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Mean field (MF) models have been widely applied to eco-

nomics, control theory, and other fields. Its prominent fea-

ture is that the individual influence on the overall population

is negligible and the impact of the entire system to the sin-

gle agent is significant and cannot be ignored. As a classical

problem in control theory, linear quadratic (LQ) control for

MF models has been widely investigated (e.g., [1, 2]). In

addition to noncooperative cases, MF social optimum prob-

lems have also drawn much attention. All agents cooperate

to optimize the cost function which is defined as the sum

of the individual costs, which is a kind of team decision-

making problem. In recent years, some progress has been

made in the study of LQ MF social optimization. For in-

stance, uniform stabilization and social optimality are ana-

lyzed by decoupling forward-backward stochastic differential

equations [3].

For a standard LQ control problem, we can obtain the

optimal control laws and the corresponding cost function

depending on the solution to Riccati equations. However,

when the system knowledge is not completely known, it is

not feasible to attain the optimal control laws. An online

value iteration (VI) algorithm is presented to tackle the op-

timal control problem and further a robust VI algorithm is

developed for LQ systems with disturbances [4]. For LQ

MF games and control, there has been prosperous interest

on both discrete-time and continuous-time settings. Ref. [5]

computed a set of decentralized strategies for LQ games by

using a model-free policy iteration (PI) approach. Ref. [6]

investigated a PI reinforcement learning method to solve MF

LQ problems over an infinite horizon.

This study develops an online VI algorithm for MF LQ

social control with ergodic cost functions. By employing the

technique of completing squares, we obtain the social opti-

mal control law depending on two algebraic Riccati equa-

tions (AREs). Firstly, we introduce an offline VI algorithm,

which requires all the parameters of the system. Then we

design two online model-free learning VI algorithms, where

only a system trajectory is required. After iterating the re-

quired vector sequences using the aboved robust VI learning

algorithms, we can obtain the solutions of two AREs, and

then obtain the optimal control law. Meanwhile, by em-

ploying the converse Lyapunov theorem, we can prove the

convergence of the online algorithm.

Compared with the existing studies, this work is charac-

terized by the following features:

(1) Instead of the expectation-type cost function in [5,6],

this study considers the MF model with stochastic ergodic

costs, which has a more practical and physicial meaning.

By exploiting the structure of the social cost, we propose a

model-free VI online learning algorithm.

(2) For the proposed algorithm, only a system trajectory

is required, and hence it is easier to implement than the

algorithm under the expectation-type cost function.

Problem formulation. Consider a stochastic linear system

with N agents. Agent i, 1 6 i 6 N satisfies the stochastic

differential equation

dxi(t) =
(

Axi(t) + Bui(t) +Gx(N)(t)
)

dt +DdWi(t), (1)

where xi(t) ∈ R
n and ui(t) ∈ R

m are the state and control

input of the ith agent, respectively. x(N)(t) , 1
N

∑N
i=1 xi(t)

is the mean field term. {Wi(t), 1 6 i 6 N} is a sequence of

independent d-dimensional Brownian motions. D ∈ R
n×d

is the noise intensity constant matrix.

The cost function of agent i has the ergodic form

Ji (u) = lim sup
T→∞

1

T

∫ T

0

{

‖xi(t) − Γx(N)(t)‖2Q

+ ‖ui(t)‖2R
}

dt, (2)

where Q = QT > 0, R = RT > 0. The social cost for the

system (1) and (2) is defined as J
(N)
soc (u) =

∑N
i=1 Ji(u). The

admissible control set is given by

Uad =

{

(u1, . . . , uN )|ui ∈ σ(xi(s), x
(N)(s), s 6 t),

1 6 i 6 N, ‖xi(T )‖ = o(
√
T ),

∫ T

0
‖xi(t)‖2dt = O(T ) a.s., T → ∞

}

.

The purpose of the study is to design an online model-free

algorithm to solve the following social control problem.

(P): minimize J
(N)
soc (u) over u ∈ Ud.

We assume

(A1) The system (A,B) is stabilizable, and the system

(A+G,B) is stabilizable.

(A2) The system (A,
√
Q) is observable, and the system

(A+G,
√
Q(I − Γ)) is observable.
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Define the following AREs:

ATP + PA− PBR−1BTP +Q = 0, (3)

(A+G)TΠ+ Π(A+G)− ΠBR−1BTΠ +Q− Ξ = 0, (4)

where Ξ , ΓTQ +QΓ− ΓTQΓ.

First, we propose a model-based optimal control law.

Proposition 1. Assume (A1) and (A2) hold. Then for

Problem (P), the optimal control law is given by

ûi(t) = −R−1BT[Pxi(t) + (Π− P )x(N)(t)],

t > 0, i = 1, . . . , N,
(5)

where P and Π satisfy (3) and (4), respectively.

Proof. See Appendix A.

As nonlinear matrix equations, the AREs (3) and (4) are

difficult to obtain directly. Due to the appearance of ran-

dom disturbance, we have a robust ADP algorithm (i.e.,

Algorithm B1 in Appendix B) [4]. This algorithm provides

robust numerical solutions to AREs (3) and (4), but has the

limitation that the system dynamics is completely known,

otherwise it cannot be implemented further.

Note the integrand of the cost function (2) has the de-

composition form r = r1+r2, where r1(z) = ‖x̃i‖2Q+‖ũi‖2R,

r2(y) = ‖x(N)‖2
Q−Ξ + ‖u(N)‖2

R
. The cost function is called

separable, if r1 and r2 are known, respectively; otherwise

inseparable. Now we derive a model-free algorithm to solve

the separable social control problem.

Let zi = [x̃Ti , ũ
T
i , 1]

T, y = [(x(N))T, (u(N))T, 1]T, φ(y) =

[y21, 2y1y2, . . . , 2y1yn+m+1, y
2
2 , . . . , y

2
n+m+1]

T
, ψi(zi) =

[(zi1)
2
, 2zi1z

i
2, . . . , 2z

i
1z

i
n+m+1, (z

i
2)

2
, . . . , (zin+m+1)

2
]T.

(A3) There exist t0 > 0, β0 > 0, β̄ > 0, such that for all

1 6 i 6 N , t > t0, the inequalities

1

t

∫ t

0
ψi(ψi)Tds > β0I,

1

t

∫ t

0
φφTds > β̄I

hold with probability 1.

Let

θ̂i(P, tk) =

(
∫ tk

0
ψi(ψi)Tds

)−1 (∫ tk

0
ψid

(

x̃Ti Pkx̃i

)

+

∫ tk

0
ψir1ds

)

,

α̂(Π, tk) =

(
∫ tk

0
φφTds

)−1 (∫ tk

0
φd

(

(x(N))TΠkx
(N)

)

+

∫ tk

0
φr2ds

)

,

T (θ) = ATP + PA− PBR−1BTP +Q,

Λ (α) = (A+G)TΠ +Π(A+G)−ΠBR−1BTΠ+Q− Ξ.

Then we have Algorithm 1, and see more details involved in

Appendix B.

Algorithm 1 An online robust learning algorithm

1. Initialize P i
0 = (P i

0)
T > 0, Π0 = ΠT

0 > 0 k, q ← 0.

2. Loop

θ̂ik ← (
∫ tk
0 ψi(ψi)Tds)−1(

∫ tk
0 ψid(x̃T

i P
i
kx̃i) +

∫ tk
0 ψir1ds),

α̂k ← (
∫ tk
0 φφTds)−1(

∫ tk
0 φd((x(N))TΠkx

(N))+
∫ tk
0 φr2ds),

P i
k+1/2 ← P i

k + hkT (θ̂ik),

Πk+1/2 ← Πk + hkΛ(α̂k),

3. if P i
k+1/2 > 0 and |P i

k+1/2 − P
i
k|/hk < ε then

return P i
k as an approximation to P∗,

else if |P i
k+1/2| > q or P i

k+1/2 6 0,

then P i
k+1 ← P i

0 , q ← q + 1,

else P i
k+1 ← P i

k+1/2, k ← k + 1,

4. if Πk+1/2 > 0 and |Πk+1/2 − Πk|/hk < ε then

return Πk as an approximation to Π∗,

else if |Πk+1/2| > q or Πk+1/2 6 0,

then Πk+1 ← Π0, q ← q + 1,

else Πk+1 ← Πk+1/2, k← k + 1.

Remark 1. The studies in [5, 6] considered mean field

LQ games and control by using model-free PI algorithms.

In contrast, we propose a model-free VI online learning al-

gorithm to solve mean field LQ social control with ergodic

costs. In the algorithm described above, only a system tra-

jectory is required, and hence it is easier to implement than

the system with expectation-type cost function.

Theorem 1. Under (A1)–(A3), for 1 6 i 6 N , we

have limk→∞ P i
k

= P ∗ and limk→∞ Πk = Π∗ with Prob-

ability 1, where
{

P i
k

}

∞

k=0
and {Πk}∞k=0 are obtained from

Algorithm 1.

Proof. See Appendix C.

The convergence of Algorithm 1 is given above for the

separable case. Also, we can tackle the case where r is in-

separable (see Appendix D). A numerical example is given

in Appendix E.
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