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Appendix A Proof of Theorem 1
In model (1), Lipschitz property associated with the drift and diffusion coefficients implies the existence of a unique local solution

on [0, ωe], where ωe is the explosion time [1]. Then, by using a proof by contradiction combined with a C2 function to demonstrate

that the explosion time tends to infinity, it proves the global uniqueness of the positvie solution in model (1). In fact, Theorem 3.1

in reference [2] and Theorem 2.1 in reference [3] both provide similar proofs, so we omit the specific proof steps.

Appendix B Proof of Theorem 2
To establish the validity of Theorem 2, we introduce the following lemmas and definition.

Lemma 1 (Exponential Martingale Inequality [1]). Let g = (g1, · · · , gm) ∈ L2(R+;R1×m), and let T, α, β be any positive

numbers. Then

P

{
sup

0⩽t⩽T

[∫ t

0

g(s)dB(s) −
α

2

∫ t

0

|g(s)|2 ds

]
> β

}
⩽ e

−αβ
.

Lemma 2. If the system parameters in the information layer satisfy Λ1δ > µ1(θ + µ1), we can get

lim
t→∞

S(t) =
Λ1δ − µ1(θ + µ1)

(θ + µ1)δ
> 0,

which means congestion information will be effectively propagate.

Proof. From equilibrium equations on the information layer:
Λ1 − δI(t)S(t) − µ1I(t) = 0

δI(t)S(t) − θS(t) − µ1S(t) = 0

θS(t) − µ1T (t) = 0,

(B1)

solving the above system of equations, we can see the information-free equilibrium E0 = (
Λ1
µ1

, 0, 0) always exists, the endemic

equilibrium E1 = (I∗
1 , S

∗
1 , T

∗
1 ) exists if and only if Λ1δ > µ1(θ + µ1), where

I
∗
1 =

θ + µ1

δ
,

S
∗
1 =

Λ1δ − µ1(θ + µ1)

(θ + µ1) δ
,

T
∗
1 =

Λ1δθ − Λ1µ1(θ + µ1)

(θ + µ1)δµ1

.

Then we prove the global stability of the endemic equilibrium E1 under this condition.

Define a Lyapunov function

V1(I, S) = I − I
∗
1 − I

∗
1 log

I

I∗
1

+ S − S
∗
1 − S

∗
1 log

S

S∗
1

,

Differentiating V1 gives

V̇1 =

(
1 −

I∗
1

I

)
(Λ1 − δIS − µ1I) +

(
1 −

S∗
1

S

)
(δIS − θS − µ1S)

We note that E1 satisfy the following equations:

Λ1 − δI
∗
1S

∗
1 − µ1I

∗
1 = 0,

δI
∗
1S

∗
1 − θS

∗
1 − µ1S

∗
1 = 0.
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So we obtain

V̇1 =

(
1 −

I∗
1

I

)(
δI

∗
1S

∗
1 + µ1I

∗
1 − δIS − µ1I

)
+

(
1 −

S∗
1

S

)(
δIS − δI

∗
1S
)

= −
µ1

I

(
I − I

∗
1

)2
+ δ

(
1 −

I∗
1

I

)
(I

∗
1S

∗
1 − IS) + δS

(
1 −

S∗
1

S

)(
I − I

∗
1

)
= −

µ1

I

(
I − I

∗
1

)2
+ δ

(
I
∗
1S

∗
1 − IS −

I∗2
1 S∗

1

I
+ I

∗
1S + IS − SI

∗
1 − S

∗
1 I + I

∗
1S

∗
1

)

= −
µ1

I

(
I − I

∗
1

)2
+ δI

∗
1S

∗
1

(
2 −

I∗
1

I
−

I

I∗
1

)
⩽ 0,

which implies that V̇1 ⩽ 0 for all S, I > 0. To show the global stability behavior of E1, we investigate the largest compact invariant

set where V̇1 = 0. Observing the structure of V̇1, it is not difficult to notice that V̇1 = 0 only at E1. Therefore, by the LaSalle

Invariant Principe [2], the endemic equilibrium E1 is globally asymptotically stable. Namely,

lim
t→∞

S(t) = S
∗
1 =

Λ1δ − µ1(θ + µ1)

(θ + µ1)δ
> 0,

congestion information will be effectively propagate.

The objective of this paper is to examine the almost sure exponential stability of model (1). We shall introduce the following

definition for clarity.

Definition 1. Almost Sure Exponentially Stable [1]. The trivial solution of model (1) is said to be almost surely exponentially

stable if

lim sup
x→∞

1

t
log |x(t; t0, x0)| < 0 a.s.

for all x0 ∈ Rd.

Now, let’s proceed to demonstrate Theorem 2.

For the social network layer, we first analyze the feasible domain of nodes, and the sum of the first three equations in model (1)

yields,

d[F (t) + C(t) + R(t)] = [Λ2 − µ2(F (t) + C(t) + R(t))] dt − σ1[F (t) + C(t) + R(t)]dB1(t). (B2)

The integral form can be written as

F (t) + C(t) + R(t) = F (0) + C(0) + R(0) + Λ2t − µ2

∫ t

0

[F (s) + C(s) + R(s)]ds

− σ1

∫ t

0

[F (s) + C(s) + R(s)]dB1(s). (B3)

By Lemma 4.2, Lemma 4.3 and setting dS = dI = dR, σ1j = σ2j = σ3j(1 ⩽ j ⩽ N) in Eq. (1.3) [2], we obtain

lim
t→∞

1

t

∫ t

0

(F (s) + C(s) + R(s)) dB1(s) = 0,

lim
t→∞

F (t) + C(t) + R(t)

t
= 0.

Dividing both sides of Eq. (B3) by t and letting t → ∞ yields,

lim
t→∞

1

t

∫ t

0

[F (s) + C(s) + R(s)]ds =
Λ2

µ2

. (B4)

Next we begin to analyze whether C(t) can be effectively controlled, that is, whether C(t) tends zero almost surely. Applying

Itô′s formula to C(t) we get

d logC(t) =

[
αF (t) − r − ξS(t) − µ2 −

σ1
2

2
−

σ2
2F 2(t)

2

]
dt − σ1dB1(t) + σ2F (t)dB2(t). (B5)

Integrating both side of Eq. (B5) gives

logC(t) = logC(0) +

∫ t

0

[
αF (s) − ξS(s) −

1

2
σ2

2
F

2
(s)

]
ds −

(
γ + µ2 +

σ1
2

2

)
t − σ1B1(t) + M(t). (B6)

where M(t) =
∫ t
0
σ2F (s)dB2(s) is a continuous martingales with M(0) = 0. Moreover, ⟨M(t),M(t)⟩ =

∫ t
0
σ2

2F 2(s)ds. For all

∀ε ∈ (0, 1), and letting N = 0, 1, 2, · · · , by the exponential martingale inequality (Lemma 1)

P

{
sup

0⩽t⩽(N+1)T

[
M(t) −

ε

2
⟨M(t),M(t)⟩

]
>

2

ε
log(N + 1)

}
⩽

1

(N + 1)2
.
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Utilizing the first part (a) of Borel-Cantelli’s lemma, it follows that for almost all ω ∈ Ω, there exists an integer N0 = N0(ω) such

that if N > N0,

M(t) ⩽
ε

2
⟨M(t),M(t)⟩ +

2

ε
log(N + 1) ⩽

ε

2

∫ t

0

σ2
2
F

2
(s)ds +

2

ε
log(N + 1),

holds for all 0 ⩽ t ⩽ (N + 1)T . So Eq. (B6) goes to

logC(t) = logC(0) − ξ

∫ t

0

S(s)ds +

∫ t

0

[
αF (s) −

(1 − ε)σ2
2

2
F

2
(s)

]
ds

−
(
γ + µ2 +

σ1
2

2

)
t − σ1B1(t) +

2

ε
log(N + 1),

for all t ⩽ (N + 1)T , N ⩽ N0 almost surely. Consequently, for almost all ω ∈ Ω, if NT ⩽ t ⩽ (N + 1)T and N ⩾ N0,

1

t
logC(t) =

logC(0) + 2
ε log(N + 1)

N
+ σ1

B1(t)

t
−

1

t
ξ

∫ t

0

S(s)ds

+
1

t

∫ t

0

[
αF (s) −

(1 − ε)σ2
2

2
F

2
(s)

]
ds −

(
γ + µ2 +

σ1
2

2

)
.

(B7)

Note that limt→∞
B1(t)

t = 0 a.s. by strong Law of large numbers. By the L′Hôpital′s Rule and Lemma 2, limt→∞
1
t

∫ t
o
S(s)ds =

limt→∞ S(t) = S∗
1 . By the positivity of S(t), limt→∞

1
t

∫ t
0
S(s)ds ⩾ 0. Based on the comprehensive analysis above,

lim
t→∞

1

t

∫ t

0

S(s)ds ⩾ max{0, S∗
1}. (B8)

Addittionally, the positivity of C(t) and R(t), along with the condition Eq. (B4), can be devived,

lim
t→∞

1

t

∫ t

0

F (s)ds ⩽ lim
t→∞

1

t

∫ t

0

[F (s) + C(s) + R(s)] ds =
Λ2

µ2

.

Then we obtain,

lim
t→∞

1

t

∫ t

0

[
αF (s) −

(1 − ε)σ2
2

2
F

2
(s)

]
ds ⩽ min

{
αΛ2

µ2

,
α2

2(1 − ε)σ2
2

}
. (B9)

With Eqs. (B8) and (B9), Eq. (B7) goes to

lim sup
t→∞

1

t
logC(t) ⩽ −max{0, ξS∗

1} − γ − µ2 −
σ1

2

2
+ min

{
αΛ2

µ2

,
α2

2(1 − ε)σ2
2

}
a.s.

Let ε → 0, we obtain,

lim sup
t→∞

1

t
logC(t) ⩽ min

{
αΛ2

µ2

,
α2

2σ2
2

}
− max

{
0,

ξ[Λ1δ − µ1(θ + µ1)]

(θ + µ1)δ

}
− γ − µ2 −

σ1
2

2
a.s.

If min
{

αΛ2
µ2

, α2

2σ2
2

}
< max

{
0,

ξ[Λ1δ−µ1(θ+µ1)]

(θ+µ1)δ

}
+ γ + µ2 + 1

2σ1
2, then lim supt→∞

1
t logC(t) < 0 a.s. The proof is complete.

Appendix C Proof of Corollaries

Corollary 1. For the model (1), if the condition σ1
2 >

2αΛ2
µ2

− 2γ − 2µ2 is satisfied, then for any initial values, it holds that

lim supt→∞
1
t logC(t) < 0 a.s.

Proof. The condition in Theorem 2 can be rewritten as

min

 αΛ2

µ2(γ + µ2 +
σ1

2

2 )
,

α2

2σ2
2(γ + µ2 +

σ1
2

2 )

− max

0,
ξ[Λ1δ − µ1(θ + µ1)]

δ(θ + µ1)(γ + µ2 +
σ1

2

2 )

 < 1.

It is not difficult to observe that

min

 αΛ2

µ2(γ + µ2 +
σ1

2

2 )
,

α2

2σ2
2(γ + µ2 +

σ1
2

2 )

 ⩽
αΛ2

µ2(γ + µ2 +
σ1

2

2 )
,

max

0,
ξ[Λ1δ − µ1(θ + µ1)]

δ(θ + µ1)(γ + µ2 +
σ1

2

2 )

 ⩾ 0,

and σ2
1 >

2αΛ2
µ2

− 2γ − 2µ2 deduces
αΛ2

µ2(γ+µ2+ 1
2
σ1

2)
< 1. Then we obtain

min

 αΛ2

µ2(γ + µ2 +
σ1

2

2 )
,

α2

2σ2
2(γ + µ2 +

σ1
2

2 )

− max

0,
ξ[Λ1δ − µ1(θ + µ1)]

δ(θ + µ1)(γ + µ2 +
σ1

2

2 )

 ⩽
αΛ2

µ2(γ + µ2 +
σ1

2

2 )
< 1.

By theorem 2, lim supt→∞
1
t logC(t) < 0 a.s., the proof is complete.
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Corollary 2. For the model (1), if the condition σ2
2 > α2

2(γ+µ2)
is satisfied, then for any initial values, it holds that lim supt→∞

1
t logC(t) <

0 a.s.

Proof. Continuing the analysis of the conditions in Theorem 2, we can see that

min

 αΛ2

µ2(γ + µ2 +
σ1

2

2 )
,

α2

2σ2
2(γ + µ2 +

σ1
2

2 )

 ⩽
α2

2σ2
2(γ + µ2)

,

max

0,
ξ[Λ1δ − µ1(θ + µ1)]

δ(θ + µ1)(γ + µ2 +
σ1

2

2 )

 ⩾ 0,

and σ2
2 > α2

2(γ+µ2)
deduces α2

2σ2
2(γ+µ2)

< 1. Then we obtain

min

 αΛ2

µ2(γ + µ2 +
σ1

2

2 )
,

α2

2σ2
2(γ + µ2 +

σ1
2

2 )

− max

0,
ξ[Λ1δ − µ1(θ + µ1)]

δ(θ + µ1)(γ + µ2 +
σ1

2

2 )

 ⩽
α2

2σ2
2(γ + µ2)

< 1.

By theorem 2, lim supt→∞
1
t logC(t) < 0 a.s., the proof is complete.

Corollary 3. For the model (1), if the condition Λ1δ > µ1(θ + µ1) and
ξ[Λ1δ−µ1(θ+µ1)]

(θ+µ1)δ
>

αΛ2
µ2

− γ − µ2 are satisfied, then for

any initial values, it holds that lim supt→∞
1
t logC(t) < 0 a.s.

Proof. Using the same method in Corollary 1, we obtain

max

0,
ξ[Λ1δ − µ1(θ + µ1)]

δ(θ + µ1)(γ + µ2 +
σ1

2

2 )

 =
ξ[Λ1δ − µ1(θ + µ1)]

δ(θ + µ1)(γ + µ2 +
σ1

2

2 )
> 0,

under the condition Λ1δ > µ1(θ + µ1). Moreover,

min

 αΛ2

µ2(γ + µ2 +
σ1

2

2 )
,

α2

2σ2
2(γ + µ2 +

σ1
2

2 )

 ⩾
αΛ2

µ2(γ + µ2)
,

which implies

min

 αΛ2

µ2(γ + µ2 +
σ1

2

2 )
,

α2

2σ2
2(γ + µ2 +

σ1
2

2 )

− max

0,
ξ[Λ1δ − µ1(θ + µ1)]

δ(θ + µ1)(γ + µ2 +
σ1

2

2 )


⩽

αΛ2

µ2(γ + µ2)
−

ξ[Λ1δ − µ1(θ + µ1)]

δ(θ + µ1)(γ + µ2 +
σ1

2

2 )
⩽
[

αΛ2

µ2(γ + µ2)
−

ξ[Λ1δ − µ1(θ + µ1)]

δ(θ + µ1)(γ + µ2)

]
.

Note that
ξ[Λ1δ−µ1(θ+µ1)]

δ(θ+µ1)
>

αΛ2
µ2

−γ−µ2 deduces that
αΛ2

µ2(γ+µ2)
− ξ[Λ1δ−µ1(θ+µ1)]

δ(θ+µ1)(γ+µ2)
< 1, then we obtain lim supt→∞

1
t logC(t) <

0 a.s., the proof is complete.

Appendix D Numerical simulation

Appendix D.1 A Real Case

Based on the numerical values of the system parameters in Table D1 with respect to the morning rush hour, it is not difficult to

calculate that

min

{
αΛ2

µ2

,
α2

2σ2
2

}
=

αΛ2

µ2

= 0.33.

max

{
0,

ξ[Λ1δ − µ1(θ + µ1)]

(θ + µ1)δ

}
+ γ + µ2 +

1

2
σ2

2
= γ + µ2 = 0.313.

By Theorem 2, traffic congestion will propagate Figure D1 also validates this results. This study utilizes traffic data obtained

from the “2023 Quarterly Report on Urban Traffic in China” and a real-time traffic query API as an illustrative example. A

total of 288 real traffic conditions data points were collected at a sampling rate of every five minutes (The proportion of C data

source: https://huiyan.baidu.com/). The model parameters were fitted using the least squares method. Considering the switching

nature of congestion scenarios, there are separate infection rates and recovery rates for the morning rush hour and the evening

rush hour. We set up two independent datasets: The morning rush hour starts at 6:00, ends at 11:30, with initial values of

(I(t0), S(t0), T (t0), F (t0), C(t0), R(t0)) = (0.98, 0.02, 0, 0.9996, 0.0004, 0); The evening rush hour starts at 17:00, ends at 21:30,

with initial values of (I(t1), S(t1), T (t1), F (t1), C(t1), R(t1)) = (0.98, 0.02, 0, 0.998, 0.002, 0). We fitted the parameters based on

scatter data during the morning and evening rush hour. The estimated values of the parameters are shown in Table D1. As shown

in Figure D1, both simulated curves and the scatter data of C on the same plot are presented. The y-axis represents the proportion

of C, and the x-axis represents the selected time period.
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Table D1 Parameters’ Values

Parameters Values in morning rush hour Values in evening rush hour

Λ1 0.005 0.005

Λ2 0.012 0.006

µ1 0.005 0.005

µ2 0.012 0.006

θ 0.01 0.01

α 0.330 0.211

γ 0.301 0.195

δ 0.012 0.012

ξ 0 0

Figure D1 The proportion of congested links C(t) and real scatter data.

Appendix D.2 Control Effect Analysis

Our hybrid control method primarily focuses on effective guidance of congestion information and random clearing strategies.

Specifically, the effectiveness of information guidance is determined by the number of participants in information guidance and

the intensity of information guidance, corresponding to parameters δ and ξ. The effectiveness of the random clearance strategy

corresponds to the guidance intensities σ1 and σ2. Therefore, in this section, we compare and analyze the control effects by

adjusting the corresponding control intensities δ, ξ, σ1 and σ2 based on the aforementioned real case (the evening rush hour in

Table D1).

First, we verify the role of information guidance in alleviating traffic congestion. We set the control intensities δ and ξ in the

(a) (b)

Figure D2 The proportion of congested links C(t): (a) under different parameters C(0) and δ; (b) under different ξ.
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Table D2 The proportion of C(t) with the increasing of rate δ from 0.030 to 0.041 with an increment of 0.001 while ξ = 0.1.

δ(10−2) 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1

Congestion Dissipation 455 403 365 337 314 296 281 268 257 247 238 230

Time(min)

Table D3 The proportion of C(t) with the increasing of rate ξ from 0.10 to 0.21 with an increment of 0.01 while δ = 0.03.

ξ(10−2) 10 11 12 13 14 15 16 17 18 19 20 21

Congestion Dissipation 475 420 374 335 302 273 249 227 208 192 178 166

Time(min)

Peak Mitigation 0 5.54 8.84 11.04 12.65 13.91 14.94 15.80 16.55 17.20 17.77 18.28

Rate(%)

first row of Table D2 and Table D3. According to Theorem 2, the control intensities met the condition ξ( 1
3 − 0.005

δ ) > 0.01, so the

congested traffic links will dissipate. As shown in Figure D2, all of the trajectory curves of C(t) eventually tend to zero, and we

calculate congestion dissipation time and peak mitigation rate of congestion in the second and third row of Table D2 and Table D3.

Next, we verify the effectiveness of the random controllers through a comparative analysis using experimental data. As shown

in Figure D3, this experimental group consists of 6 plots arranged in a 2 × 3 grid, labeled as Figure D3 (a), (b), (c), (d), (e)

and (f), respectively. Figure D3 (a), (b) and (c) represent individual simulation results with three sets of white noise intensities:

{σ1 = 0, σ2 = 0.2}, {σ1 = 0, σ2 = 0.4} and {σ1 = 0, σ2 = 0.8}. Meanwhile, Figure D3 (d), (e) and (f) illustrate the histograms

obtained from 10,000 simulations using the parameter values from Figure D3 (a), (b) and (c) to track the numerical value C(350).

When σ1 = 0 and σ2 = 0.2, the condition of Corollary 2 is not met, and therefore, traffic congestion cannot be alleviated. Figure

D3 (a) and (d) demonstrate that C(t) still persist. When σ1 = 0 and σ2 ⩾ 0.4, the condition of Corollary 2 is met, and therefore,

traffic congestion can be alleviated. Figure D3 (b), (d) and Figure D3 (c), (f) show that C(t) are effectively suppressed and converge

to zero.
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(d) (e) (f)

Figure D3 Single random control intensity analysis: (a) and (d) represent state single-sample trajectory plot and statistical

graph under σ2 = 0.2; (b) and (e) represent state single-sample trajectory plot and statistical graph under σ2 = 0.4; (c) and (f)

represent state single-sample trajectory plot and statistical graph under σ2 = 0.8.

Similarly, as depicted in Figure D4, this experimental group also consists of 6 plots: Figure D4 (a), (b) and (c) represent

individual simulation results with three sets of white noise intensities: {σ1 = 0.006, σ2 = 0.2}, {σ1 = 0.024, σ2 = 0.2} and

{σ1 = 0.096, σ2 = 0.2}. Meanwhile, Figure D4 (d), (e) and (f) illustrate the histograms obtained from 10,000 simulations using

the parameter values from Figure D4 (a), (b) and (c) to track the numerical value C(350). According to Corollary 1, if σ2 = 0.2,

σ1 > 0.02, traffic congestion can be alleviated. Figure 7 shows that C(t) are effectively suppressed and converge to zero. Moreover,

Figure D3 and Figure D4 reveal that as the strength of the two random controllers increases, the proportion of C in the histograms

are suppressed to zero, which is consistent with the theoretical analysis in Theorem 2.
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(c)

(d) (e) (f)

Figure D4 Double random control intensities analysis: (a) and (d) represent state single-sample trajectory plot and statistical

graph under {σ1 = 0.006, σ2 = 0.2}; (b) and (e) represent state single-sample trajectory plot and statistical graph under {σ1 =

0.024, σ2 = 0.2}; (c) and (f) represent state single-sample trajectory plot and statistical graph under {σ1 = 0.096, σ2 = 0.2}.
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