test suite generation frameworks with a novel fitness function. The improved fault localization effective-
ness indicated that the newly-designed metric had a strong capability to measure the diagnosability of
test suites.

e RF (DT). Elmishali et al. [195] proposed an RF-based approach that generated additional tests
when diagnosis accuracy was not good enough. For a small but diverse test suite in debugging Simulink
models, Liu et al. [196] defined four test objectives to run a search-based test generation algorithm,
followed by training decision trees to determine the stop point of adding new test cases.

e Other AI techniques. To balance the numbers of failed test cases and passed test cases, Zhang
et al. [197] proposed an iterative oversampling approach to reduce the negative effect caused by an im-
balanced test suite. They integrated their strategy into four state-of-the-art deep learning-based FL
techniques, namely, CNN-FL [71], MLP-FL [198], BPNN-FL [199], and BiLSTM-FL [200], and demon-
strated that the effectiveness of these models was enhanced significantly. For more efficiently debugging
single-fault and multi-fault programs, Xia et al. [201] proposed a novel diversity maximization speedup
algorithm to select and order a smaller number of test cases. The results demonstrated that existing
fault localization techniques can achieve comparable accuracy with less effort with the assistance of their
approach. Liu et al. [202] first gave a theoretical analysis of how coincidental correct test cases harm the
effectiveness of SBFL techniques, and then proposed to identify and manipulate such test cases based on
the K-nearest neighbor algorithm, for higher accuracy of SBFL. To complement existing SBFL techniques
that only differentiate program entities, Zhang et al. [203] extended them by differentiating tests and pro-
posed a novel PageRank-based SBFL technique with a richer spectrum. Chen et al. [204] proposed a
twofold approach to isolate compiler faults. They first conduct structural mutation instead of traditional
local mutation for better altering the control-flow of test programs, and then used reinforcement learning
to prevent such a mutation process from generating test programs that, though passing, were useless for
isolation. To make use of unlabeled test cases in dynamic testing, Zhang et al. [205] proposed a novel sus-
piciousness probability-based classifier to predict their labels according to execution information, which
is expected to enhance off-the-shelf fault localization techniques. Gupta et al. [206] presented a twofold
approach to localize faults without running the program. Specifically, in the first phase, they trained

Song Y, et al. Sci China Inf Sci April 2024, Vol. 67, Iss. 4, 141101:17

a tree CNN for the prediction of the execution result (failed or passed) given a test case. And in the
second phase, they queried a neural prediction attribution technique [207] to identify which lines result
in a faulty program (i.e., the execution result predicted as failed in the first phase).

(5) Multi-fault debugging. The assumption that an abnormal program contains only one fault
is becoming unrealistic due to the increasing scale and complexity of software systems. Debugging in
multi-fault scenarios could suffer from many challenges, such as fault interference and faults number
estimation. Research on this topic shows a growing trend recently, and many of them are supported by
AT techniques. In this category, the commonly-used Al techniques mainly include CNN, EA; and so on.

e CNN. To identify different expressions between bug reports with the same root cause, He et al. [208]
used word embedding to translate each piece of bug report into a 2D matrix, then fed bug report pairs into
the proposed dual-channel CNN-based duplication detection model for obtaining the similarity among
all pairs. To classify faults based on their different root causes, Ni et al. [209] proposed a TBCNN model
that represented the fix trees of bug fixes and extracted the features of these fix trees. Their results
demonstrated the existence of a relation between the bug fix and the cause of bugs.

e EA. Yan et al. [210] presented a GA framework along with a newly-designed fitness function to
measure the likelihood of failed test cases being coupled in programs containing more than one fault.
Considerable improvements in terms of multi-fault localization effectiveness were observed in their ex-
periments. Zheng et al. [211] also adopted a GA framework to solve multi-fault localization problems.
Specifically, they encoded a binary vector as a candidate solution, in which each value indicates whether
a program entity should be assumed buggy, and evolved such vectors by their approach for identifying
multiple root causes simultaneously.

e Other AI techniques. Gao et al. [212] performed an empirical study on the performance of 22
different machine learning models for multiple fault localization; they discovered that RF has higher
accuracy and more significant localization efficiency than the others. Seeing that the co-existence of
multiple faults in a program could decrease the effectiveness of fault localization techniques, Gao and
Wong [48] divided failed test cases according to their root cause by using clustering, a commonly-used
unsupervised learning scheme. Such a failure indexing process has shown to be promising in tackling
multi-fault localization problems. In addition, many researchers have coupled RNN with multi-fault
debugging, for instance, an RNN-based method was proposed to predict the number of faults in a program
for software reliability assessment [213].

(6) Others. There are also many studies that introduce AT techniques to fault localization for tackling
other sub-problems.

In addition to advanced FL techniques, traditional logging statements can also assist developers in
pinpointing the location of root causes. However, according to Li et al. [214], properly helping developers
decide finer-grained logging locations for different situations remains an unsolved challenge. Therefore,
they first manually summarized six common categories of logging locations and then proposed an LSTM-
based logging location recommender. Experimental results showed that their approach achieved promising
results in both within-project and cross-project scenarios. Vasic et al. [215] presented multi-headed pointer
networks based on LSTM for program debugging, in which one head is responsible for fault localization.

Chappelly et al. [216] attempted to use a simple CNN model to identify a suitable abstraction for
static analysis, for the improvements of its scalability and precision. To alleviate high false-positive
ratio in code static analysis, Yang et al. [217] reported a novel tool based on an incremental linear SVM
mechanism that can learn to identify spurious false alarms from more serious matters. Lin et al. [218]
concluded five prevalent types of omission faults in Defects4J, and further trained a three-layer neural
network to recommend where to break when existing FL techniques were stuck at the dead end caused
by such special fault types. Yu et al. [219] presented the Bayesian network-based program dependence
graph and introduced it into fault localization. Their approach achieved promising results due to the
better reasoning ability than rivals.

Besides, Al techniques can also be applied to localize faults that resided in domain-specific programs
or concurrency environments. For example, inspired by qualitative reasoning, a subfield of AI, Hofer
et al. [220] managed to automatically extract abstract models and then used them to achieve semi-
automated fault localization in spreadsheets. Existing concurrency faults isolation approaches report
how failed executions are different from passed ones. However, Terra-Neves et al. [221] stated that such
reports were generally of an unnecessarily large size; thus, they used the maximum SMT to generate
minimal reports for better performances of the isolation process.

Song Y, et al. Sci China Inf Sci April 2024, Vol. 67, Iss. 4, 141101:18

Pointer neural
network

Code
representation
24%

Clustering
8%

Patch
generation
50% Constraint
solving
8%

Others
42%

Patch ranking
(filtering)

26%

RNN (LSTM)
22%

(a) (b)

Figure 8 (Color online) (a) Main sub-problems solved by AI techniques and (b) prominent AI techniques in program repair.

4.1.2 How and which Al techniques are typically used in automated program repair?

The AI techniques are typically used in automated program repair in three categories roughly, that
is, patch generation (50%), patch ranking (filtering) (26%), and code representation (24%)®, as shown
in Figure 8(a). Prominent AI techniques in this direction include RNN (LSTM) (22%), EA (10%),
Constraint solving (8%), Clustering (8%), and so on, as shown in Figure 8(b).

(1) Patch generation. Generating patches for faulty code snippets is an essential way to program
repair, which is typically tedious and time-consuming. Researchers intend to integrate Al techniques into
this task for making it fully automatic, and many studies have emerged recently. In this category, the
commonly-used Al techniques mainly include RNN (LSTM), EA, Constraint solving, Clustering, DNN,
and so on.

¢ RNN (LSTM). Many researchers consider program repair to be the process of translating a buggy
program to a fixed one, the purpose of which is in line with the property of sequence-to-sequence (Seq2Seq)
models. For example, gathering historical correct and incorrect code, Pang [11] proposed to generate can-
didate patches by building an LSTM-based encoder-decoder architecture. Similarly, Chen et al. [99] also
developed a data-driven APR system by training a Seq2Seq network with an encoder-decoder model
based on LSTM gates, to automatically fix faulty programs through generating one-line patches. Be-
sides, Tufano et al. [98] trained an RNN encoder-decoder model for their empirical study, which analyzed
the applicability of neural machine translation (NMT) to learn patches from available repositories. Point-
ing out that developers are likely to adopt similar measures to fix code when encountering build-time
compilation faults, Mesbah et al. [222] developed an LSTM-based NMT model to translate compile error
messages into corresponding delta changes.

e EA. To automatically fix vulnerable smart contracts, a type of programs typically running on top of
blockchain systems [223], Yu et al. [224] used genetic programming search to generate and validate patches
in split sub-spaces without breaking previously passed test cases. To better explore GenProg’s search
space, Yuan and Banzhaf [225] transformed APR into a multi-objective search problem for generating
multi-edit patches, and their approach has shown to be effective in multi-location repair. Based on this,
they later implemented a stronger repair model for Java code by using GP. Specifically, they first reduced
the search space by excluding some irrelevant ingredients, then represented patches in a lower granularity,
and finally designed a novel fitness function to guide the search process of GP [226]. Similarly, for better
patch evolution in GP-based program repair, Oliveira et al. [227] introduced new insights into two GP
components, i.e., repair representation as well as operators of crossover and mutation, and they offered
empirical evidence in terms of both effectiveness and efficiency of their strategy. Le et al. [128] utilized
GP to generate candidate patches followed by measuring the degree to which they are similar to existing

5) If a paper is involved in multiple categories at the same time, we either introduce it in each category independently or only
put it in one category.

Song Y, et al. Sci China Inf Sci April 2024, Vol. 67, Iss. 4, 141101:19

ones. The intuition behind this strategy is that correct patches generally have common characteristics.
For giving high-quality feedback when logical faults are exposed in functional programming assignments,
Lee et al. [228] first localized the potential root cause built upon dynamic executions, and then fixed it
by performing the enumerative search with a search space pruning strategy.

e Constraint solving. Constraint solving problems are referred to as a set of objects whose state
must satisfy a number of limitations 9. Xuan et al. [127] proposed a constraint solving-based tool, which
involves fix localization, runtime trace collection, and patch synthesis, for the automatic repair of faulty
“if-then-else” statements. Machado et al. [229] proposed to isolate a small set of elements responsible
for observed failures, as well as to reformulate a non-failing alternative by using SMT. Pan et al. [230]
focused on finding minimal modifications to fix regular expressions. Specifically, taking a program under
test (a faulty regular expression), positive instances (strings the tested regular expression should match),
and negative instances (strings the tested regular expression should reject) as inputs, their tool utilized
two SMT encodings to efficiently explore a pruned search space.

e Clustering. Clustering is the task of dividing data samples with samples in the same group being
more similar to each other than to those in other groups). For mining reusable and separate fix patterns,
Koyuncu et al. [231] utilized an iterative clustering strategy to mine atomic changes, that is, break patches
into atomic units. Experimental results have shown that the mined patterns could lead an APR system
to generate correct patches with a higher probability. Gulwani et al. [232] made use of the wisdom of the
crowd for more effective automated program repair. Specifically, they clustered together similar correct
programs to form classes, and then fixed incorrect ones by generating the smallest patches based on
their nearest classes. To overcome the challenges caused by false positives in static analysis tools, Liu
et al. [97] proposed to mine fix patterns on over 250 million violations. In particular, they first used
an AST differencing tool [233] to collect a huge number of violation fixing changes, then utilized an X-
means clustering algorithm to group similar changes. They applied the identified fix patterns to unfixed
violations, finding that the majority of the generated patches will be accepted.

e DNN. Inspired by the hypothesis that similar faults have similar repairs, Sakkas et al. [234] trained
two separate DNN-based classifiers, that is, a binary classifier to predict fault locations, and a multi-class
classifier to predict fix templates for given faults. White et al. [235] presented a novel DNN-based approach
to reason about repair ingredients with respect to code similarities, for prioritizing and transforming
statements in a codebase for patch generation.

e Other AT techniques. Yi et al. [236] first proposed a method to automatically fix high floating-
point faults in numerical libraries, and then employed the least squares method, a search optimization
strategy, to reduce its time overhead. Xiong et al. [129] developed a supervised learning-based program
repair tool, which applied the locality of variable uses to program repair and analyzed the documentation
of programs, thus automatically mined predicates from source code. Their approach provides only one
patch for one defect due to the goal of fully automatic defect repair, and has been proven to be significantly
better than the existing SOTA approaches. By offline mining the characteristics of a corpus of existing
patches, Jiang et al. [237] first implemented a novel APR tool that produces two separate search spaces
based on existing patches and source code, respectively, and then took the intersection of them for a more
precise search domain. Experiments showed that their tool successfully fixed bugs that have never been
fixed by other techniques. Jiang et al. [238] proposed an NMT-based APR technique comprising three
main components, namely, a human being-like programming style learner, a compilable patches finder,
and a smaller but stronger search space generator. Their technique can outperform many advanced
approaches on well-recognized benchmarks according to their report. Koyuncu et al. [239] developed
a four-component framework (including fault localization, fix pattern matching, patch generation, and
patch validation) to improve APR tools’ effectiveness jointly, in which an ensemble learning approach
proposed by them previously, D&C [151], was leveraged to produce a more pertinent fix location for better
patch generation. Zhu et al. [240] developed a novel provider /decider architecture based on TreeGen [241],
a tree-based Transformer, to produce program edits with ensuring the syntactic correctness according to
the given faulty statement and the context.

(2) Patch ranking (filtering). Not all patches generated by APR techniques are correct. To make
users have higher confidence with respect to the suggested repair operation, as well as to help achieve
the goal of fully automatic defect repair, many studies attempt to employ Al techniques to rank or filter

6) Wikipedia. Constraint satisfaction problem. 2022.
7) Wikipedia. Cluster analysis. 2022.

Song Y, et al. Sci China Inf Sci April 2024, Vol. 67, Iss. 4, 141101:20

output patches according to their possibility of being correct. In this category, the commonly-used Al
techniques mainly include Constraint solving, and so on.

e Constraint solving. For relieving the overfitting problem in APR, Shariffdeen et al. [242] imple-
mented a tool in which plausible but incorrect patches can be identified by solving the arising constraints
based on user-provided specifications. Lee et al. [243] encoded the repair for memory deallocation faults
in C programs as boolean satisfiability (SAT), and they used a partial MAX-SAT solver to determine the
optimal patch in many generated ones.

e Other AI techniques. To avoid waste caused by repetitive fixes for a specific bug category,
Bader et al. [85] proposed to learn from prior fixes for generating human-like patches. They presented a
novel hierarchical and agglomerative clustering algorithm, which organized fix patterns into a hierarchical
structure and was able to offer top-most fix(es) to developers. Li et al. [244] exploited a CNN-based binary
classifier model, in which each candidate patch is represented as a set of character vectors, to re-rank
them and push the correct patch onto the top of the ranking list. To tackle the search space explosion
problem, Wen et al. [245] devised a prioritization scheme to estimate candidate patches’ likelihood of being
correct, one of the key steps of which is to learn faults’ context information extracted from substantial
open source projects. Wang et al. [246] summarized eight types of static code features that can be used to
identify correct patches from overfitting ones, followed by integrating them through six machine learning
schemes, including decision table [247], J48 [248], logistic regression [249], naiveBayes [248], random
forest [250], and SMO [251]. Existing automated program repair techniques are generally restricted
with weak test suites (i.e., an incomplete oracle), which often leads APR techniques to deliver plausible
but incorrect patches. For predicting whether generated patches are correct or not, Xiong et al. [252]
exploited the behavior similarity of test case executions by using the nearest-neighbor algorithm, and
experimental results have demonstrated the accuracy of their approach in terms of filtering out incorrect
patches. Moreover, an Eclipse plugin tool to filter out incorrect patches in an interactive way was also
implemented [253]. Long and Rinard [126] tried to learn correct code for generating patches automatically,
and they presented a novel parameterized discriminative probabilistic model to predict the probability of
each candidate patch being correct. To repair faults in object-oriented programs, Saha et al. [254] first
extracted four features from the program context and then leveraged a logistic regression model to rank
candidate patches. Here we also give some studies that alleviate overfitting problems that exist in Al-
based APR systems using manual approaches. For example, Tan et al. [255] provided seven anti-patterns
based on manual inspection for better search-based program repair. In their approach, a generated patch
fallen into anti-patterns will be rejected even if it has passed all given test cases. By integrating such rules
into two existing APR techniques, GenProg [88] and SPR [256], they demonstrated the efficiency and
efficacy of this search space-reduction strategy. Le et al. [257] generated patches using provided training
test cases and evaluated these candidate patches using held-out cases, to explore the overfitting problem
that exists in semantics-based APR techniques, including a supervised learning-based tool [237].

(3) Code representation. In APR tasks, code snippets typically need to be converted to an inter-
mediate form before they can be fed to AI models. This is partly because (i) the input rule specified
by different AT models could also be distinct, and (ii) some non-explicit (e.g., semantic and syntactic)
features of code snippets are valuable and need to be mined. To that end, many studies aim to utilize
AT techniques to better represent raw code snippets. In this category, the commonly-used Al techniques
mainly include RNN (LSTM), and so on.

¢ RNN (LSTM). Li et al. [244] treated program repair as a code transformation learning task, and
leveraged tree-based RNN to represent source code as corresponding ASTs. Yasunaga and Liang [258]
utilized an LSTM model to encode faulty source code, and then trained their repair model using the
represented code as well as error feedback, an erroneous line index, and the repaired line. While most
neural program embedding techniques are based on syntactic features, Wang et al. [259] focused on
developing a novel semantic program embedding approach built upon RNN to improve the performance
of existing APR systems. Gupta et al. [260] designed a deep reinforcement learning-based framework for
the repair of syntactic faults, in their approach, an LSTM network is employed to embed the program
text. Notice that the motivation of this study is that compiler error messages might inaccurately localize
the root cause and are sometimes difficult to understand [261]. For addressing a newly identified type of
faults, variable-misuse faults, Vasic et al. [215] quoted the enumerative strategy proposed by Allamanis et
al. [262] and concluded its drawbacks, then presented a multi-headed pointer networks model that jointly
and directly localized and repaired variable-misuse faults. In their approach, tokens are embedded and
processed using an LSTM model.

Song Y, et al. Sci China Inf Sci April 2024, Vol. 67, Iss. 4, 141101:21

e Other AI techniques. Gember-Jacobson et al. [263] cast the configuration repair in network control
planes as a constraint solving problem, and used SMT to handle it. In their work, the solution to the
constraint is dependent on a digraph-based representation, which is able to capture dependencies between
traffic classes. Arguing that existing APR techniques typically depend on hard-code patterns, Lutellier et
al. [100] presented a novel context-aware NMT to represent the buggy code and its surrounding context
separately. To detect and repair faults in Javascript programs, Dinella et al. [264] represented a buggy
program as a graph and then exploited GNN to map the graph into a representation in fixed dimensional
vector space, along with further presenting an end-to-end framework that consisted of fault localization,
fixing patterns prediction, and patch generation. Gupta et al. [265] proposed a novel neural program
generation technique that consisted of synthesis, execution, and debugging components. In contrast to
previous approaches that output the final program directly, their framework employed a CNN model and
an LSTM-based neural program debugger to fix the candidate program when it failed, where a CNN-
based execution trace embedding technique is used to better reveal the semantic errors. In addition, Tian
et al. [266] proposed employing four distributed representation learning techniques to learn deep features
of the correctness property of patches.

Finding 1.1

— Answer to RQ1.1 (How and which AT techniques are typically used in software debugging?)

» Various Al techniques have been extensively integrated into existing fault localization tasks, and
they are typically used in six sub-problems: (1) Feature extraction(ensemble). In this category, RNN
(LSTM), CNN, RF (DT), EA, LtR, etc. are commonly used. (2) Suspiciousness calculation. In this
category, MLP, CNN, EA, LtR, RF (DT), etc. are commonly used. (3) Information retrieval. In this
category, DNN, CNN, EA, Word embedding, etc. are commonly used. (4) Test cases enhancement.
In this category, EA, RF (DT), etc. are commonly used. (5) Multi-fault debugging. In this category,
CNN, EA, etc. are commonly used. (6) Others. We find that in the AI4FL domain, 25%, 24%, and
23% of the studies used Al techniques for feature extraction (ensemble), suspiciousness calculation, and
information retrieval, respectively, indicating that the application of Al techniques in these three sub-
problems is relatively balanced. Besides, 12%, 7%, and 9% of the studies used AI techniques for test
cases enhancement, multi-fault debugging, and others, respectively, implying that Al techniques may still
have great potential for solving these sub-problems.

» Various Al techniques have also been extensively integrated into existing automatic program repair
tasks, and they are typically used in three sub-problems: (1) Patch generation. In this category, RNN
(LSTM), EA, Constraint solving, Clustering, DNN, etc. are commonly used. (2) Patch ranking (filtering).
In this category, Constraint solving, etc. are commonly used. (3) Code representation. In this category,
RNN (LSTM), etc. are commonly used. We find that in the AT4APR domain, 50%, 26%, and 24% of
the studies used AI techniques for patch generation, patch ranking (filtering), and code representation,
respectively, suggesting that AI techniques can be more used to solve the latter two sub-problems in the
future.

» We find a trend that the diversity of Al techniques used in fault localization tasks is higher than
that in automated program repair tasks. The crux of FL is mainly to pinpoint the location of the
underlying fault(s) according to given clues in various forms, such a requirement of building linkages could
be satisfied by many AI models, for example, artificial neural networks can be used to link high-level
failure information to fine-grained code for their capability of mining implicit feature, and evolutionary
algorithms can adjust the FL features’ weight for their characteristic of heuristics. The learning approach
of AT4FL models mainly involves supervised learning (e.g., mining historical data and extracting fault-
related patterns) and unsupervised learning (e.g., employing clustering to determine the linkage between
failures and multiple root causes).

The main purpose of APR is to generate and validate patches for suspicious code snippets, which are
generally performed in a manual way since it might be hard to find a proper type of Al models that fit
the need. Nonetheless, RNN (LSTM) is preferred for its advantage of capturing previous information
and relieving the long-term dependency problem, which is suitable for extracting the fault’s context
information in APR. Besides, Al models are also used in other phases in APR, such as generated patches
re-ordering, code snippet representation, etc. The learning approach of AI4APR models mainly involves
supervised learning (e.g., extracting the fixed pattern based on faulty-fixed code instances for unseen
faults).

Besides, according to our investigation, models in both AI4FL and AI4APR are typically trained and
tested by two strategies, namely, using all tests as training samples and virtual tests as testing samples,

Song Y, et al. Sci China Inf Sci April 2024, Vol. 67, Iss. 4, 141101:22

or using part of tests as training samples and the remaining as testing samples.

» In our investigation, we observe that many researchers have released a tool for implementing their
AT4FL and AI4APR techniques. To provide stakeholders with a convenience index, we extract and list
these tools in Tables Al and A2 in Appendix A, where the link to the tool is also given.

4.2 What types of data do researchers tend to use as the input of AI models in the context
of software debugging? (RQ1.2)

One of the most significant properties of AI models is data-driven, therefore, apart from the architecture
and training strategy of Al techniques, the data fed into AT models deserve special attention. Based on
the concept of different types of input data which are suited for different debugging approaches and Al
models, we roughly categorize input data into three types: execution-based, code-based, and text-based
ones.

4.2.1 FExecution-based input

Execution-based data are mainly referred to as characteristics (e.g., trace, slice, invocation, and their
derivations) produced during dynamic testing, which involves both test cases and the program under
test. Kim et al. [140] presented a novel LtR model that used MBFL and SBFL features for effective
fault localization. In particular, these two groups of features extract dynamic characteristics of target
programs based on the execution information, such as mutation-based scores (calculated by mutants
from MBFL) and risk values (calculated by spectrum from SBFL). Likewise, Pan et al. [143] considered
a series of dynamic features for accurate fault localization, including raw spectrum information, eleven
risk evaluation formulas of SBFL, three MBFL techniques, stack trace, and dynamic program slicing
based on statements, and then fed them into a neural ranking model. Li et al. [157] argued that fault
localization is useful for developers at both method and statement levels; thus they constructed spectrum-
based and mutation-based matrices at these two granularities, respectively, followed by inputting these
vector/matrix representations to the CNN model. To predict FL techniques’ effectiveness, Golagha et
al. [138] collected 18 dynamic features to investigate the key factors in FL tasks using five machine
learning algorithms.

In particular, program coverage is a matrix consisting of the numbers 0 and 1, which records the
execution trace of each statement against the test suite and has been broadly used to train Al models.
Mahapatra and Negi first utilized the coverage matrix to train a GA-RBF model, then constructed a set
of virtual test cases, and fed them into the trained model to obtain statement suspiciousness scores [159].
Stating that a limited amount of samples may restrict AI models’ capability to learn complex functions,
Zheng et al. [73] and Zhang et al. [71] proposed to train a DNN model and a CNN model using program
coverage and test cases’ results (passed/failed) in 2016 and 2019, respectively, then they both generated a
virtual test suite for the trained model to obtain the probability of each test case being failed. Two years
later, Zhang et al. [74] further exploited the coverage matrix and corresponding test results on three DL
models, RNN, MLP, and CNN, to assess the advantage of deep learning for fault localization.

Execution-based input has been broadly used in fault localization and automated program repair
tasks, especially in spectrum-based fault localization. For example, numerous SBFL risk evaluation
formulas were proposed by human intelligence and artificial intelligence, to incorporate code coverage, a
classical type of execution-based input. In addition, there are also many studies employing deep learning
approaches to handle code coverage. In our opinion, solely developing novel debugging techniques is not
enough to improve debugging effectiveness, because the underlying data source, such as code coverage, is
still poor due to its simplicity. Therefore, we recommend that future researchers focus on both proposing
a new technique and extracting more diverse execution-based information.

4.2.2 Code-based input

In addition to execution information, several static features of faulty source files can also be extracted and
utilized to train AT models. Code-based data is mainly referred to as characteristics extracted from source
code at different levels (e.g., files, methods, statements, and tokens) in varied forms, such as dependency
information and call graphs. For example, apart from the aforementioned MBFL and SBFL features, Kim
et al. [140] gathered and fed predefined code-based static features into the LtR model. These features are
at file, function, and statement levels, such as fan-in and fan-out of a file dependency graph, the number

Song Y, et al. Sci China Inf Sci April 2024, Vol. 67, Iss. 4, 141101:23

of global/local variables a function reads/writes, and the number of operators/variables a statement uses.
Similarly, Pan et al. [143] first extracted 5 types of static features, i.e., indentation level, # of lines, # of
comments, # of tokens, and # of chars of statements, and then combined them with the other dynamic
features through the attention mechanism for better fault localization. In like manner, Golagha et al. [138]
first defined 15 static features (e.g., mean cyclomatic complexity and mean depth of inheritance hierarchy)
and other 55 features, then selected five common machine learning techniques to explore which metrics
have the strongest influence on FL techniques’ performance. In addition to the traditional program
spectrum, Zhang et al. [203] also used static call graphs to mine the connections among program entities,
their enhanced spectrum based on the PageRank algorithm is proven to be beneficial to the performance
of traditional SBFL techniques. Yang et al. [267] considered extracting useful information from stack
traces, source code, and bug reports, and fed these features into an autoencoder and a CNN model
successively to establish linkages between bug reports and source code. Besides, they also converted
source code into multiple lines with tokens and employed a Seq-GAN to perform program repair.

A number of primary studies also attempted to learn the relationship between correct code and buggy
code for automated program repair. Li et al. [244] regarded the APR process as a code transformation
learning task, where source code was first fed into a tree-based RNN to generate the corresponding AST,
and then transformation learning layers were trained on these trees. Based on the concept of features in
successful patches can help with finding correct patch candidates in search space, Long and Rinard [126]
took successful human patches as training data to learn and exploit properties of correct code by the
parameterized discriminative probabilistic model. Saha et al. [254] pointed out that reporters sometimes
write about possible fixes in bug reports; thus they extracted features from previous bug fixes and bug
reports, used them to train a logistic regression model offline, and then employed information in bug
reports to prioritize candidate patches.

Code-based input is typically extracted from program code snippets directly, without the dynamic
execution. It often serves as static features in fault localization or patch ingredients in program repair,
many previous studies have demonstrated its promise in these tasks. In our opinion, there is a trade-
off between the availability and the effectiveness of the code-based input. Specifically, we can obtain
a diversity of code-based information without much computational cost; for example, the static call
graph, the number of variables, etc. can be collected in an uncomplicated way. But the capability of
code-based information to help with software quality assurance could also be limited; for example, static
analysis tools often report false alarms. Therefore, we recommend that future researchers utilize code-
based information according to their requirements (e.g., effectiveness first or efficiency first). A stronger
technique that makes full use of code-based information, or better combines code-based information and
dynamic execution information, is also expected.

4.2.3 Text-based input

Text-based data is mainly referred to as bug reports and natural language parts in source code. A piece
of bug report is typically described in natural language, which mainly comprises a summary, meta fields,
descriptions, and comments related to faults. Based on the concept of the more relevant one source file
is to the bug report, the more suspicious it is, many IRFL techniques take bug reports as input to find
the faulty element(s). However, terms used by developers to describe faults in a bug report are often
different from their counterparts (i.e., terms and code tokens) in source code. To address this lexical
mismatch problem, Lam et al. [75] linked bug reports to the corresponding buggy files and non-buggy
files, respectively, features extracted from them were fed into an autoencoder to learn the relevancy of
files with respect to bug reports. Moreover, Wang and Lo [10] managed to complement rich information
sources for better fault localization. They put together version history, similar report, structure, reporter
information, and stack trace, and then employed a genetic algorithm to tune the five components’ weights.
In addition to bug reports, Ye et al. [125] also selected API documents, tutorials, and reference documents
to train word embeddings; specifically, they managed to learn embeddings of natural language words and
source code tokens by Skip-gram model. For extracting useful information hidden in the natural language
part of code, Pradel and Sen [174] first translated code examples into vectors via a Word2Vec network,
then tried to learn name-based bug detectors from correct and incorrect code.

We observe a trend toward more and more widespread use of text-based input. For example, in fault
localization tasks, many information retrieval-based approaches intend to build linkages between the
natural part of bug reports and source files. And in program repair tasks, documents/specifications

Song Y, et al. Sci China Inf Sci April 2024, Vol. 67, Iss. 4, 141101:24

written in natural languages can also be used to guide patch generation or correctness identification.
Despite the fact that using text-based information to boost FL. and APR techniques still suffers from
many challenges, for example, the lexical gap between natural languages and programming code is hard
to narrow, we believe text-based information has great potential in future AI4SD research, considering
the need for fully automatic debugging, the broad prospects of human-computer interaction, and the
rapid development of natural language processing techniques.

Finding 1.2

— Answer to RQ1.2 (What types of data do researchers tend to use as the input of AT models in the
context of software debugging?)

» For fault localization, researchers typically utilize three types of data to train Al models. (1) Execu-
tion-based input. Dynamic characteristics collected during program execution against a given test suite,
such as coverage, dynamic program slices, invocation, and so on, are frequently fed into Al models.
(2) Code-based input. Researchers often extract useful features from source code, or convert source code
into diverse intermediate representations by AI techniques to serve fault localization. (3) Text-based
input. Bug reports, API documents, and other descriptions written in natural languages can also be
linked to suspicious program entities through AI models.

» For program repair, researchers typically utilize the following two types of data to train Al models.
(1) Code-based input. Developers prefer to mine historical data (such as buggy and fixed code) in software
repositories, then construct a specific Al model to extract automated fixing patterns based on these code
snippets. (2) Text-based input. Bug reports sometimes contain possible fixes; thus developers also use
them to train Al models for prioritizing candidate patches.

» The three forms of inputs all have their own strengths and weaknesses. For example, execution-
based data are more commonly used in software debugging since they can dynamically reflect or monitor
the state of programs, however, the resulting high time costs prevent it from being adopted broadly in
practice. Code-based data are often utilized as a representation of code snippets, which can reduce the
complexity of debugging tasks to an extent, however, it typically needs to manually define and extract
code features. Text-based data are in a lightweight form and are easier to get than execution-based data,
but it is mostly used at method and file levels, since text-based data are typically too coarse-grained to
be linked to a statement.

5 How can SD be used to assure the quality of AI systems? (RQ2)

To answer RQ2, we review 34 studies that investigate software debugging techniques applied in Al
systems in this section. Among them, 20 studies are technical studies that involve fault localization or
automated program repair for Al systems (see Subsection 5.1), while the remaining 14 are empirical
studies in terms of summarization or investigation of common faults/symptoms in Al systems or libraries
(see Subsection 5.2).

5.1 How software debugging techniques are used to localize or repair faults in AI systems?

(RQ2.1)

In this subsection, we summarize how researchers technically apply software debugging in Al systems
from two separate perspectives, FL4AI and APR4AI

5.1.1 Fault localization techniques applied in Al systems

Many researchers are concerned with localizing faults at different granularities (e.g., neuron, layer, func-
tion, pipeline, etc.) for assuring Al systems quality; relevant studies include [109,117,268-270]. For
example, to eliminate debugging challenges caused by the black-box property, Wardat et al. [270] utilized
historic trends in values propagated between layers to (1) determine whether a given deep learning model
is buggy or not, and (2) determine in which layer and phases the fault exists. Eniser et al. [117] presented
a novel technique that first created a hit spectrum for each neuron, and then employed SBFL formulas
to obtain risk scores for generating a ranking list of suspicious neurons.

Besides, to detect faults in AT programs written in dynamic languages (such as Python), Dolby et
al. [271] first translated normal language AST into common AST, then employed two internal representa-
tion (IR) generation strategies to convert common ASTs into WALA’s IR, which enables WALA a static

Song Y, et al. Sci China Inf Sci April 2024, Vol. 67, Iss. 4, 141101:25

framework, to be applied in Al code that is built upon TensorFlow. Focusing on code-level faults in Al
algorithms, Cheng et al. [272] attempted to simulate faults in Al systems by mutation testing for mani-
festing these faults as many as possible. Instead of testing deep learning models, Pham et al. [269] stated
that multiple implementations of the same deep learning algorithm can detect inconsistencies among
these implementations, thus they managed to find and localize faults in deep learning libraries based on
this hypothesis. To infer root causes of failures in complex computational pipelines of machine learning
tasks, Lourencgo et al. carried out two pieces of research on machine learning pipeline debugging. They
first attempted to iteratively execute multifarious pipeline instances to find minimal definitive root causes
in 2019 [109], and then proposed to find root causes by executing fewer pipeline instances in 2020 [268].

5.1.2 Automated program repair techniques applied in Al systems

Existing AI model repair techniques are mainly designed from two aspects, i.e., data and neural network
connectivity [34].

e Data-oriented repair. Developers conduct Al model repair predominantly in terms of training
data, for its data-driven property [111-114,130]. Most researchers first divide datasets into several subsets
to identify which one has the most impact on the prediction bias, and then remove a specific subset to
reduce its negative impact on the model prediction. For example, Zhang and Chan [114] presented to
divide the datasets into multi subsets and retrained the model over them to generate reduced models, then
tagged them as correct or incorrect for further optimizing the original model. Krishnan and Wu [111]
sought to isolate a small set of training samples that can most perturb labels or features, to address
mispredictions that occurred in DNN models. Realizing the potential risk caused by data pollution,
Cao et al. [113] proposed a novel approach and a corresponding system to clean up polluted training
data by checking whether the previously misclassified samples were correctly classified after removing
suspicious subsets. Additionally, the model predictions can also be influenced by modifying the model
labels. For example, Koh and Liang [112] proposed to use the influence function to find the relationship
between training data and prediction. Specifically, they attempted to change the training data through
upweighting and perturbing: the former is to delete a training sample and observe the effect, whereas
the latter focuses on the problem of “how would the model’s predictions change if a training input were
modified”. Targeting underfitting and overfitting problems in machine learning models’ training process,
Ma et al. [130] proposed to debug neural network models via state differential analysis (for identifying
fault-related internal features) and training input selection (inspired by the program input selection in
regression testing), which outperformed the state-of-the-art technique in terms of both effectiveness and
efficiency according to their results. Focusing on the correctness of labels in predictive model construction,
Wu et al. [273] observed many mislabeled samples in security bug report prediction datasets. They first
manually corrected these problematic labels, and then measured the performance of classification models
against corrected and uncorrected datasets, respectively, the results of which highlighted the negative
influence caused by noisy data. Seeing the potential harm of problematic input word embeddings to the
accuracy of RNN models, Tao et al. [274] presented a novel technique to analyze such negative influence
and provided an embedding regulation/tunning algorithm for the repair.

e Neural network connectivity-oriented repair. Some researchers try to restructure the AT model
to perform fault repair. For example, Guidotti et al. [118] argued that as long as the accuracy of the
hybrid network (replace non-linear layers with linear ones) is comparable or outperforms that of the
original model, then (1) the former can replace the latter, and (2) repairing the latter can be replaced by
repairing the former. Based on this hypothesis, they further proposed to tackle the repair of CNNs using
transfer learning and convex programming, exemplifying the concept of Al debugs Al. Similarly, Kim et
al. [275] utilized random forests to extract rules that were correlated with failures of the object detector.
The mined rules have been demonstrated to be non-trivial for the model’s correct rate. Sotoudeh and
Thakur [276] proposed decoupled DNNs, a new architecture that can be converted from any existing
DNN,; to reduce the repair for DNN to a linear programming problem. Song et al. [277] integrated two-
stream self-attention into NMT models, by doing so the previous tokens can be corrected by the content
stream and the next token can be predicted by the query stream at the same time. Zhang et al. [278]
assured Al systems quality at the architecture level; they proposed a novel static analysis technique
that used abstract interpretation to identify numerical faults in DL software, which could help prevent
the potential loss before the model training process. Schoop et al. [279] implemented a novel system to
identify and repair bugs in DL programs, in which the model structure and behavior of DL programs are

Song Y, et al. Sci China Inf Sci April 2024, Vol. 67, Iss. 4, 141101:26

checked against existing heuristics used by experts, enabling to pinpoint the root cause(s) and provide
fixes suggestions automatically. Zhang et al. [280] summarized five typical types of faults in DL models’
training phase, namely, vanishing gradient, exploding gradient, dying ReLU, oscillating loss, and slow
convergence, followed by proposing a novel tool to monitor the DL model (e.g., record neuron activations,
and layers and their configurations) and automatically fix the detected fault(s).

In addition to the mentioned two categories, there are also some studies fixing faults in AI models in
other ways. For example, Agrawal et al. [131] utilized differential evolution, a search-based optimizer,
to improve the performance of LDA, a widely-used while non-deterministic algorithm in the field of
topic modeling, by tuning its parameters in a heuristic way. Sun et al. [281] proposed to improve the
consistency of translators based on the black-box repair. In their approach, the utilization of mutation
and metamorphic testing enables the repair to run without training data and the source code of systems
under test.

Finding 2.1

— Answer to RQ2.1 (How software debugging techniques are used to localize or repair faults in AI
systems?)

» Some researchers conduct technical studies that localize or repair faults in Al-related modules by
employing traditional software debugging techniques, or even Al approaches.

» We have not extracted explicit common points in localizing Al systems’ faults since the diversity and
individuality of the investigated techniques. Nonetheless, we can conclude that the localization activity
spreads from Al libraries to Al models since both of them may contain faults, and various strategies or
techniques are typically utilized in this process, such as mining model’s historical behaviors, conducting
multiple implementations (similar to N-version programming), and obtaining the probability of a neuron
being suspicious.

» As for program repair, the majority of researchers focus on fixing faulty AI models from the per-
spective of data (for example, isolating fault-prone datasets or retraining the original model using sub-
datasets), with some studies also attempting to restructure neural network connectivity or tune the
parameters.

» In our investigation, we observe that many researchers have released a tool for implementing their
SD4AI technique. To provide stakeholders with a convenience index, we extract and list these tools in
Table A3 in Appendix A, where the link to the tool is also given.

5.2 What types of faults occur frequently in AI systems and AI libraries? (RQ2.2)

Apart from technical work, a large number of researchers also empirically analyze common fault types
and fix patterns in Al systems or mainstream deep learning libraries. For example, Islam et al. [34]
investigated the bug fix patterns in five deep learning libraries and revealed the distinction between Al
models repair and traditional software repair. Jebnoun et al. [282] explored code smells in AT applications
and discovered a co-existence between code smells and faults contained in Al code. A substantial number
of AI repositories have grown on GitHub and other open-source platforms with more and more Al
researchers releasing their code and datasets. Fan et al. [283] collected over 1000 academic AT repositories
and attempted to mine the common features among them; they discovered that having too many copy-
paste snippets can lower both the popularity of repositories and the quality of corresponding Al systems.
Apart from explicit faults, software systems can also contain a variety of prospective faults. Liu et
al. [284] conducted empirical studies to investigate different types of technical debt in seven deep learning
frameworks. They first highlighted that defect debt (unresolved defects) could lead to unstable data
dependencies or unexpected behavior in flawed framework-based Al systems, and then further concluded
that defect debt is one of the fastest removed debt types [285]. To investigate potential software crashes or
other unexpected severe problems caused by improper versions of deep learning libraries, Han et al. [286]
extracted open-source projects that relied on TensorFlow, PyTorch, and Theano for empirically analyzing
the dependency networks that existed among them.

Additionally, Sun et al. [287] studied the faults associated with three open-source Al projects, Scikit-
learn, Paddle, and Caffe, where they summarized seven fault types and found the most frequent type
is Variable faults, accounting for 29.79%. Islam et al. [120] investigated faults in deep learning models
built upon Caffe, Keras, TensorFlow, Theano, and Torch and found that (1) data bugs appear most of
the time in all libraries, (2) structural logic bugs are the second major fault type. Furthermore, they
indicated that most of the faults in deep learning programming happen at the data preparation stage,

Song Y, et al. Sci China Inf Sci April 2024, Vol. 67, Iss. 4, 141101:27

with 32% of faults occurring in this stage. Besides, observing that some tasks on Microsoft Philly fail
after a long execution time due to faults, Zhang et al. [288] sought to have a systematic understanding of
failures in deep learning jobs; thus they investigated failed jobs on Philly and found that 39.4% of faults
caused by Path not found in execution environment. Aiming at constructing a taxonomy for real faults in
deep learning systems, Humbatova et al. [121] analyzed thousands of faults that resided in TensorFlow,
Keras, and PyTorch, and summarized five first-level fault types, namely, Model, GPU usage, API, Tensor
& inputs, and Training. They further divided these types into 11 second-level, 8 third-level, and 93
fourth-level fault types, and concluded a series of root causes in deep learning models, such as wrong
tensor shape and suboptimal network structure.

Zhang et al. [119] and Jia et al. [289] made comprehensive studies on faults related to TensorFlow. On
the one hand, Zhang et al. summarized four types of symptoms and found Error (analogous to exceptions
or crashes in conventional applications) is the most common among them, accounting for up to 64%. On
the other hand, Jia et al. found that Functional error (a program does not function as designed) is
the most common symptom inside TensorFlow with 35.64%, compared with the other five symptoms,
namely, Crash, Hang, Performance degradation, Build failure, and Warning-style error. Meanwhile, they
also noted that 34.91% of faults were localized in the Contribution component, and 26.42% and 11.79%
in API (interface) and Kernel (deep learning algorithms) components, respectively.

Apart from deep learning libraries, some researchers investigated faults in specific application domains.
For example, Garcia et al. [290] made an empirical study on faults in autonomous vehicle software
systems and found that Incorrect algorithmic implementations and Incorrect configurations are the most
common bug categories. Chen et al. [291] classified the deployment faults of mobile deep learning Apps
according to five phases in deployment. They observed that 48.4% and 36.2% of faults occurred during
the Model conversion stage and Inference stage, respectively, with the remaining faults occurring during
Deep learning integration, Data preparation, and Model update stage.

Finding 2.2

— Answer to RQ2.2 (What types of faults occur frequently in AT systems and Al libraries?)

» Researchers tend to mine software repositories or code snippets on platforms like GitHub and Stack-
Overflow, to manually collect historical and real-world faults and analyze classic root causes, symptoms
or fix patterns in Al models or deep learning libraries.

» There are two fault types that frequently occur in Al systems, data faults and logic faults. Data
faults primarily refer to the wrong data input formats or dimensions, wrong data labels, and wrong file
paths. Logic faults primarily refer to the wrong function definition (including the wrong usage of variables
and parameters), and the wrong connection structure. Additionally, wrong API usage and wrong GPU
usage also occur frequently and are worth attention.

» Faults in Al systems appear largely in the data preparation and model inference phases; developers
are suggested to pay more attention during these stages of development.

» We observe that the authors of these empirical studies tend to manually collect datasets for their
investigation, and some of them make the collected datasets available for other researchers’ replication or
further exploration. We summarize and list these manually collected datasets in Table A3 in Appendix A
for the convenience of interested readers.

6 What configuration do researchers prefer to use in AI4SD and SD4AIl
experiments? (RQ3)

To answer RQ3, we summarize the common experimental settings in AI4SD and SD4AI from two per-
spectives: datasets (programming languages) and metrics.

6.1 Which datasets (programming languages) are most commonly used? (RQ3.1)

As for AI4SD, most researchers tend to use publicly available datasets for their high stability, reliability,
and comparability. For example, we observe that Defects4J, a Java benchmark released by Just et al.
in 2014 [292], was adopted by most researchers. In addition, AspectJ, SWT, JDT, Tomcat, Eclipse, and
Siemens Suite are also preferred to be chosen by authors. The number of papers adopting these datasets
is shown in Figure 9. Among them, Siemens Suite is a little bit old thus not the first choice, albeit
it played a dominant role in prior research [293-297]. Defects4J has received more and more attention
since it was published in 2014 [292], and it is being in widespread use in the fields of both FL and APR.

Song Y, et al. Sci China Inf Sci April 2024, Vol. 67, Iss. 4, 141101:28

35 90
30 80
70
25
60
20
50
15 40
10 30
20
5
10
0
Defects4] Aspect] SWT JDT Tomcat Eclipse Siemens 0 L L
suite JAVA C Python Javascript
Figure 9 (Color online) Most commonly used datasets in Figure 10 (Color online) Most commonly used programming
AT4SD. languages in AI4SD.

Besides, researchers should also consider the potential problems of datasets in use. For example, projects
in Siemens Suite are generally too small to support evaluating an approach sufficiently, and Defects4J has
a benchmark overfitting problem for FL, i.e., FL techniques may perform extremely well on Defects4J but
lose their capability on unseen faults. Researchers have presented some other datasets (e.g., Bears [298]
and Bugs.jar [299]) to solve this problem.

As for programming language, researchers in AI14SD primarily focus on Java and C programs, with only
a few of them conducting experiments on programs written in Python, Javascript, or other languages.
The number of papers that used datasets written in these languages is shown in Figure 10.

As for SD4AI, the authors of empirical studies tend to collect the relevant data from GitHub and
StackOverflow manually, thus we only focus on technical studies that investigate how to localize or repair
faults that resided in AI models in this section.

According to our investigation, the most widely-used open-source datasets of the selected SD4AT papers
include MNIST, CIFAR-10, ImageNet, and Enron-spam. Considering most experimental datasets used
in SD4AT are in image or text forms, rather than traditional programs written in a specific programming
language, we do not summarize the most popular programming languages.

We further point out three important dataset-related problems based on our investigation. Firstly,
many existing benchmarks suffer from the class imbalance problem. The lack of faulty program elements
(e.g., statements, functions, or files) could mislead a trained classifier in AI4SD into preferring the major-
ity, since labeling a faulty element as innocent is low-cost, resulting in a poor capability of generalization.
The second is the coincidental correctness problem. If a test case returns the testing result of passed
albeit it covers the faulty statement, it is difficult to reveal the masked fault since we can hardly link it to
observed failures, especially in multi-fault scenarios. Thirdly, the oracle problem is worthy of discussion
because the expected outputs are generally difficult or even impossible to obtain for faulty programs,
which hinders datasets’ practicality since the testing results cannot be labeled properly. We believe
effort that aims at relieving or eliminating the above challenges will be beneficial to the robustness of
AT4SD/SD4AI techniques.

Finding 3.1

— Answer to RQ3.1 (Which datasets (programming languages) are most commonly used?)

» Defects4J is the most prominent dataset in AI4SD experiments, while MNIST, CIFAR-10, ImageNet,
and Enron-spam are typically selected by researchers to conduct experiments in SD4ATL.

» Java and C programs serve as benchmarks in most AI4SD experiments.

6.2 Which metrics are most commonly used? (RQ3.2)

As for AI4SD, we list the most commonly-used metrics in AI4FL and AI4APR, respectively. Table 6
shows four typically used metrics in fault localization tasks. Mean average precision (MAP) is the
most popular one among them, as evidenced by the fact that it is used in over 30% of the selected
papers. Apart from the metrics listed in Table 6, the performance of novel approaches in AI4FL is also

Song Y, et al. Sci China Inf Sci April 2024, Vol. 67, Iss. 4, 141101:29

Table 6 Most typically used metrics in AI4FL

Name Description

Mean average precision (MAP) The mean of the average precision of all faults [77,136, 158,165, 185]
The number of faulty programs that at least one buggy element appears in the

all at Top-1
Recall at Top-n top-n position of the ranking list [157,158,239]

Mean reciprocal rank (MRR) The reciprocal of the position of the first buggy element in the ranking list [77,158,185]

Acc@n The number of faults localized within top-n elements of the ranking list [140, 161, 165]

Table 7 Most typically used metrics in AI4APR

Name Description
Accuracy The percentage of patches that correctly fix faults [234]
Overfitting rate The number of overfitting patches out of the number of total patches generated [257]
Top-k The number of correc.t patches that can be found by c?nsidering top-k
statements delivered by the employed FL technique [239]
Table 8 Most typically used metrics in SD4AI
Name Description
Precision The fraction of identified root causes that are in fact faults [109]
Recall The fraction of AI models for which at least one/all root causes is (are) pinpointed [109, 268]
Contrast The loss and accuracy of AI models before and after fixing [117,118,270]

evaluated by nearly 40 other metrics. We find that these prevalent metrics are usually related to the sub-
problem of suspiciousness calculation. Specifically, they are often based on the extent to which the faulty
program element(s) can be pushed onto the top of the ranking list, which is generated according to the
calculated suspiciousness. Such a phenomenon indicates that the core of fault localization is to measure
the likelihood of program entities being faulty. Table 7 shows three frequently used metrics in automated
program repair tasks, these metrics are primarily built upon the number of correct patches generated
by the APR technique under evaluation. We find that these prevalent metrics are usually related to the
sub-problems of patch generation and patch ranking (filtering), namely, the extent to which the output
patch can fix the observed failures, and the extent to which these correct patches can be delivered to
developers with high priority.

We list the most popular experimental metrics in SD4AT in Table 8, finding that Precision, Recall, and
Contrast are typically utilized by researchers. Among them, the functionality of the first two is similar
to that of the metrics in AI4FL, while the last one is specially designed for SD4AT tasks.

Finding 3.2

— Answer to RQ3.2 (Which metrics are most commonly used?)

» MAP, Recall at Top-n, MRR, and Acc@n are typically used to evaluate the performance of novel
AT4FL techniques, and researchers tend to use Accuracy, Overfitting rate, and Top-k to assess AI4APR
techniques’ effectiveness.

» Precision, Recall, and Contrast are often used to demonstrate the effectiveness of novel approaches
in SD4AI

7 Challenges and opportunities

In this section, we discuss the challenges and potential future directions in the intersection of AI and SD.
7.1 In the field of AI4SD

Features employed by AI techniques for debugging should be prioritized. We find that re-
searchers tend to mine and use a large number of features with Al techniques to improve the effectiveness
of existing fault localization techniques. For example, static features like title, summary, description,
and stack trace of bug reports, dynamic features like code coverage, risk value, and mutation-based
information, as well as code-based features like the package name, class name, variable name, length
of statements (bytes), and the number of operators that a statement uses, are utilized to improve the
effectiveness of existing FL techniques including IRFL and SBFL. However, we also note that many
studies further indicate that various features contribute differently to the improvement of FL techniques’

Song Y, et al. Sci China Inf Sci April 2024, Vol. 67, Iss. 4, 141101:30

effectiveness [10,138,140,151]. In other words, some features may not have a positive impact on the tech-
nique into which they are integrated but may increase the complexity. Therefore, we suggest researchers
evaluate the effectiveness of features employed by FL tasks before using them. Furthermore, we believe
that finer investigations of features for cross-project fault localization or specific task-oriented domains
are future research directions in AI4FL.

ATI4SD techniques should be evaluated under real-world scenarios. Many approaches that
apply AI techniques to FL or APR tasks are evaluated in datasets downloaded from SIR (Software
Infrastructure Repository) or other toy benchmarks, in which most of the faults are artificially seeded.
Although some researchers used mutation-based strategies to generate new faults to expand the scale
of their dataset, the evaluation of novel AI4SD techniques can still be biased since mutated faults are
distinct from real faults, in other words, techniques that work well in artificial-fault environments may
not work as well in real-fault environments. As a result, we suggest future researchers evaluate their
novel AI4SD techniques in a real-fault scenario to demonstrate the practicality. More importantly, we
believe that a paucity of real-fault datasets is one of the reasons for researchers’ preference for artificial
faults. For example, Defects4J, one of the few real-fault Java datasets, has been exhaustively utilized
to evaluate a variety of novel AI4SD techniques, whereas additional real-fault datasets that are equally
well-recognized are hard to access. Therefore, we believe that building more real-fault datasets in C,
C++, and other languages is a promising future topic.

Utilizing AI techniques to fill the gap between plausible and correct patches. Most of the
existing AI4APR techniques use Al techniques to generate plausible patches that can pass all existing
test cases. However, a plausible patch may not be able to pass additional and unseen test cases. This
overfitting problem has become a bottleneck for the further development of APR techniques. We believe
that AI techniques can be used not only to generate candidate patches, but also to predict the possibility
of plausible patches being correct at the same time. For example, an Al model can be used to develop a
probability model that establishes a linkage between static information such as program specifications and
candidate patches. The strength of the linkage (that is, the similarity between a patch and a specification)
determines the likelihood of a plausible patch being correct. This extended application of Al techniques
in APR can effectively expand the space for the development of AI4APR.

Conducting APR in agile development with AI techniques. In addition to the effectiveness,
the efficiency of APR techniques is also nontrivial. In actual software development processes, the speed
of program repair will directly affect the iteration and release of the product. We believe that in the
future, it is worth employing AI techniques to combine the advantages of software healing and software
repair, so that existing APR techniques can be applied to agile development. Specifically, the goal of
software healing is to turn a failed execution into a passed one at runtime (applied on the deployed
application without modifying source code), whereas the goal of software repair is to change the source
code to remove the root cause (often deployed in-house such as the debugging process). AI approaches
can be used to improve the efficiency of APR techniques, which enables the latter to be performed during
runtime like software healing, and thus achieves just-in-time program repair in agile development.

Enhancing the generalization ability of AI4SD models. Albeit Al-integrated debugging tech-
niques are shown to be highly effective in experiments, adapting them to a broader circumstance that is
independent of training setups is more essential. For example, an Al model trained for fault localization
or program repair may not perform as well on unseen faults (e.g., written in different languages, having
distinct contexts, etc.) as on the training set. There are many possible reasons for such degradation, in-
cluding underfitting and overfitting. For the former, future researchers can consider adding new features
from different levels (such as files, functions, statements, or even tokens) and different sources (such as
coverage, data and control flows, or text descriptions), or feature crosses. For the latter, manually select-
ing which failure/fault-related features to keep, reducing the magnitude of features, and regularizing, are
all worth trying.

Debugging in multi-fault scenarios. Almost all existing research hypothesizes that a buggy pro-
gram contains only one fault, despite the fact that it is often unrealistic with the increases in software
complexity and scale. In multi-fault scenarios, failed test case(s) can be triggered by distinct root causes
instead of a certain one, such one-to-many or even many-to-many mapping relations could reduce de-
bugging techniques’ effectiveness. Only a limited number of studies are found to employ Al techniques
to tackle the challenge introduced by the co-existence or interference among multiple faults [300,301].
Future researchers are encouraged to leverage Al techniques’ strength of mining complicated mapping
relations to localize or fix multiple faults in parallel.

Song Y, et al. Sci China Inf Sci April 2024, Vol. 67, Iss. 4, 141101:31

7.2 In the field of SD4AI1

Debugging AI models still lacks attention. We find that most researchers tend to apply existing
AT techniques to debug traditional programs. While some researchers have conducted mutual studies on
debugging Al systems, the majority of them carried out empirical studies of failure symptoms and root
causes in specific domains or platforms. Besides, according to our investigation, 51 of the 131 papers
in AT4SD organize a novel and unseen solution to an existing problem, or propose a new open problem,
accounting for 38.9% of the total. On the contrary, such papers make up 64.7% of SD4AI (22 of the 34
papers). This implies that a large portion of the studies in AI4SD are incremental, while many research
directions in SD4AT remain unexplored. These findings (1) reveal the reasons why Al systems encounter
quality crisis to some extent [34,290], (2) point out the insufficient attention in the field of AI system
quality assurance, and (3) provide traditional software debugging researchers with a new direction, i.e.,
explore new ways to localize or fix faults in AT models.

Alleviating the oracle problem that exists in debugging AI. In traditional software testing
and debugging, we can easily identify a failure if the oracle is violated (i.e., the actual output deviates
from the expected output). However, when testing and debugging Al systems, such oracles are difficult
to obtain, because we can hardly say that a wrong output necessarily indicates a fault in the AI system,
considering that no AI models can guarantee 100% correct prediction. To alleviate the oracle problem,
Chen et al. [302] proposed a novel testing strategy, Metamorphic Testing (MT), which uses properties of
functions (also known as metamorphic relations) such that it is possible to predict expected changes to
the output for particular changes to the input [303]. Since it provides the solution to the oracle problem
with a feasible way, many researchers introduce MT to Al systems quality assurance, yielding a large
number of highly-quality studies [304-306]. Despite its rapid development, there are still many directions
that can be explored for better debugging AI using MT. For example, how to extract metamorphic
relations in an automated way? How to more properly generate follow-up test cases according to both
metamorphic relations and the characteristics of Al models? How to construct a comprehensive and
reusable metamorphic relation repository for the community of SD4AI? We believe that these questions
are worth to be answered in the future. Moreover, Al models are quite tolerant of some types of faults
(such as calculation faults), which can be successfully executed but cause the training to get stuck in a
local optimum. How to capture, further localize and fix such faults is also an interesting topic.

Paying more attention to the quality of training data. Traditional software typically has
concrete logic flows, thus the functionality and the output can be easily traced back to each line of source
code. But Al systems are usually data-driven, that is to say, the training data can also have a significant
impact on the AI systems’ performance. Therefore, if we are not satisfied with the trained model, we
may need to inspect both the source code (e.g., model construction and hyperparameter tuning) and the
training data (e.g., data normalization and data pollution), where the latter is a problem that distinguishes
debugging AT systems from debugging traditional software. In the future, we recommend that researchers
and practitioners pay more attention to the collection of high-quality training data, making the model
training process have a good foundation. Monitoring the data flow/neuron coverage during the training
for better debugging AI models can also be taken into account.

Reproducing failures in AI systems. Training an Al model involves many random factors. For
example, the initialization of parameters typically relies on a random number generator, and the different
input orders of the same set of training data can also result in a different model. When it comes
to traditional fault localization or program repair, the failures that are often discussed by researchers
are bohrbugs (i.e., those that can be reproduced) [307]. But in debugging AI models, the mentioned
randomness could make the observed failures irreproducible, which hinders further testing and debugging
for them. We believe that this problem is important, because enabling faults in Al systems to be
triggered consistently under some well-defined conditions will enhance developers’ confidence in ensuring
the reliability of Al systems.

Automatically fixing the faults caused by the API version change. According to the existing
conclusion, if the new API version is not backward compatible with its previous version, faults could
occur due to the inconsistencies between (1) the old and the new API names, and (2) the old and the
new orders of arguments. Such identifier faults account for 40.9% of issues in GitHub projects based on
the investigation of a survey [119]. We think that a potential solution to this challenge is to propose an
identifier analysis technique based on natural language processing. Specifically, although the name and
the order of arguments in the API have been updated, the functionality implemented by the API can be

Song Y, et al. Sci China Inf Sci April 2024, Vol. 67, Iss. 4, 141101:32

coherent, therefore, the signature of the API can be consistently reflected by some essential tokens. Based
on this, we can extract the API change history and further mine the semantics of faulty identifiers in old
and new contexts using natural language processing techniques, for automatically generating patches for
fixing such identifier faults.

8 Conclusion

In this paper, we collect and review 165 primary studies published between 2016 and 2021.3 from the
intersection of Al and SD. Many of these papers come from top journals or top conferences, which
highlight the most advances in the intersection of Al and SD as well as support this survey with high-
quality resources.

After categorizing these studies into two directions, AI4SD and SD4AI, we point out that the latter is
far less popular than the former, along with three research questions being designed to explore the two
fields: (1) How can AI techniques improve the effectiveness of SD? (2) How can SD be used to assure
the quality of AI systems? (3) What configuration do researchers prefer to use in AI4SD and SD4AI
experiments? Our conclusions include: (1) AI techniques are typically used in fault localization tasks
in six ways, namely, feature extraction (ensemble), suspiciousness calculation, information retrieval, test
cases enhancement, multi-fault debugging, and others. In these sub-problems, CNN, EA, RNN (LSTM),
etc. are commonly used. On the other hand, Al techniques are typically used in automated program
repair tasks in three ways, namely, patch generation, patch ranking (filtering), and code representation.
In these sub-problems, RNN (LSTM), EA, Constraint solving, Clustering, etc. are commonly used. Re-
searchers tend to use execution-based, code-based, and text-based information as the input of AT models.
(2) The localization activity spreads from AT libraries to AI models since both of them may contain
faults, while researchers typically repair faulty AI models from the perspectives of data and neural net-
work connectivity. Researchers tend to manually investigate faults or symptoms in Al systems or libraries
through empirical studies: data faults and logic faults occur frequently, while data preparation and model
inference are risky phases during development. (3) As for AI4SD, researchers tend to use Defects4] as
datasets, as well as use Java and C programs in experiments. Seven metrics, such as MAP, Recall at
Top-n, and Accuracy, are often used to evaluate novel approaches. As for SD4AI, MNIST, CIFAR-10,
and other two datasets are often employed as benchmarks. Prominent metrics include Precision, Recall,
and Contrast.

Besides, we further highlight opportunities and challenges as well as suggest potential directions for
future researchers. We also extract and list a series of tools and public repositories in AI4SD and SD4AI
to provide stakeholders with a convenience index.

Acknowledgements This work was partially supported by National Natural Science Foundation of China (Grant Nos. 62250610-
224, 61972289, 61832009). We sincerely appreciate the valuable suggestions from the anonymous reviewers for our paper.

References

1 Garousi V, Rainer A, Lauvas jr P, et al. Software-testing education: a systematic literature mapping. J Syst Software, 2020,
165: 110570
2 Lou Y, Ghanbari A, Li X, et al. Can automated program repair refine fault localization? A unified debugging approach.
In: Proceedings of the 29th ACM SIGSOFT International Symposium on Software Testing and Analysis, 2020. 75-87
3 Monperrus M. Automatic software repair: a bibliography. ACM Computing Surveys, 2018, 51: 1-24
4 Zakari A, Lee S P, Abreu R, et al. Multiple fault localization of software programs: a systematic literature review. Inf
Software Tech, 2020, 124: 106312
5 Lu G Z, XulL, Yang Y B, et al. Predictive analysis for race detection in software-defined networks. Sci China Inf Sci, 2019,
62: 062101
6 Fang C R, Chen Z Y, Xu B W. Comparing logic coverage criteria on test case prioritization. Sci China Inf Sci, 2012, 55:
28262840
7 ZhouY M, Leung H, Song Q B, et al. An in-depth investigation into the relationships between structural metrics and unit
testability in object-oriented systems. Sci China Inf Sci, 2012, 55: 28002815
8 Wang G, Shen R, Chen J, et al. Probabilistic delta debugging. In: Proceedings of the 29th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software Engineering, 2021. 881-892
9 Jiang J J, Xiong Y F, Xia X. A manual inspection of Defects4J bugs and its implications for automatic program repair. Sci
China Inf Sci, 2019, 62: 200102
10 Wang S, Lo D. AmaLgam+: composing rich information sources for accurate bug localization. J Software Evolu Process,
2016, 28: 921-942
11 Pang N. Deep learning for code repair. Vancouver: University of British Columbia, 2018. https://people.ece.ubc.ca/ghanam/
papers/npang_thesis_2018.pdf
12 Safdari N, Alrubaye H, Aljedaani W, et al. Learning to rank faulty source files for dependent bug reports. In: Proceedings
of Big Data: Learning, Analytics, and Applications, 2019. 109890B

https://doi.org/10.1016/j.jss.2020.110570
https://doi.org/10.1016/j.infsof.2020.106312
https://doi.org/10.1007/s11432-018-9826-x
https://doi.org/10.1007/s11432-012-4746-9
https://doi.org/10.1007/s11432-012-4745-x
https://doi.org/10.1007/s11432-018-1465-6
https://doi.org/10.1002/smr.1801
https://people.ece.ubc.ca/qhanam/papers/npang_thesis_2018.pdf
https://people.ece.ubc.ca/qhanam/papers/npang_thesis_2018.pdf

13

14

15

16

17

18

19

20
21

22

23

24

25

26

27

28

29

30

31

32

33
34

35
36
37

38
39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

Song Y, et al. Sci China Inf Sci April 2024, Vol. 67, Iss. 4, 141101:33

Zhang Z, Xie X. On the investigation of essential diversities for deep learning testing criteria. In: Proceedings of IEEE 19th
International Conference on Software Quality, Reliability and Security, 2019. 394-405

Devanbu P, Dwyer M, Elbaum S, et al. Deep learning & software engineering: state of research and future directions. 2020.
ArXiv:2009.08525

Pandey S K, Mishra R B, Tripathi A K. Machine learning based methods for software fault prediction: a survey. Expert
Syst Appl, 2021, 172: 114595

Ranjan P, Kumar S, Kumar U. Software fault prediction using computational intelligence techniques: a survey. Ind J Sci
Tech, 2017, 10: 1-9

Batool I, Khan T A. Software fault prediction using data mining, machine learning and deep learning techniques: a systematic
literature review. Comput Electrical Eng, 2022, 100: 107886

Durelli V H S, Durelli R S, Borges S S, et al. Machine learning applied to software testing: a systematic mapping study.
IEEE Trans Rel, 2019, 68: 1189-1212

Mahapatra S, Mishra S. Usage of machine learning in software testing. In: Proceedings of Automated Software Engineering:
A Deep Learning-Based Approach, 2020. 39-54

Braick H B, Khomh F. On testing machine learning programs. J Syst Software, 2020, 164: 110542

Zhang J M, Harman M, Ma L, et al. Machine learning testing: survey, landscapes and horizons. IEEE Trans Software Eng,
2022, 48: 1-36

Riccio V, Jahangirova G, Stocco A, et al. Testing machine learning based systems: a systematic mapping. Empir Software
Eng, 2020, 25: 5193-5254

Wang Y, Jia P, Liu L, et al. A systematic review of fuzzing based on machine learning techniques. Plos One, 2020, 15:
0237749

Chen J, Patra J, Pradel M, et al. A survey of compiler testing. ACM Comput Surv, 2021, 53: 1-36

Li X, Jiang H, Ren Z, et al. Deep learning in software engineering. 2018. ArXiv:1805.04825

Ferreira F, Silva L L, Valente M T. Software engineering meets deep learning: a mapping study. In: Proceedings of the 36th
Annual ACM Symposium on Applied Computing, 2021. 1542-1549

Yang Y, Xia X, Lo D, et al. A survey on deep learning for software engineering. 2020. ArXiv:2011.14597

Serban A, van der Blom K, Hoos H, et al. Adoption and effects of software engineering best practices in machine learning.
In: Proceedings of the 14th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement,
2020. 1-12

Arpteg A, Brinne B, Crnkovic-Friis L, et al. Software engineering challenges of deep learning. In: Proceedings of the 44th
Euromicro Conference on Software Engineering and Advanced Applications, 2018. 50-59

Zhang X, Yang Y, Feng Y, et al. Software engineering practice in the development of deep learning applications. 2019.
ArXiv:1910.03156

Yang Y, Xia X, Lo D, et al. Predictive models in software engineering: challenges and opportunities. ACM Trans Softw Eng
Methodol, 2022, 31: 1-72

Lertvittayakumjorn P, Toni F. Explanation-based human debugging of NLP models: a survey. Trans Assoc Comput Lin-
guistics, 2021, 9: 1508-1528

Zhang Q, Zhao Y, Sun W, et al. Program repair: automated vs. manual. 2022. ArXiv:2203.05166

Islam M J, Pan R, Nguyen G, et al. Repairing deep neural networks: fix patterns and challenges. In: Proceedings of
IEEE/ACM 42nd International Conference on Software Engineering, 2020. 1135-1146

Zhong W, Li C, Ge J, et al. Neural program repair: Systems, challenges and solutions. 2022. ArXiv:2202.10868

Feng Y, Liu Q, Dou M Y, et al. Mubug: a mobile service for rapid bug tracking. Sci China Inf Sci, 2016, 59: 013101
Zhang Z Y, Chen Z Y, Gao R Z, et al. An empirical study on constraint optimization techniques for test generation. Sci
China Inf Sci, 2017, 60: 012105

Zhao Y, Feng Y, Wang Y, et al. Quality assessment of crowdsourced test cases. Sci China Inf Sci, 2020, 63: 190102

Staats M, Whalen M W, Heimdahl M P. Programs, tests, and oracles: the foundations of testing revisited. In: Proceedings
of the 33rd International Conference on Software Engineering, 2011. 391-400

LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521: 436-444

Barr A, Feigenbaum E A. The Handbook of Artificial Intelligence. Oxford: Butterworth-Heinemann, 1981

Feldt R, de Oliveira Neto F G, Torkar R. Ways of applying artificial intelligence in software engineering. In: Proceedings of
IEEE/ACM 6th International Workshop on Realizing Artificial Intelligence Synergies in Software Engineering, 2018. 35-41
Mou L, Li G, Zhang L, et al. Convolutional neural networks over tree structures for programming language processing.
In: Proceedings of the 30th AAAI Conference on Artificial Intelligence, 2016

Gu X, Zhang H, Zhang D, et al. Deep API learning. In: Proceedings of the 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, 2016. 631-642

Wang S, Liu T, Tan L. Automatically learning semantic features for defect prediction. In: Proceedings of IEEE/ACM 38th
International Conference on Software Engineering, 2016. 297-308

Li X, Zhang L. Transforming programs and tests in tandem for fault localization. In: Proceedings of the ACM on Program-
ming Languages, 2017. 1-30

Xie X, Chen T Y, Kuo F C, et al. A theoretical analysis of the risk evaluation formulas for spectrum-based fault localization.
ACM Trans Softw Eng Methodol, 2013, 22: 1-40

Gao R, Wong W E. MSeer—an advanced technique for locating multiple bugs in parallel. IEEE Trans Software Eng, 2019,
45: 301-318

Wang X Y, Jiang S J, Gao P F, et al. Cost-effective testing based fault localization with distance based test-suite reduction.
Sci China Inf Sci, 2017, 60: 092112

Wang Y, Huang Z Q, Li Y, et al. Lightweight fault localization combined with fault context to improve fault absolute rank.
Sci China Inf Sci, 2017, 60: 092113

Tu J, Xie X, Chen T Y, et al. On the analysis of spectrum based fault localization using hitting sets. J Syst Software, 2019,
147: 106-123

Xu Z, Ma S, Zhang X, et al. Debugging with intelligence via probabilistic inference. In: Proceedings of the 40th International
Conference on Software Engineering, 2018. 1171-1181

Tu J, Xie X, Zhou Y, et al. A search based context-aware approach for understanding and localizing the fault via weighted
call graph. In: Proceedings of the 3rd International Conference on Trustworthy Systems and their Applications, 2016. 64-72
Cao J, Yang S, Jiang W, et al. BugPecker: locating faulty methods with deep learning on revision graphs. In: Proceedings

https://arxiv.org/abs/2009.08525
https://doi.org/10.1016/j.eswa.2021.114595
https://doi.org/10.17485/ijst/2017/v10i18/112324
https://doi.org/10.1016/j.compeleceng.2022.107886
https://doi.org/10.1109/TR.2019.2892517
https://doi.org/10.1016/j.jss.2020.110542
https://doi.org/10.1109/TSE.2019.2962027
https://doi.org/10.1007/s10664-020-09881-0
https://doi.org/10.1145/3363562
https://arxiv.org/abs/1805.04825
https://arxiv.org/abs/2011.14597
https://arxiv.org/abs/1910.03156
https://doi.org/10.1145/3503509
https://doi.org/10.1162/tacl_a_00440
https://arxiv.org/abs/2203.05166
https://arxiv.org/abs/2202.10868
https://doi.org/10.1007/s11432-015-5506-4
https://doi.org/10.1007/s11432-015-0450-5
https://doi.org/10.1007/s11432-019-2859-8
https://doi.org/10.1038/nature14539
https://doi.org/10.1145/2522920.2522924
https://doi.org/10.1109/TSE.2017.2776912
https://doi.org/10.1007/s11432-016-9057-8
https://doi.org/10.1007/s11432-017-9112-2
https://doi.org/10.1016/j.jss.2018.10.013

55

56
57

58

59

60
61

62

63

64

65

66

67

68
69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91
92

93

94

Song Y, et al. Sci China Inf Sci April 2024, Vol. 67, Iss. 4, 141101:34

of the 35th IEEE/ACM International Conference on Automated Software Engineering, 2020. 1214-1218

Wen M, Wu R, Cheung S C. Locus: locating bugs from software changes. In: Proceedings of the 31st IEEE/ACM Interna-
tional Conference on Automated Software Engineering, 2016. 262-273

Wong W E, Gao R, Li Y, et al. A survey on software fault localization. IEEE Trans Software Eng, 2016, 42: 707-740
Weiser M D. Program slices: formal, psychological, and practical investigations of an automatic program abstraction method.
Dissertation for Ph.D. Degree. Ann Arbor: University of Michigan, 1979

Zhang X, He H, Gupta N, et al. Experimental evaluation of using dynamic slices for fault location. In: Proceedings of the
6th International Symposium on Automated Analysis-Driven Debugging, 2005. 33-42

Wotawa F. Fault localization based on dynamic slicing and hitting-set computation. In: Proceedings of the 10th International
Conference on Quality Software, 2010. 161-170

Xie X, Xu B. Essential Spectrum-Based Fault Localization. Berlin: Springer, 2021

Laghari G, Murgia A, Demeyer S. Fine-tuning spectrum based fault localisation with frequent method item sets. In: Pro-
ceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering, 2016. 274-285

Zhang L, Li Z, Feng Y, et al. Improving fault-localization accuracy by referencing debugging history to alleviate structure
bias in code suspiciousness. IEEE Trans Rel, 2020, 69: 1021-1049

Zhang L, Yan L, Zhang Z, et al. A theoretical analysis on cloning the failed test cases to improve spectrum-based fault
localization. J Syst Software, 2017, 129: 35-57

Wen M, Chen J, Tian Y, et al. Historical spectrum based fault localization. IEEE Trans Software Eng, 2021, 47: 2348-2368
Liblit B, Naik M, Zheng A X, et al. Scalable statistical bug isolation. SIGPLAN Not, 2005, 40: 15-26

Nessa S, Abedin M, Wong W E, et al. Software fault localization using n-gram analysis. In: Proceedings of International
Conference on Wireless Algorithms, Systems, and Applications, 2008. 548-559

Guo Z Q, Zhou H C, Liu S R, et al. Information retrieval based bug localization: research problem, progress, and challenges
(in Chinese). J Software, 2020, 31: 2826-2854

Zou W, Li E, Fang C. BLESER: bug localization based on enhanced semantic retrieval. 2021. ArXiv:2109.03555

Ren Z, Jiang H, Xuan J, et al. Automated localization for unreproducible builds. In: Proceedings of the 40th International
Conference on Software Engineering, 2018. 71-81

de Souza H A, Chaim M L, Kon F. Spectrum-based software fault localization: a survey of techniques, advances, and
challenges. 2016. ArXiv:1607.04347

Zhang Z, Lei Y, Mao X, et al. CNN-FL: an effective approach for localizing faults using convolutional neural networks.
In: Proceedings of IEEE 26th International Conference on Software Analysis, Evolution and Reengineering, 2019. 445-455
Wong W E, Qi Y U. BP neural network-based effective fault localization. Int J Soft Eng Knowl Eng, 2009, 19: 573-597
Zheng W, Hu D, Wang J. Fault localization analysis based on deep neural network. Math Problems Eng, 2016, 2016: 1-11
Zhang Z, Lei Y, Mao X, et al. A study of effectiveness of deep learning in locating real faults. Inf Software Tech, 2021, 131:
106486

Lam A N, Nguyen A T, Nguyen H A, et al. Bug localization with combination of deep learning and information retrieval.
In: Proceedings of IEEE/ACM 25th International Conference on Program Comprehension, 2017. 218-229

Huo X, Li M. Enhancing the unified features to locate buggy files by exploiting the sequential nature of source code.
In: Proceedings of the 26th International Joint Conference on Artificial Intelligence, 2017. 1909-1915

Shi Z, Keung J, Bennin K E, et al. Comparing learning to rank techniques in hybrid bug localization. Appl Soft Computing,
2018, 62: 636-648

Chen Z F, Ma W W Y, Lin W, et al. A study on the changes of dynamic feature code when fixing bugs: towards the benefits
and costs of Python dynamic features. Sci China Inf Sci, 2018, 61: 012107

Le X B D, Le Q L, Lo D, et al. Enhancing automated program repair with deductive verification. In: Proceedings of IEEE
International Conference on Software Maintenance and Evolution, 2016. 428-432

Gopinath D, Wang K, Hua J, et al. Repairing intricate faults in code using machine learning and path exploration.
In: Proceedings of IEEE International Conference on Software Maintenance and Evolution, 2016. 453-457

Roychoudhury A, Xiong Y F. Automated program repair: a step towards software automation. Sci China Inf Sci, 2019, 62:
200103

Kong X, Zhang L, Wong W E, et al. Experience report: how do techniques, programs, and tests impact automated program
repair? In: Proceedings of IEEE 26th International Symposium on Software Reliability Engineering, 2015. 194-204

Wen M, Liu Y, Cheung S C. Boosting automated program repair with bug-inducing commits. In: Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering: New Ideas and Emerging Results, 2020. 77-80
Marginean A, Bader J, Chandra S, et al. SapFix: automated end-to-end repair at scale. In: Proceedings of IEEE/ACM 41st
International Conference on Software Engineering: Software Engineering in Practice, 2019. 269-278

Bader J, Scott A, Pradel M, et al. Getafix: learning to fix bugs automatically. In: Proceedings of the ACM on Programming
Languages, 2019. 1-27

Motwani M, Soto M, Brun Y, et al. Quality of automated program repair on real-world defects. IEEE Trans Software Eng,
2022, 48: 637-661

Smith E K, Barr E T, Goues C L, et al. Is the cure worse than the disease? Overfitting in automated program repair.
In: Proceedings of the 10th Joint Meeting on Foundations of Software Engineering, 2015. 532—-543

Le Goues C, Dewey-Vogt M, Forrest S, et al. A systematic study of automated program repair: fixing 55 out of 105 bugs
for $8 each. In: Proceedings of the 34th International Conference on Software Engineering, 2012. 3-13

Qi Y, Mao X, Lei Y. Efficient automated program repair through fault-recorded testing prioritization. In: Proceedings of
IEEE International Conference on Software Maintenance, 2013. 180-189

Weimer W, Fry Z P, Forrest S. Leveraging program equivalence for adaptive program repair: Models and first results.
In: Proceedings of the 28th IEEE/ACM International Conference on Automated Software Engineering, 2013. 356-366

Kim J, Kim J, Lee E. VFL: variable-based fault localization. Inf Software Tech, 2019, 107: 179-191

Wang S, Liu K, Lin B, et al. Beep: fine-grained fix localization by learning to predict buggy code elements. 2021.
ArXiv:2111.07739

Liu K, Koyuncu A, Bissyandé T F, et al. You cannot fix what you cannot find! An investigation of fault localization bias
in benchmarking automated program repair systems. In: Proceedings of the 12th IEEE Conference on Software Testing,
Validation and Verification, 2019. 102-113

Monperrus M. A critical review of “automatic patch generation learned from human-written patches”: essay on the problem
statement and the evaluation of automatic software repair. In: Proceedings of the 36th International Conference on Software

https://doi.org/10.1109/TSE.2016.2521368
https://doi.org/10.1109/TR.2020.2982975
https://doi.org/10.1016/j.jss.2017.04.017
https://doi.org/10.1109/TSE.2019.2948158
https://doi.org/10.1145/1064978.1065014
https://arxiv.org/abs/2109.03555
https://arxiv.org/abs/1607.04347
https://doi.org/10.1142/S021819400900426X
https://doi.org/10.1155/2016/1820454
https://doi.org/10.1016/j.infsof.2020.106486
https://doi.org/10.1016/j.asoc.2017.10.048
https://doi.org/10.1007/s11432-017-9153-3
https://doi.org/10.1007/s11432-019-9947-6
https://doi.org/10.1109/TSE.2020.2998785
https://doi.org/10.1016/j.infsof.2018.11.009
https://arxiv.org/abs/2111.07739

95

96

97

98

99

100

102

103

104

107

108

109

110

116

117
118

119

120

121

122

123

126

127

128

129

Song Y, et al. Sci China Inf Sci April 2024, Vol. 67, Iss. 4, 141101:35

Engineering, 2014. 234-242

Wang S, Mao X, Niu N, et al. Multi-location program repair strategies learned from past successful experience. 2018.
ArXiv:1810.12556

Motwani M, Sankaranarayanan S, Just R, et al. Do automated program repair techniques repair hard and important bugs?
Empirical Software Eng, 2018, 23: 2901-2947

Liu K, Kim D, Bissyande T F, et al. Mining fix patterns for FindBugs violations. IEEE Trans Software Eng, 2021, 47:
165-188

Tufano M, Watson C, Bavota G, et al. An empirical study on learning bug-fixing patches in the wild via neural machine
translation. ACM Trans Softw Eng Methodol, 2019, 28: 1-29

Chen Z, Kommrusch S J, Tufano M, et al. SEQUENCER: sequence-to-sequence learning for end-to-end program repair.
IEEE Trans Software Eng, 2021. doi: 10.1109/TSE.2019.2940179

Lutellier T, Pham H V, Pang L, et al. CoCoNuT: combining context-aware neural translation models using ensemble for
program repair. In: Proceedings of the 29th ACM SIGSOFT International Symposium on Software Testing and Analysis,
2020. 101-114

Cao J, Li M, Chen X, et al. DeepFD: automated fault diagnosis and localization for deep learning programs. 2022.
ArXiv:2205.01938

Li Z, Ma X, Xu C, et al. Operational calibration: debugging confidence errors for dnns in the field. In: Proceedings of the
28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software
Engineering, 2020. 901-913

Yan S, Tao G, Liu X, et al. Correlations between deep neural network model coverage criteria and model quality. In: Pro-
ceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, 2020. 775-787

Brown L. Tesla driver killed in crash posted videos of himself driving hands-free. 2021. https://www.marketwatch.com/
story/tesla-driver-killed-in-crash-posted-videos-of-himself-driving-hands-free- 11621220917

Marijan D, Gotlieb A. Software testing for machine learning. In: Proceedings of the AAAI Conference on Artificial Intelli-
gence, 2020. 34: 1357613582

Shen W, Li Y, Han Y, et al. Boundary sampling to boost mutation testing for deep learning models. Inf Software Tech,
2021, 130: 106413

Shen G, Liu Y, Tao G, et al. Backdoor scanning for deep neural networks through k-arm optimization. In: Proceedings of
International Conference on Machine Learning, 2021. 9525-9536

Meng L, Li Y, Chen L, et al. Measuring discrimination to boost comparative testing for multiple deep learning models.
In: Proceedings of IEEE/ACM 43rd International Conference on Software Engineering, 2021. 385-396

Lourencgo R, Freire J, Shasha D. Debugging machine learning pipelines. In: Proceedings of the 3rd International Workshop
on Data Management for End-to-End Machine Learning, 2019. 1-10

Feng Y, Shi Q, Gao X, et al. DeepGini: prioritizing massive tests to enhance the robustness of deep neural networks.
In: Proceedings of the 29th ACM SIGSOFT International Symposium on Software Testing and Analysis, 2020. 177-188
Krishnan S, Wu E. PALM: machine learning explanations for iterative debugging. In: Proceedings of the 2nd Workshop on
Human-In-the-Loop Data Analytics, 2017. 1-6

Koh P W, Liang P. Understanding black-box predictions via influence functions. In: Proceedings of International Conference
on Machine Learning, 2017. 1885-1894

Cao Y, Yu A F, Aday A, et al. Efficient repair of polluted machine learning systems via causal unlearning. In: Proceedings
of the Asia Conference on Computer and Communications Security, 2018. 735-747

Zhang H, Chan W. Apricot: a weight-adaptation approach to fixing deep learning models. In: Proceedings of the 34th
IEEE/ACM International Conference on Automated Software Engineering, 2019. 376-387

Shen W, Li Y, Chen L, et al. Multiple-boundary clustering and prioritization to promote neural network retraining.
In: Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering, 2020. 410-422
Zhang X, Yin Z, Feng Y, et al. NeuralVis: visualizing and interpreting deep learning models. In: Proceedings of the 34th
IEEE/ACM International Conference on Automated Software Engineering, 2019. 1106-1109

Eniser H F, Gerasimou S, Sen A. DeepFault: fault localization for deep neural networks. 2019. ArXiv:1902.05974

Guidotti D, Leofante F, Pulina L, et al. Verification and repair of neural networks: a progress report on convolutional
models. In: Proceedings of International Conference of the Italian Association for Artificial Intelligence, 2019. 405-417
Zhang Y, Chen Y, Cheung S C, et al. An empirical study on TensorFlow program bugs. In: Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis, 2018. 129-140

Islam M J, Nguyen G, Pan R, et al. A comprehensive study on deep learning bug characteristics. In: Proceedings of the
27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software
Engineering, 2019. 510-520

Humbatova N, Jahangirova G, Bavota G, et al. Taxonomy of real faults in deep learning systems. In: Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering, 2020. 1110-1121

Kitchenham B A, Budgen D, Brereton P. Evidence-Based Software Engineering and Systematic Reviews: Volume 4. Boca
Raton: CRC Press, 2015

Basili V R, Caldiera G, Rombach H D. The goal question metric approach. In: Encyclopedia of Software Engineering. 1994.
528-532

Colanzi T E, Assuncado W K G, Farah P R, et al. A review of ten years of the symposium on search-based software
engineering. In: Proceedings of International Symposium on Search Based Software Engineering, 2019. 42-57

Ye X, Shen H, Ma X, et al. From word embeddings to document similarities for improved information retrieval in software
engineering. In: Proceedings of the 38th International Conference on Software Engineering, 2016. 404415

Long F, Rinard M. Automatic patch generation by learning correct code. In: Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, 2016. 298-312

Xuan J, Martinez M, DeMarco F, et al. Nopol: automatic repair of conditional statement bugs in Java programs. IEEE
Trans Software Eng, 2017, 43: 34-55

Le X B D, Lo D, Le Goues C. History driven program repair. In: Proceedings of IEEE 23rd International Conference on
Software Analysis, Evolution, and Reengineering, 2016. 213-224

Xiong Y, Wang J, Yan R, et al. Precise condition synthesis for program repair. In: Proceedings of IEEE/ACM 39th
International Conference on Software Engineering, 2017. 416—426

https://arxiv.org/abs/1810.12556
https://doi.org/10.1109/TSE.2018.2884955
https://doi.org/10.1145/3340544
https://doi.org/10.1109/TSE.2019.2940179
https://arxiv.org/abs/2205.01938
https://www.marketwatch.com/story/tesla-driver-killed-in-crash-posted-videos-of-himself-driving-hands-free-11621220917
https://www.marketwatch.com/story/tesla-driver-killed-in-crash-posted-videos-of-himself-driving-hands-free-11621220917
https://doi.org/10.1016/j.infsof.2020.106413
https://arxiv.org/abs/1902.05974
https://doi.org/10.1109/TSE.2016.2560811

130

139

140

141

142
143

145

146

147

148

149

150

154

155

156

157

159

160

161

162

163

Song Y, et al. Sci China Inf Sci April 2024, Vol. 67, Iss. 4, 141101:36

Ma S, Liu Y, Lee W C, et al. MODE: automated neural network model debugging via state differential analysis and input
selection. In: Proceedings of the 26th ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2018. 175-186

Agrawal A, Fu W, Menzies T. What is wrong with topic modeling? And how to fix it using search-based software engineering.
Inf Software Tech, 2018, 98: 74-88

Peng Z, Xiao X, Hu G, et al. ABFL: an autoencoder based practical approach for software fault localization. Inf Sci, 2020,
510: 108-121

Huo X, Li M, Zhou Z H. Control flow graph embedding based on multi-instance decomposition for bug localization.
In: Proceedings of the 34th AAAI Conference on Artificial Intelligence, 2020. 4223-4230

Li X, Li W, Zhang Y, et al. DeepFL: integrating multiple fault diagnosis dimensions for deep fault localization.
In: Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis, 2019. 169-180

Qi G, Yao L, Uzunov A V. Fault detection and localization in distributed systems using recurrent convolutional neural
networks. In: Proceedings of International Conference on Advanced Data Mining and Applications, 2017. 33-48

Huo X, Li M, Zhou Z H. Learning unified features from natural and programming languages for locating buggy source code.
In: Proceedings of the 25th International Joint Conference on Artificial Intelligence, 2016. 1606-1612

Liang H, Sun L, Wang M, et al. Deep learning with customized abstract syntax tree for bug localization. IEEE Access,
2019, 7: 116309

Golagha M, Pretschner A, Briand L. C. Can we predict the quality of spectrum-based fault localization? In: Proceedings of
IEEE 13th International Conference on Software Testing, Validation and Verification, 2020. 4-15

Gu Y, Xuan J, Zhang H, et al. Does the fault reside in a stack trace? Assisting crash localization by predicting crashing
fault residence. J Syst Software, 2019, 148: 88-104

Kim Y, Mun S, Yoo S, et al. Precise learn-to-rank fault localization using dynamic and static features of target programs.
ACM Trans Softw Eng Methodol, 2019, 28: 1-34

Xia X, Lo D. An effective change recommendation approach for supplementary bug fixes. Autom Softw Eng, 2017, 24:
455-498

Mohri M, Rostamizadeh A, Talwalkar A. Foundations of Machine Learning. Cambridge: MIT Press, 2018

Pan Y, Xiao X, Hu G, et al. ALBFL: a novel neural ranking model for software fault localization via combining static and
dynamic features. In: Proceedings of IEEE 19th International Conference on Trust, Security and Privacy in Computing and
Communications, 2020. 785-792

Ye X, Bunescu R, Liu C. Mapping bug reports to relevant files: a ranking model, a fine-grained benchmark, and feature
evaluation. IEEE Trans Software Eng, 2016, 42: 379-402

Yang X L, Lo D, Xia X, et al. High-impact bug report identification with imbalanced learning strategies. J Comput Sci
Technol, 2017, 32: 181-198

Guo Z, LiY, Ma W, et al. Boosting crash-inducing change localization with rank-performance-based feature subset selection.
Empir Software Eng, 2020, 25: 1905-1950

Wu R, Wen M, Cheung S C, et al. ChangeLocator: locate crash-inducing changes based on crash reports. Empir Software
Eng, 2018, 23: 28662900

Li A, Lei Y, Mao X. Towards more accurate fault localization: an approach based on feature selection using branching
execution probability. In: Proceedings of IEEE International Conference on Software Quality, Reliability and Security, 2016.
431-438

Feyzi F. CGT-FL: using cooperative game theory to effective fault localization in presence of coincidental correctness. Empir
Software Eng, 2020, 25: 3873-3927

Amar A, Rigby P C. Mining historical test logs to predict bugs and localize faults in the test logs. In: Proceedings of
IEEE/ACM 41st International Conference on Software Engineering, 2019. 140-151

Koyuncu A, Bissyandé T F, Kim D, et al. D&C: a divide-and-conquer approach to IR-based bug localization. 2019.
ArXiv:1902.02703

Yang B, He Y, Liu H, et al. A lightweight fault localization approach based on XGBoost. In: Proceedings of IEEE 20th
International Conference on Software Quality, Reliability and Security, 2020. 168-179

Nath A, Domingos P. Learning tractable probabilistic models for fault localization. In: Proceedings of the AAAI Conference
on Artificial Intelligence: Volume 30. 2016

Popescu M C, Balas V E, Perescu-Popescu L, et al. Multilayer perceptron and neural networks. WSEAS Trans Circuits
Syst, 2009, 8: 579-588

Maru A, Dutta A, Kumar K V, et al. Effective software fault localization using a back propagation neural network.
In: Proceedings of Computational Intelligence in Data Mining, 2020. 513-526

Dutta A, Pant N, Mitra P, et al. Effective fault localization using an ensemble classifier. In: Proceedings of International
Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering, 2019. 847-855

Li Y, Wang S, Nguyen T N. Fault localization with code coverage representation learning. In: Proceedings of IEEE/ACM
43rd International Conference on Software Engineering, 2021. 661-673

Polisetty S, Miranskyy A, Bagar A. On usefulness of the deep-learning-based bug localization models to practitioners.
In: Proceedings of the 15th International Conference on Predictive Models and Data Analytics in Software Engineering,
2019. 16-25

Mahapatra R, Negi A. Effective software fault localization using GA-RBF neural network. J Theor Applied Inform Technol,
2016, 90: 168-174

Sohn J, Yoo S. FLUCCS: using code and change metrics to improve fault localization. In: Proceedings of the 26th ACM
SIGSOFT International Symposium on Software Testing and Analysis, 2017. 273-283

Choi K, Sohn J, Yoo S. Learning fault localisation for both humans and machines using multi-objective GP. In: Proceedings
of International Symposium on Search Based Software Engineering, 2018. 349-355

Xuan J, Monperrus M. Learning to combine multiple ranking metrics for fault localization. In: Proceedings of IEEE
International Conference on Software Maintenance and Evolution, 2014. 191-200

Zou D, Liang J, Xiong Y, et al. An empirical study of fault localization families and their combinations. IEEE Trans
Software Eng, 2021, 47: 332-347

Liu P, Chen Y, Nie X, et al. FluxRank: a widely-deployable framework to automatically localizing root cause machines
for software service failure mitigation. In: Proceedings of IEEE 30th International Symposium on Software Reliability
Engineering, 2019. 35-46

https://doi.org/10.1016/j.infsof.2018.02.005
https://doi.org/10.1016/j.ins.2019.08.077
https://doi.org/10.1109/ACCESS.2019.2936948
https://doi.org/10.1016/j.jss.2018.11.004
https://doi.org/10.1145/3345628
https://doi.org/10.1007/s10515-016-0204-z
https://doi.org/10.1109/TSE.2015.2479232
https://doi.org/10.1007/s11390-017-1713-3
https://doi.org/10.1007/s10664-020-09802-1
https://doi.org/10.1007/s10664-017-9567-4
https://doi.org/10.1007/s10664-020-09859-y
https://arxiv.org/abs/1902.02703
https://doi.org/10.1109/TSE.2019.2892102

169

170

171

172

173

174

175

176

177

178

179

180

184

185

186

187

188

189

190

192

193

194

195

196

197

198
199

200

201

Song Y, et al. Sci China Inf Sci April 2024, Vol. 67, Iss. 4, 141101:37

Le T D B, Lo D, Goues C L, et al. A learning-to-rank based fault localization approach using likely invariants.
In: Proceedings of the 25th International Symposium on Software Testing and Analysis, 2016. 177-188

Kii¢iik Y, Henderson T A, Podgurski A. Improving fault localization by integrating value and predicate based causal inference
techniques. In: Proceedings of IEEE/ACM 43rd International Conference on Software Engineering, 2021. 649-660
Podgurski A, Kiigiik Y. CounterFault: value-based fault localization by modeling and predicting counterfactual outcomes.
In: Proceedings of IEEE International Conference on Software Maintenance and Evolution, 2020. 382-393

Lou Y, Zhu Q, Dong J, et al. Boosting coverage-based fault localization via graph-based representation learning. In: Pro-
ceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, 2021. 664-676

Maamar M, Lazaar N, Loudni S, et al. Fault localization using itemset mining under constraints. Autom Softw Eng, 2017,
24: 341-368

Yan M, Xia X, Fan Y, et al. Just-In-Time defect identification and localization: a two-phase framework. IEEE Trans
Software Eng, 2022, 48: 82—-101

Zaman T S, Han X, Yu T. SCMiner: localizing system-level concurrency faults from large system call traces. In: Proceedings
of the 34th IEEE/ACM International Conference on Automated Software Engineering, 2019. 515-526

Hoang T, Oentaryo R J, Le T D B, et al. Network-clustered multi-modal bug localization. IEEE Trans Software Eng, 2019,
45: 1002-1023

Cheng S, Yan X, Khan A A. A similarity integration method based information retrieval and word embedding in bug
localization. In: Proceedings of IEEE 20th International Conference on Software Quality, Reliability and Security, 2020.
180-187

Pradel M, Sen K. DeepBugs: a learning approach to name-based bug detection. Proc ACM Program Lang, 2018, 2: 1-25
Liu G, Lu Y, Shi K, et al. Convolutional neural networks-based locating relevant buggy code files for bug reports affected
by data imbalance. IEEE Access, 2019, 7: 131304-131316

Xiao Y, Keung J, Bennin K E, et al. Improving bug localization with word embedding and enhanced convolutional neural
networks. Inf Software Tech, 2019, 105: 17-29

Li G, Liu H, Jin J, et al. Deep learning based identification of suspicious return statements. In: Proceedings of IEEE 27th
International Conference on Software Analysis, Evolution and Reengineering, 2020. 480-491

Zhang Y, Lo D, Xia X, et al. Fusing multi-abstraction vector space models for concern localization. Empir Software Eng,
2018, 23: 2279-2322

Mills C, Parra E, Pantiuchina J, et al. On the relationship between bug reports and queries for text retrieval-based bug
localization. Empir Software Eng, 2020, 25: 3086-3127

Almhana R, Mkaouer W, Kessentini M, et al. Recommending relevant classes for bug reports using multi-objective search.
In: Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering, 2016. 286-295
Almhana R, Kessentini M, Mkaouer W. Method-level bug localization using hybrid multi-objective search. Inf Software
Tech, 2021, 131: 106474

Mikolov T, Sutskever I, Chen K, et al. Distributed representations of words and phrases and their compositionality.
In: Proceedings of Advances in Neural Information Processing Systems, 2013. 3111-3119

Briem J A, Smit J, Sellik H, et al. OffSide: learning to identify mistakes in boundary conditions. In: Proceedings of the
IEEE/ACM 42nd International Conference on Software Engineering Workshops, 2020. 203-208

Liu G, Lu Y, Shi K, et al. Mapping bug reports to relevant source code files based on the vector space model and word
embedding. IEEE Access, 2019, 7: 7887078881

Zhang W, Li Z, Wang Q, et al. FineLocator: a novel approach to method-level fine-grained bug localization by query
expansion. Inf Software Tech, 2019, 110: 121-135

Zhu Z, Li 'Y, Tong H, et al. CooBa: cross-project bug localization via adversarial transfer learning. In: Proceedings of the
29th International Joint Conference on Artificial Intelligence, 2020. 3565-3571

Zhong H, Mei H. Learning a graph-based classifier for fault localization. Sci China Inf Sci, 2020, 63: 162101

Jonsson L, Broman D, Magnusson M, et al. Automatic localization of bugs to faulty components in large scale software
systems using Bayesian classification. In: Proceedings of IEEE International Conference on Software Quality, Reliability
and Security, 2016. 423-430

Huang Q, Lo D, Xia X, et al. Which packages would be affected by this bug report? In: Proceedings of IEEE 28th
International Symposium on Software Reliability Engineering, 2017. 124-135

Le T D B, Thung F, Lo D. Will this localization tool be effective for this bug? Mitigating the impact of unreliability of
information retrieval based bug localization tools. Empir Software Eng, 2017, 22: 2237-2279

Li Z, Jiang Z, Chen X, et al. Laprob: a label propagation-based software bug localization method. Inf Software Tech, 2021,
130: 106410

Rahman M M, Roy C K. Improving IR-based bug localization with context-aware query reformulation. In: Proceedings of
the 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software
Engineering, 2018. 621-632

Li X, Wong W E, Gao R, et al. Genetic algorithm-based test generation for software product line with the integration of
fault localization techniques. Empir Software Eng, 2018, 23: 1-51

Chatterjee P, Chatterjee A, Campos J, et al. Diagnosing software faults using multiverse analysis. In: Proceedings of the
29th International Joint Conference on Artificial Intelligence, 2020. 1629-1635

Elmishali A, Stern R, Kalech M. An artificial intelligence paradigm for troubleshooting software bugs. Eng Appl Artif
Intelligence, 2018, 69: 147-156

Liu B, Nejati S, Lucia S, et al. Effective fault localization of automotive Simulink models: achieving the trade-off between
test oracle effort and fault localization accuracy. Empir Software Eng, 2019, 24: 444-490

Zhang Z, Lei Y, Mao X, et al. Improving deep-learning-based fault localization with resampling. J Software Evolu Process,
2021, 33: e2312

Japkowicz N, Stephen S. The class imbalance problem: a systematic studyl. Intell Data Anal, 2002, 6: 429-449

Graves A, Mohamed A R, Hinton G. Speech recognition with deep recurrent neural networks. In: Proceedings of IEEE
International Conference on Acoustics, Speech and Signal Processing, 2013. 6645-6649

Jarrett K, Kavukcuoglu K, Ranzato M, et al. What is the best multi-stage architecture for object recognition? In: Proceed-
ings of IEEE 12th International Conference on Computer Vision, 2009. 2146-2153

Xia X, Gong L, Le T D B, et al. Diversity maximization speedup for localizing faults in single-fault and multi-fault programs.

https://doi.org/10.1007/s10515-015-0189-z
https://doi.org/10.1109/TSE.2020.2978819
https://doi.org/10.1109/TSE.2018.2810892
https://doi.org/10.1145/3276517
https://doi.org/10.1109/ACCESS.2019.2940557
https://doi.org/10.1016/j.infsof.2018.08.002
https://doi.org/10.1007/s10664-017-9585-2
https://doi.org/10.1007/s10664-020-09823-w
https://doi.org/10.1016/j.infsof.2020.106474
https://doi.org/10.1109/ACCESS.2019.2922686
https://doi.org/10.1016/j.infsof.2019.03.001
https://doi.org/10.1007/s11432-019-2720-1
https://doi.org/10.1007/s10664-016-9484-y
https://doi.org/10.1016/j.infsof.2020.106410
https://doi.org/10.1007/s10664-016-9494-9
https://doi.org/10.1016/j.engappai.2017.12.011
https://doi.org/10.1007/s10664-018-9611-z
https://doi.org/10.1002/smr.2312
https://doi.org/10.3233/IDA-2002-6504

202

203

204

205

206

207

208

209
210

211

212

213

214

215

216

217

218

219

220

221

222

223

224
225

226
227

228

229

230
231

232

233

234

235

236

237

238

239

Song Y, et al. Sci China Inf Sci April 2024, Vol. 67, Iss. 4, 141101:38

Autom Softw Eng, 2016, 23: 43-75

Liu Y, Li M, Wu Y, et al. A weighted fuzzy classification approach to identify and manipulate coincidental correct test cases
for fault localization. J Syst Software, 2019, 151: 20-37

Zhang M, Li Y, Li X, et al. An empirical study of boosting spectrum-based fault localization via PageRank. IEEE Trans
Software Eng, 2021, 47: 1089-1113

Chen J, Ma H, Zhang L. Enhanced compiler bug isolation via memoized search. In: Proceedings of the 35th IEEE/ACM
International Conference on Automated Software Engineering, 2020. 78-89

Zhang X 'Y, Zheng Z, Cai K Y. Exploring the usefulness of unlabelled test cases in software fault localization. J Syst Software,
2018, 136: 278-290

Gupta R, Kanade A, Shevade S. Neural attribution for semantic bug-localization in student programs. In: Proceedings of
Advances in Neural Information Processing Systems, 2019. 32

Sundararajan M, Taly A, Yan Q. Axiomatic attribution for deep networks. In: Proceedings of International Conference on
Machine Learning, 2017. 3319-3328

He J, Xu L, Yan M, et al. Duplicate bug report detection using dual-channel convolutional neural networks. In: Proceedings
of the 28th International Conference on Program Comprehension, 2020. 117-127

Ni Z, Li B, Sun X, et al. Analyzing bug fix for automatic bug cause classification. J Syst Software, 2020, 163: 110538

Yan X B, Liu B, Wang S H. A test restoration method based on genetic algorithm for effective fault localization in multiple-
fault programs. J Syst Software, 2021, 172: 110861

Zheng Y, Wang Z, Fan X, et al. Localizing multiple software faults based on evolution algorithm. J Syst Software, 2018,
139: 107-123

Gao M, Li P, Chen C, et al. Research on software multiple fault localization method based on machine learning.
In: Proceedings of MATEC Web of Conferences: volume 232, 2018. 01060

Behera R K, Shukla S, Rath S K, et al. Software reliability assessment using machine learning technique. In: Proceedings
of International Conference on Computational Science and Its Applications. Springer, 2018. 403-411

Li Z, Chen T H, Shang W. Where shall we log? Studying and suggesting logging locations in code blocks. In: Proceedings
of the 35th IEEE/ACM International Conference on Automated Software Engineering, 2020. 361-372

Vasic M, Kanade A, Maniatis P, et al. Neural program repair by jointly learning to localize and repair. 2019.
ArXiv:1904.01720

Chappelly T, Cifuentes C, Krishnan P, et al. Machine learning for finding bugs: an initial report. In: Proceedings of IEEE
Workshop on Machine Learning Techniques for Software Quality Evaluation, 2017. 21-26

Yang X, Yu Z, Wang J, et al. Understanding static code warnings: an incremental AI approach. Expert Syst Appl, 2021,
167: 114134

Lin Y, Sun J, Tran L, et al. Break the dead end of dynamic slicing: localizing data and control omission bug. In: Proceedings
of the 33rd ACM/IEEE International Conference on Automated Software Engineering, 2018. 509-519

Yu X, Liu J, Yang Z, et al. The Bayesian network based program dependence graph and its application to fault localization.
J Syst Software, 2017, 134: 44-53

Hofer B, Nica I, Wotawa F. AI for localizing faults in spreadsheets. In: Proceedings of IFIP International Conference on
Testing Software and Systems, 2017. 71-87

Terra-Neves M, Machado N, Lynce I, et al. Concurrency debugging with MaxSMT. In: Proceedings of the 33rd AAAI
Conference on Artificial Intelligence, 2019. 1608-1616

Mesbah A, Rice A, Johnston E, et al. DeepDelta: learning to repair compilation errors. In: Proceedings of the 27th ACM
Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering,
2019. 925-936

Zou W, Lo D, Kochhar P S, et al. Smart contract development: challenges and opportunities. IEEE Trans Software Eng,
2021, 47: 2084-2106

Yu X L, Al-Bataineh O, Lo D, et al. Smart contract repair. ACM Trans Softw Eng Methodol, 2020, 29: 1-32

Yuan Y, Banzhaf W. ARJA: automated repair of Java programs via multi-objective genetic programming. IEEE Trans
Software Eng, 2018, 46: 1040-1067

Yuan Y, Banzhaf W. Toward better evolutionary program repair. ACM Trans Softw Eng Methodol, 2020, 29: 1-53
Oliveira V P L, Souza E F, Goues C L, et al. Improved representation and genetic operators for linear genetic programming
for automated program repair. Empir Software Eng, 2018, 23: 2980-3006

Lee J, Song D, So S, et al. Automatic diagnosis and correction of logical errors for functional programming assignments.
Proc ACM Program Lang, 2018, 2: 1-30

Machado N, Quinta D, Lucia B, et al. Concurrency debugging with differential schedule projections. ACM Trans Softw Eng
Methodol, 2016, 25: 1-37

Pan R, Hu Q, Xu G, et al. Automatic repair of regular expressions. Proc ACM Program Lang, 2019, 3: 1-29

Koyuncu A, Liu K, Bissyandé T F, et al. FixMiner: mining relevant fix patterns for automated program repair. Empir
Software Eng, 2020, 25: 1980—-2024

Gulwani S, Radicek I, Zuleger F. Automated clustering and program repair for introductory programming assignments.
SIGPLAN Not, 2018, 53: 465-480

Falleri J R, Morandat F, Blanc X, et al. Fine-grained and accurate source code differencing. In: Proceedings of the 29th
ACM/IEEE International Conference on Automated Software Engineering, 2014. 313-324

Sakkas G, Endres M, Cosman B, et al. Type error feedback via analytic program repair. In: Proceedings of the 41st ACM
SIGPLAN Conference on Programming Language Design and Implementation, 2020. 16-30

White M, Tufano M, Martinez M, et al. Sorting and transforming program repair ingredients via deep learning code
similarities. In: Proceedings of IEEE 26th International Conference on Software Analysis, Evolution and Reengineering,
2019. 479-490

Yi X, Chen L, Mao X, et al. Efficient automated repair of high floating-point errors in numerical libraries. Proc ACM
Program Lang, 2019, 3: 1-29

Jiang J, Xiong Y, Zhang H, et al. Shaping program repair space with existing patches and similar code. In: Proceedings of
the 27th ACM SIGSOFT International Symposium on Software Testing and Analysis, 2018. 298-309

Jiang N, Lutellier T, Tan L. CURE: code-aware neural machine translation for automatic program repair. In: Proceedings
of IEEE/ACM 43rd International Conference on Software Engineering, 2021. 1161-1173

Koyuncu A, Liu K, Bissyandé T F, et al. iFixR: bug report driven program repair. In: Proceedings of the 27th ACM Joint

https://doi.org/10.1007/s10515-014-0165-z
https://doi.org/10.1016/j.jss.2019.01.056
https://doi.org/10.1109/TSE.2019.2911283
https://doi.org/10.1016/j.jss.2017.07.027
https://doi.org/10.1016/j.jss.2020.110538
https://doi.org/10.1016/j.jss.2020.110861
https://doi.org/10.1016/j.jss.2018.02.001
https://arxiv.org/abs/1904.01720
https://doi.org/10.1016/j.eswa.2020.114134
https://doi.org/10.1016/j.jss.2017.08.025
https://doi.org/10.1109/TSE.2019.2942301
https://doi.org/10.1145/3402450
https://doi.org/10.1109/TSE.2018.2874648
https://doi.org/10.1145/3360004
https://doi.org/10.1007/s10664-017-9562-9
https://doi.org/10.1145/3276528
https://doi.org/10.1145/2885495
https://doi.org/10.1145/3360565
https://doi.org/10.1007/s10664-019-09780-z
https://doi.org/10.1145/3296979.3192387
https://doi.org/10.1145/3290369

240

241

242

243

244

245

246

247
248

249
250

251

252

253

254

255

256

257

258

259
260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

Song Y, et al. Sci China Inf Sci April 2024, Vol. 67, Iss. 4, 141101:39

Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, 2019.
314-325

Zhu Q, Sun Z, Xiao Y a, et al. A syntax-guided edit decoder for neural program repair. In: Proceedings of the 29th ACM
Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering,
2021. 341-353

Sun Z, Zhu Q, Xiong Y, et al. TreeGen: a tree-based transformer architecture for code generation. In: Proceedings of the
34th AAAI Conference on Artificial Intelligence, 2020. 8984-8991

Shariffdeen R, Noller Y, Grunske L, et al. Concolic program repair. In: Proceedings of the 42nd ACM SIGPLAN International
Conference on Programming Language Design and Implementation, 2021. 390-405

Lee J, Hong S, Oh H. MemFix: static analysis-based repair of memory deallocation errors for C. In: Proceedings of the
26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software
Engineering, 2018. 95-106

Li Y, Wang S, Nguyen T N. DLFix: context-based code transformation learning for automated program repair. In: Pro-
ceedings of the ACM/IEEE 42nd International Conference on Software Engineering, 2020. 602-614

Wen M, Chen J, Wu R, et al. Context-aware patch generation for better automated program repair. In: Proceedings of
IEEE/ACM 40th International Conference on Software Engineering, 2018. 1-11

Wang S, Wen M, Lin B, et al. Automated patch correctness assessment: how far are we? In: Proceedings of the 35th
IEEE/ACM International Conference on Automated Software Engineering, 2020. 968-980

Ziarko W, Shan N. Machine learning through data classification and reduction. Fundamenta Informaticae, 1997, 30: 373-382
Patil T R, Sherekar S S. Performance analysis of Naive Bayes and J48 classification algorithm for data classification. Int J
Comput Sci Appl, 2013, 6: 256-261

Kleinbaum D G, Dietz K, Gail M, et al. Logistic Regression. Berlin: Springer, 2002

Arcuri A, Briand L. A practical guide for using statistical tests to assess randomized algorithms in software engineering.
In: Proceedings of the 33rd International Conference on Software Engineering, 2011. 1-10

Platt J. Sequential minimal optimization: a fast algorithm for training support vector machines. 1998. https://www.micro-
soft.com /en-us/research /publication sequential-minimal-optimization-a-fast-algorithm-for-training-support-vector-machines/
Xiong Y, Liu X, Zeng M, et al. Identifying patch correctness in test-based program repair. In: Proceedings of the 40th
International Conference on Software Engineering, 2018. 789-799

Liang J, Ji R, Jiang J, et al. Interactive patch filtering as debugging aid. In: Proceedings of IEEE International Conference
on Software Maintenance and Evolution, 2021. 239-250

Saha R K, Lyu Y, Yoshida H, et al. Elixir: effective object-oriented program repair. In: Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engineering, 2017. 648—659

Tan S H, Yoshida H, Prasad M R, et al. Anti-patterns in search-based program repair. In: Proceedings of the 24th ACM
SIGSOFT International Symposium on Foundations of Software Engineering, 2016. 727-738

Long F, Rinard M. Staged program repair with condition synthesis. In: Proceedings of the 10th Joint Meeting on Foundations
of Software Engineering, 2015. 166-178

Le X B D, Thung F, Lo D, et al. Overfitting in semantics-based automated program repair. Empir Software Eng, 2018, 23:
3007-3033

Yasunaga M, Liang P. Graph-based, self-supervised program repair from diagnostic feedback. In: Proceedings of International
Conference on Machine Learning, 2020. 10799-10808

Wang K, Singh R, Su Z. Dynamic neural program embedding for program repair. 2017. ArXiv:1711.07163

Gupta R, Kanade A, Shevade S. Deep reinforcement learning for syntactic error repair in student programs. In: Proceedings
of the 33rd AAAI Conference on Artificial Intelligence, 2019. 930-937

Traver V J. On compiler error messages: what they say and what they mean. Adv Hum-Comput Interaction, 2010, 2010:
1-26

Allamanis M, Brockschmidt M, Khademi M. Learning to represent programs with graphs. In: Proceedings of International
Conference on Learning Representations, 2018

Gember-Jacobson A, Akella A, Mahajan R, et al. Automatically repairing network control planes using an abstract repre-
sentation. In: Proceedings of the 26th Symposium on Operating Systems Principles, 2017. 359-373

Dinella E, Dai H, Li Z, et al. Hoppity: learning graph transformations to detect and fix bugs in programs. In: Proceedings
of International Conference on Learning Representations, 2020

Gupta K, Christensen P E, Chen X, et al. Synthesize, execute and debug: learning to repair for neural program synthesis.
2020. ArXiv:2007.08095

Tian H, Liu K, Kaboré A K, et al. Evaluating representation learning of code changes for predicting patch correctness in
program repair. In: Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering,
2020. 981-992

Yang G, Min K, Lee B. Applying deep learning algorithm to automatic bug localization and repair. In: Proceedings of the
35th Annual ACM Symposium on Applied Computing, 2020. 1634-1641

Lourengo R, Freire J, Shasha D. BugDoc: algorithms to debug computational processes. In: Proceedings of the ACM
SIGMOD International Conference on Management of Data, 2020. 463-478

Pham H V, Lutellier T, Qi W, et al. CRADLE: cross-backend validation to detect and localize bugs in deep learning libraries.
In: Proceedings of IEEE/ACM 41st International Conference on Software Engineering, 2019. 1027-1038

Wardat M, Le W, Rajan H. DeepLocalize: fault localization for deep neural networks. In: Proceedings of IEEE/ACM 43rd
International Conference on Software Engineering, 2021. 251-262

Dolby J, Shinnar A, Allain A, et al. Ariadne: analysis for machine learning programs. In: Proceedings of the 2nd ACM
SIGPLAN International Workshop on Machine Learning and Programming Languages, 2018. 1-10

Cheng D, Cao C, Xu C, et al. Manifesting bugs in machine learning code: an explorative study with mutation testing.
In: Proceedings of IEEE International Conference on Software Quality, Reliability and Security, 2018. 313-324

Wu X, Zheng W, Xia X, et al. Data quality matters: a case study on data label correctness for security bug report prediction.
IEEE Trans Software Eng, 2022, 48: 2541-2556

Tao G, Ma S, Liu Y, et al. TRADER: trace divergence analysis and embedding regulation for debugging recurrent neural
networks. In: Proceedings of IEEE/ACM 42nd International Conference on Software Engineering, 2020. 986-998

Kim E, Gopinath D, Pasareanu C, et al. A programmatic and semantic approach to explaining and debugging neural network
based object detectors. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020.

https://doi.org/10.3233/FI-1997-303411
https://doi.org/10.1007/s10664-017-9577-2
https://arxiv.org/abs/1711.07163
https://doi.org/10.1155/2010/602570
https://arxiv.org/abs/2007.08095
https://doi.org/10.1109/TSE.2021.3063727

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296
297

298

299

300

301

302

303

304

305

306

307

Song Y, et al. Sci China Inf Sci April 2024, Vol. 67, Iss. 4, 141101:40

11128-11137

Sotoudeh M, Thakur A V. Provable repair of deep neural networks. In: Proceedings of the 42nd ACM SIGPLAN International
Conference on Programming Language Design and Implementation, 2021. 588-603

Song K, Tan X, Lu J. Neural machine translation with error correction. 2020. ArXiv:2007.10681

Zhang Y, Ren L, Chen L, et al. Detecting numerical bugs in neural network architectures. In: Proceedings of the 28th ACM
Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering,
2020. 826837

Schoop E, Huang F, Hartmann B. UMLAUT: debugging deep learning programs using program structure and model behavior.
In: Proceedings of the CHI Conference on Human Factors in Computing Systems, 2021. 1-16

Zhang X, Zhai J, Ma S, et al. AUTOTRAINER: an automatic DNN training problem detection and repair system.
In: Proceedings of IEEE/ACM 43rd International Conference on Software Engineering, 2021. 359-371

Sun Z, Zhang J M, Harman M, et al. Automatic testing and improvement of machine translation. In: Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering, 2020. 974-985

Jebnoun H, Braick H B, Rahman M M, et al. The scent of deep learning code: an empirical study. In: Proceedings of the
17th International Conference on Mining Software Repositories, 2020. 420-430

Fan Y, Xia X, Lo D, et al. What makes a popular academic Al repository? Empir Software Eng, 2021, 26: 2

Liu J, Huang Q, Xia X, et al. Is using deep learning frameworks free? Characterizing technical debt in deep learning frame-
works. In: Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering: Software Engineering in
Society, 2020. 1-10

Liu J, Huang Q, Xia X, et al. An exploratory study on the introduction and removal of different types of technical debt in
deep learning frameworks. Empir Software Eng, 2021, 26: 16

Han J, Deng S, Lo D, et al. An empirical study of the dependency networks of deep learning libraries. In: Proceedings of
IEEE International Conference on Software Maintenance and Evolution, 2020. 868-878

Sun X, Zhou T, Li G, et al. An empirical study on real bugs for machine learning programs. In: Proceedings of the 24th
Asia-Pacific Software Engineering Conference, 2017. 348-357

Zhang R, Xiao W, Zhang H, et al. An empirical study on program failures of deep learning jobs. In: Proceedings of
IEEE/ACM 42nd International Conference on Software Engineering, 2020. 1159-1170

Jia L, Zhong H, Wang X, et al. An empirical study on bugs inside TensorFlow. In: Proceedings of International Conference
on Database Systems for Advanced Applications. Berlin: Springer, 2020. 604-620

Garcia J, Feng Y, Shen J, et al. A comprehensive study of autonomous vehicle bugs. In: Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering, 2020. 385-396

Chen Z, Yao H, Lou Y, et al. An empirical study on deployment faults of deep learning based mobile applications.
In: Proceedings of IEEE/ACM 43rd International Conference on Software Engineering, 2021. 674-685

Just R, Jalali D, Ernst M D. Defects4j: a database of existing faults to enable controlled testing studies for Java programs.
In: Proceedings of the International Symposium on Software Testing and Analysis, 2014. 437-440

Abreu R, Zoeteweij P, van Gemund A J. An evaluation of similarity coefficients for software fault localization. In: Proceedings
of the 12th Pacific Rim International Symposium on Dependable Computing, 2006. 39-46

Wong W E, Qi Y, Zhao L, et al. Effective fault localization using code coverage. In: Proceedings of the 31st Annual
International Computer Software and Applications Conference, 2007. 449-456

Rao P, Zheng Z, Chen T Y, et al. Impacts of test suite’s class imbalance on spectrum-based fault localization techniques.
In: Proceedings of the 13th International Conference on Quality Software, 2013. 260—-267

Shu T, Ye T, Ding Z, et al. Fault localization based on statement frequency. Inf Sci, 2016, 360: 43-56

Feyzi F, Parsa S. Inforence: effective fault localization based on information-theoretic analysis and statistical causal inference.
Front Comput Sci, 2019, 13: 735-759

Madeiral F, Urli S, Maia M, et al. BEARS: an extensible Java bug benchmark for automatic program repair studies.
In: Proceedings of IEEE 26th International Conference on Software Analysis, Evolution and Reengineering, 2019. 468-478
Saha R K, Lyu Y, Lam W, et al. Bugs.jar: a large-scale, diverse dataset of real-world Java bugs. In: Proceedings of the
15th International Conference on Mining Software Repositories, 2018. 10-13

Song Y, Xie X, Liu Q, et al. A comprehensive empirical investigation on failure clustering in parallel debugging. J Syst
Software, 2022, 193: 111452

Song Y, Xie X, Zhang X, et al. Evolving ranking-based failure proximities for better clustering in fault isolation.
In: Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering, 2022

Chen T, Cheung S, Yiu S. Metamorphic Testing: A New Approach for Generating Next Test Cases. Technical Report
hkust-cs98-01. Hong Kong University of Science and Technology, 1998

Xie X, Ho J W K, Murphy C, et al. Testing and validating machine learning classifiers by metamorphic testing. J Syst
Software, 2011, 84: 544-558

Xie X, Zhang Z, Chen T Y, et al. METTLE: a METamorphic testing approach to assessing and validating unsupervised
machine learning systems. IEEE Trans Rel, 2020, 69: 1293-1322

Xie X, Ho J, Murphy C, et al. Application of metamorphic testing to supervised classifiers. In: Proceedings of the 9th
International Conference on Quality Software, 2009. 135-144

Chen S, Jin S, Xie X. Testing your question answering software via asking recursively. In: Proceedings of the 36th IEEE/ACM
International Conference on Automated Software Engineering, 2021. 104-116

Grottke M, Trivedi K S. A classification of software faults. J Reliab Engin Assoc Japan, 2005, 27: 425-438

https://arxiv.org/abs/2007.10681
https://doi.org/10.1007/s10664-020-09916-6
https://doi.org/10.1007/s10664-020-09917-5
https://doi.org/10.1016/j.ins.2016.04.023
https://doi.org/10.1007/s11704-017-6512-z
https://doi.org/10.1016/j.jss.2022.111452
https://doi.org/10.1016/j.jss.2010.11.920
https://doi.org/10.1109/TR.2020.2972266

Song Y, et al. Sci China Inf Sci

Appendix A

April 2024, Vol. 67, Iss. 4, 141101:41

Table A1 AI4FL tools (material)

Paper Description Website

[229] Symbiosis: A concurrency debugging technique based on https://github.com/nunomachado/symbiosis
differential schedule projections

[160] FLUCCS: A fault localization technique that learns to https://bitbucket.org/teamcoinse/fluccs
rank program elements based on both existing SBFL tech-
niques and source code metrics

[145] An approach to identifying high-impact bug reports https://github.com/goddding/JCST

[189] PkgRec: A tool to predicting the confidence score of a http://github.com/tkdsheep/MultiPackage
package being affected by a new bug report

[174] DeepBugs: A learning approach to name-based bug de- https://github.com/michaelpradel/DeepBugs
tection

[206] NeuralBugLocator: A deep learning-based technique that https://bitbucket.org/iiscseal/nbl/
can localize bugs without running the program

[218] Tregression: An Eclipse plugin to visualizing the bugs in https://github.com/llmhyy /tregression
Defects4J repository

[228] FixML: A system for automatically generating feedback https://github.com/kupl/FixML
on logical errors in functional programming assignments

[147] ChangeLocator: A method to automatically locating https://bitbucket.org/rongxin/changelocator-dataset
crash-inducing changes for a given bucket of crash reports

[69] RepLoc: An automated framework to localizing the prob- https://reploc.bitbucket.io/
lematic files for unreproducible builds

[171] SCMiner: An online bug diagnosis tool https://github.com/Tarannum-Zaman/Scminer

[134] DeepFL: A deep learning approach to automatically learn- https://github.com/DeepFL/DeepFaultLocalization
ing the most effective existing/latent features for fault lo-
calization

[176] A tool to constructing datasets for evaluating Al-based https://github.com/yanxiao6/
fault localization techniques BugLocalization-dataset

[139] CraTer: An automatic approach for predicting whether a http://cstar.whu.edu.cn/p/crater/
crashing fault resides in stack traces

[151] D&C: A divide-and-conquer approach for IR-based fault https://github.com/d-and-c/d-and-c
localization

[109] MLDebugger: A method that iteratively finds minimal https://github.com/raonilourenco/MLDebugger
definitive root causes

[163] CombineFL: An infrastructure for evaluating and combin- https://damingz.github.io/combinefl /index.html
ing fault localization techniques

[64] HSFL: A historical spectrum-based fault localization https://github.com/justinwm/HSFL
technique

[146] ChangeRanker: A fault localization tool with feature se- https://github.com/Naplues/ChangeRanker
lection technique

[194] Ulysis: A metric to capturing the quality of test suites for https://github.com/EvoSuite/evosuite/pull/293
diagnosability

[183] OffSide: A technique to identifying mistakes in boundary https://github.com/SERG-Delft/ml4se-offside
conditions

[143] ALBFL: A neural ranking model that combines static and https://github.com/indigo-99/ALBFL
dynamic features for fault localization

[197] A test case resampling tool for boosting the effectiveness https://github.com/zhuozhangNUDT/
of deep learning-based fault localization techniques test-case-resampling

[204] RecBi: A reinforcement compiler bug isolation tool https://github.com/haoyang9804/RecBi

[138] JDCallgraph: A tool to generating dynamic call graphs https://github.com/dkarv/jdcallgraph
for fault localization

[170] A two-phase framework for just-in-time defect identifica- https://github.com/MengYan1989/JIT-DIL
tion and localization

[168] Grace: A fault localization tool using graph-based repre- https://github.com/yilinglou/Grace
sentation learning

18] ProbDD: A probabilistic delta debugging algorithm https://github.com/Amocy-Wang/ProbDD

[101] DeepFD: A learning-based fault diagnosis and localization https://github.com/ArabelaTso/DeepFD

framework

https://github.com/nunomachado/symbiosis
https://bitbucket.org/teamcoinse/fluccs
https://github.com/goddding/JCST
http://github.com/tkdsheep/MultiPackage
https://github.com/michaelpradel/DeepBugs
https://bitbucket.org/iiscseal/nbl/
https://github.com/llmhyy/tregression
https://github.com/kupl/FixML
https://bitbucket.org/rongxin/changelocator-dataset
https://reploc.bitbucket.io/
https://github.com/Tarannum-Zaman/Scminer
https://github.com/DeepFL/DeepFaultLocalization
https://github.com/yanxiao6/BugLocalization-dataset
https://github.com/yanxiao6/BugLocalization-dataset
http://cstar.whu.edu.cn/p/crater/
https://github.com/d-and-c/d-and-c
https://github.com/raonilourenco/MLDebugger
https://damingz.github.io/combinefl/index.html
https://github.com/justinwm/HSFL
https://github.com/Naplues/ChangeRanker
https://github.com/EvoSuite/evosuite/pull/293
https://github.com/SERG-Delft/ml4se-offside
https://github.com/indigo-99/ALBFL
https://github.com/zhuozhangNUDT/test-case-resampling
https://github.com/zhuozhangNUDT/test-case-resampling
https://github.com/haoyang9804/RecBi
https://github.com/dkarv/jdcallgraph
https://github.com/MengYan1989/JIT-DIL
https://github.com/yilinglou/Grace
https://github.com/Amocy-Wang/ProbDD
https://github.com/ArabelaTso/DeepFD

Song Y, et al. Sci China Inf Sci

April 2024, Vol. 67, Iss. 4, 141101:42

Table A2 AI4APR tools (material)

Description

Website

A technique for history-based program repair

https://github.com/xuanbachle/bugfixes

A set of anti-patterns that can be used on search-based
repair tools

https://anti-patterns.github.io/search-based-repair/

Nopol: An approach to automatic repair of buggy condi-
tional statements

http://github.com/SpoonLabs/nopol/

ACS: A program repair system to generating conditions
at faulty locations

https://github.com/Adobee/ACS

An approach that heuristically determines the correctness
of the generated patches

https://github.com/Ultimanecat /DefectRepairing

ARJA: A new GP based repair approach for automated
repair of Java programs

https://github.com/yyxhdy/arja

A semantic program embedding for program repair

https://github.com/keowang/
dynamic-program-embedding

Clara: An automated program repair algorithm for intro-
ductory programming assignments

https://github.com/iradicek/clara

SimFix: An automatic program repair approach that uti-
lizes both existing patches and similar code

https://github.com/xgdsmileboy/SimFix

CapGen: A context-aware patch generation approach

https://github.com/justinwm/CapGen

iFixR: A debugging pipeline incorporating both patch
generation and patch validation

https://github.com/SerVal-DTF /iFixR

SEQUENCER: An end-to-end approach to program re-
pair based on sequence-to-sequence learning

https://github.com/kth/SequenceR

A tool to automatically learning bug-fixes in the wild for
patch generation

https://sites.google.com/view/learning-fixes

DeepRepair: An approach for sorting and transforming
program repair ingredients

https://sites.google.com/view/deeprepair

RLAssist: A deep reinforcement learning-based program
repair technique

https://bitbucket.org/iiscseal /rlassist

DrRepair: A self-supervised learning-based program re-
pair technique

https://github.com/michiyasunaga/DrRepair

CoCoNuT: An ensemble learning-based patch generation
and validation tool

https://github.com/lin-tan/CoCoNut- Artifact

DLFix: A two-tier APR tool based on code transforma-
tion learning

https://github.com /ICSE-2019-AUTOFIX/
ICSE-2019-AUTOFIX

SCRepair: A smart contract repair tool

https://screpair-apr.github.io/

ARJA-e: An evolutionary repair tool for Java code

https://github.com/yyxhdy/arja/tree/arja-e

A tool to mining fix patterns for FindBugs violations

https://github.com/FixPattern/findbugs-violations

CURE: An NMT-based APR tool

https://github.com/lin-tan/CURE

Recoder: A syntax-guided APR tool

https://github.com/pkuzgh/Recoder

CPR: An APR tool for network control planes

https://bitbucket.org/uw-madison-networking-research/

arc

https://github.com/xuanbachle/bugfixes
https://anti-patterns.github.io/search-based-repair/
http://github.com/SpoonLabs/nopol/
https://github.com/Adobee/ACS
https://github.com/Ultimanecat/DefectRepairing
https://github.com/yyxhdy/arja
https://github.com/keowang/dynamic-program-embedding
https://github.com/keowang/dynamic-program-embedding
https://github.com/iradicek/clara
https://github.com/xgdsmileboy/SimFix
https://github.com/justinwm/CapGen
https://github.com/SerVal-DTF/iFixR
https://github.com/kth/SequenceR
https://sites.google.com/view/learning-fixes
https://sites.google.com/view/deeprepair
https://bitbucket.org/iiscseal/rlassist
https://github.com/michiyasunaga/DrRepair
https://github.com/lin-tan/CoCoNut-Artifact
https://github.com/ICSE-2019-AUTOFIX/ICSE-2019-AUTOFIX
https://github.com/ICSE-2019-AUTOFIX/ICSE-2019-AUTOFIX
https://screpair-apr.github.io/
https://github.com/yyxhdy/arja/tree/arja-e
https://github.com/FixPattern/findbugs-violations
https://github.com/lin-tan/CURE
https://github.com/pkuzqh/Recoder
https://bitbucket.org/uw-madison-networking-research/arc
https://bitbucket.org/uw-madison-networking-research/arc

Song Y, et al. Sci China Inf Sci

April 2024, Vol. 67, Iss. 4, 141101:43

Table A3 SD4AI tools (material)

Paper Description Website
[112] A technique to identifying training points most responsi- http://bit.ly/gt-influence
ble for a given prediction
[113] KARMA: A causal unlearning system that uses several https://github.com/CausalUnlearning/KARMA
mechanisms to determine the set of polluted data sample
[131] LDADE: A search-based tool that tunes LDA’s parame- https://github.com/ai-se/Pits1da/
ters to fix its systematic errors
[277] An error correction mechanism for NMT https://github.com/StillKeepTry /ECM-NMT
[274] TRADER: A tool for debugging RNN models https://github.com/trader-rnn/TRADER
[268] BugDoc: A framework for finding root causes of errors in https://github.com/ViDA-NYU/BugDoc
computational pipelines
[278] DEBAR: A static analysis tool for detecting numerical https://github.com/ForeverZyh/DEBAR
bugs in neural architectures
[270] DeepLocalize: A tool to identifying the root causes for https://github.com/Wardat-ISU/DeepLocalize
DNN errors
[119] 175 faults gathered from GitHub and StackOverflow https://github.com/ForeverZyh/
TensorFlow-Program-Bugs
[290] 499 faults from 16851 commits in Baidu Apollo and Au- http://tiny.cc/cps_bug_analysis
toware
[289] 202 TensorFlow bug fixes (with some bug reports) https://github.com/fordataupload/tfbugdata
[34] 667 DNN instances (including bug and repair) for DNN https://github.com/lab-design/
repair ICSE2020DNNBugRepair
[121] 1981 commits, 1392 issues/pull requests and 2653 posts https://github.com/dlfaults/dlfaults
for delivering a taxonomy of real faults in deep learning
systems
[282] 59 deep learning repositories on GitHub for investigating https://github.com/Hadhemii/DLCodeSmells
the scent of deep learning code
[291] 304 deployment faults gathered from GitHub and Stack- https://github.com/chenzhenpengl8/icse2021
Overflow
[283] 1149 labeled academic Al repositories (popular or unpop- https://github.com/YuanruiZJU/academic-ai-repos

ular)

http://bit.ly/gt-influence
https://github.com/CausalUnlearning/KARMA
https://github.com/ai-se/Pits_lda/
https://github.com/StillKeepTry/ECM-NMT
https://github.com/trader-rnn/TRADER
https://github.com/ViDA-NYU/BugDoc
https://github.com/ForeverZyh/DEBAR
https://github.com/Wardat-ISU/DeepLocalize
https://github.com/ForeverZyh/TensorFlow-Program-Bugs
https://github.com/ForeverZyh/TensorFlow-Program-Bugs
http://tiny.cc/cps_bug_analysis
https://github.com/fordataupload/tfbugdata
https://github.com/lab-design/ICSE2020DNNBugRepair
https://github.com/lab-design/ICSE2020DNNBugRepair
https://github.com/dlfaults/dl_faults
https://github.com/Hadhemii/DLCodeSmells
https://github.com/chenzhenpeng18/icse2021
https://github.com/YuanruiZJU/academic-ai-repos

	Introduction
	Background
	Artificial intelligence for software debugging
	Artificial intelligence for fault localization (AI4FL)
	Artificial intelligence for automated program repair (AI4APR)

	Software debugging for artificial intelligence
	Training data-oriented debugging
	Model-oriented debugging
	AI libraries-oriented debugging

	Methodology
	Research questions
	Paper selection
	Paper analysis
	The main venues
	Most cited papers
	Contribution by countries

	How can AI techniques improve the effectiveness of SD? (RQ1)
	How and which AI techniques are typically used in software debugging? (RQ1.1)
	How and which AI techniques are typically used in fault localization?
	How and which AI techniques are typically used in automated program repair?

	What types of data do researchers tend to use as the input of AI models in the context of software debugging? (RQ1.2)
	Execution-based input
	Code-based input
	Text-based input

	How can SD be used to assure the quality of AI systems? (RQ2)
	How software debugging techniques are used to localize or repair faults in AI systems? (RQ2.1)
	Fault localization techniques applied in AI systems
	Automated program repair techniques applied in AI systems

	What types of faults occur frequently in AI systems and AI libraries? (RQ2.2)

	What configuration do researchers prefer to use in AI4SD and SD4AI experiments? (RQ3)
	Which datasets (programming languages) are most commonly used? (RQ3.1)
	Which metrics are most commonly used? (RQ3.2)

	Challenges and opportunities
	In the field of AI4SD
	In the field of SD4AI

	Conclusion
	

