An Online Value Iteration Method for Linear-Quadratic Mean Field Social Control with Unknown Dynamics

Bing-Chang Wang ${ }^{1}$, Shumei $\mathrm{Li}^{2 *}$ \& Ying Cao ${ }^{3}$

School of Control Science and Engineering, Shandong University, Jinan 250000, China

Abstract

Notation: The following notation will be used throughout this paper. $\left(\Omega, \mathcal{F},\left\{\mathcal{F}_{t}\right\}_{0 \leqslant t \leqslant T}, \mathbb{P}\right)$ is a complete probability space. I denotes the identity matrix; \mathbb{R} denotes the set of real numbers; S^{n} denotes the normed space of all n-by- n real symmetric matrices; X^{T} denotes the transpose of a vector or matrix $X ;\langle\cdot, \cdot\rangle_{F}$ denotes the Frobenius inner product; $\|\cdot\|$ denotes the Euclidean vector norm or Frobenius matrix norm and $\langle\cdot, \cdot\rangle$ is the standard Euclidean inner product. For a vector z and a matrix $Q,\|z\|_{Q}^{2}=z^{T} Q z$, $Q>0(Q \geqslant 0)$ means that Q is positive definite (positive semidefinite). For a matrix $M \in \mathbb{R}^{n \times m}, \operatorname{vec}(M)=\left[M_{1}^{T} M_{2}^{T} \cdots M_{m}^{T}\right]^{T}$, where $M_{i} \in \mathbb{R}^{n}$ is the i th column of M. For any $M \in S^{n}$, let $\operatorname{vech}(M)=\left[M_{11} M_{12} \cdots M_{1 n} M_{22} M_{23} \cdots M_{(n-1) n} M_{n n}\right]^{T}$, where $M_{i j} \in \mathbb{R}$ is the (i, j) th element of matrix M. Denote $u=\left\{u_{1}, \cdots, u_{N}\right\}$.

Appendix A Proof of proposition 1

First we denote

$$
\begin{aligned}
\tilde{x}_{i}(t) & =x_{i}(t)-x^{(N)}(t), & & \tilde{u}_{i}(t)=u_{i}(t)-u^{(N)}(t), \\
\tilde{W}_{i}(t) & =W_{i}(t)-W^{(N)}(t), & & \Xi \triangleq \Gamma^{T} Q+Q \Gamma-\Gamma^{T} Q \Gamma, \\
u^{(N)}(t) & \triangleq \frac{1}{N} \sum_{i=1}^{N} u_{i}(t), & & W^{(N)}(t) \triangleq \frac{1}{N} \sum_{i=1}^{N} W_{i}(t) .
\end{aligned}
$$

Under (A1)-(A2), the AREs (3) and (4) admit the unique symmetric postive definite solutions [1]. By (1), we have

$$
\begin{equation*}
d x^{(N)}(t)=\left((A+G) x^{(N)}(t)+B u^{(N)}(t)\right) d t+D d W^{(N)}(t) \tag{A1}
\end{equation*}
$$

Subtracting (1) from (A1), we have

$$
\begin{equation*}
d \tilde{x}_{i}(t)=\left(A \tilde{x}_{i}(t)+B \tilde{u}_{i}(t)\right) d t+D d \tilde{W}_{i}(t), \quad 1 \leqslant i \leqslant N \tag{A2}
\end{equation*}
$$

Then by Itô's formula, for any $i=1,2, \cdots N$, we obtain

$$
\begin{align*}
\tilde{x}_{i}(T)^{T} P \tilde{x}_{i}(T)-\tilde{x}_{i}(0)^{T} P \tilde{x}_{i}(0)= & \int_{0}^{T}\left\{\left\langle\left(A^{T} P+P A\right) \tilde{x}_{i}(t), \tilde{x}_{i}(t)\right\rangle+2\left\langle P B \tilde{u}_{i}(t), \tilde{x}_{i}(t)\right\rangle+\frac{N-1}{N} D^{T} P D\right\} d t \tag{A3}\\
& +\int_{0}^{T} 2 \tilde{x}_{i}(t)^{T} P D d \tilde{W}_{i}(t)
\end{align*}
$$

and

$$
\begin{align*}
& x^{(N)}(T)^{T} \Pi x^{(N)}(T)-x^{(N)}(0)^{T} \Pi x^{(N)}(0) \\
= & \int_{0}^{T}\left\{\left\langle\left[(A+G)^{T} \Pi+\Pi(A+G)\right] x^{(N)}(t), x^{(N)}(t)\right\rangle+2\left\langle\Pi B u^{(N)}(t), x^{(N)}(t)\right\rangle+\frac{1}{N} D^{T} \Pi D\right\} d t \tag{A4}\\
& \left.+\int_{0}^{T} 2 x^{(N)}(t)\right)^{T} \Pi D d W^{(N)}(t) .
\end{align*}
$$

Let

$$
J_{\mathrm{soc}}^{(N)}(T, u) \triangleq \sum_{i=1}^{N} \int_{0}^{T}\left\{\left\|x_{i}(t)-\Gamma x^{(N)}(t)\right\|_{Q}^{2}+\left\|u_{i}(t)\right\|_{R}^{2}\right\} d t
$$

Then by (3), (4), (A3), (A4) and direct calculations,

$$
\begin{aligned}
J_{\mathrm{soc}}^{(N)}(T, u) & =\sum_{i=1}^{N} \int_{0}^{T}\left[\left\|x_{i}(t)\right\|_{Q}^{2}-\left\|x^{(N)}(t)\right\|_{\Xi}^{2}+\left\|u_{i}(t)\right\|_{R}^{2}\right] d t \\
& =\sum_{i=1}^{N} \int_{0}^{T}\left[\left\|x_{i}(t)-x^{(N)}(t)\right\|_{Q}^{2}+\left\|x^{(N)}(t)\right\|_{Q-\Xi}^{2}+\left\|u_{i}(t)-u^{(N)}(t)\right\|_{R}^{2}+\left\|u^{(N)}(t)\right\|_{R}^{2}\right] d t
\end{aligned}
$$

[^0]\[

$$
\begin{align*}
= & \sum_{i=1}^{N} \int_{0}^{T}\left[\left\|u_{i}(t)-u^{(N)}(t)+R^{-1} B^{T} P\left(x_{i}(t)-x^{(N)}(t)\right)\right\|_{R}^{2}+\left\|u^{(N)}(t)+R^{-1} B^{T} \Pi x^{(N)}(t)\right\|_{R}^{2}\right] d t \\
& +\frac{N-1}{N} \int_{0}^{T} D^{T} P D d t+\frac{1}{N} \int_{0}^{T} D^{T} \Pi D d t+\tilde{x}_{i}(0)^{T} P \tilde{x}_{i}(0)-\tilde{x}_{i}(T)^{T} P \tilde{x}_{i}(T) \\
& +x^{(N)}(0)^{T} \Pi x^{(N)}(0)-x^{(N)}(T)^{T} \Pi x^{(N)}(T)+2 \int_{0}^{T}\left(x^{(N)}(t)\right)^{T} \Pi D d W^{(N)}(t)+2 \int_{0}^{T} \tilde{x}_{i}(t)^{T} P D d \tilde{W}_{i}(t) . \tag{A5}
\end{align*}
$$
\]

Recalling $u \in \mathcal{U}_{d}$ and Lemma 12.3 of [2], for $\forall \epsilon>0$, we have

$$
\begin{gather*}
\int_{0}^{T}\left(x^{(N)}(t)\right)^{T} \Pi D d W^{(N)}(t)=O\left(T^{\frac{1}{2}+\epsilon}\right) \tag{A6}\\
\int_{0}^{T} \tilde{x}_{i}(t)^{T} P D d \tilde{W}_{i}(t)=O\left(T^{\frac{1}{2}+\epsilon}\right) \tag{A7}
\end{gather*}
$$

Then the follwing holds:

$$
\begin{align*}
J_{\mathrm{soc}}^{(N)}(u)= & \limsup _{T \rightarrow \infty} \frac{1}{T} J_{\mathrm{soc}}^{(N)}(T, u) \\
= & \limsup _{T \rightarrow \infty} \frac{1}{T}\left[\sum_{i=1}^{N}\left(\left\|\tilde{x}_{i}(0)\right\|_{P}^{2}-\left\|\tilde{x}_{i}(T)\right\|_{P}^{2}+\left\|x^{(N)}(0)\right\|_{\Pi}^{2}-\left\|x^{(N)}(T)\right\|_{\Pi}^{2}\right)+(N-1) \int_{0}^{T}\|D\|_{P}^{2} d t\right. \\
& \left.+\int_{0}^{T}\|D\|_{\Pi}^{2} d t+\sum_{i=1}^{N} \int_{0}^{T}\left\{\left\|u_{i}(t)-u^{(N)}(t)+R^{-1} B^{T} P\left(x_{i}(t)-x^{(N)}(t)\right)\right\|_{R}^{2}+\left\|u^{(N)}(t)+R^{-1} B^{T} \Pi x^{(N)}(t)\right\|_{R}^{2}\right\} d t\right] \\
\geqslant & \limsup _{T \rightarrow \infty} \frac{1}{T}\left[\sum_{i=1}^{N}\left(\left\|\tilde{x}_{i}(0)\right\|_{P}^{2}-\left\|\tilde{x}_{i}(T)\right\|_{P}^{2}+\left\|x^{(N)}(0)\right\|_{\Pi}^{2}-\left\|x^{(N)}(T)\right\|_{\Pi}^{2}\right)+(N-1) \int_{0}^{T}\|D\|_{P}^{2} d t+\int_{0}^{T}\|D\|_{\Pi}^{2} d t\right] \tag{A8}
\end{align*}
$$

Thus we can obtain the optimal control law (5), and the corresponding social cost is given by

$$
J_{\mathrm{soc}}^{(N)}(\hat{u})=\limsup _{T \rightarrow \infty} \frac{1}{T}\left[\sum_{i=1}^{N}\left(\left\|\tilde{x}_{i}(0)\right\|_{P}^{2}-\left\|\tilde{x}_{i}(T)\right\|_{P}^{2}+\left\|x^{(N)}(0)\right\|_{\Pi}^{2}-\left\|x^{(N)}(T)\right\|_{\Pi}^{2}\right)+(N-1) \int_{0}^{T}\|D\|_{P}^{2} d t+\int_{0}^{T}\|D\|_{\Pi}^{2} d t\right]
$$

Appendix B The robust ADP algorithm and more details

Due to the appearance of random disturbance, we consider the following variant

$$
\begin{equation*}
A^{T} K_{\triangle}+K_{\triangle} A-K_{\triangle} B R^{-1} B^{T} K_{\triangle}+Q+\triangle=0 \tag{B1}
\end{equation*}
$$

where \triangle represents a stochastic noise. We can solve it by the following robust ADP algorithm [4].

```
Algorithm B1 An offline robust VI algorithm
    1. Choose \(K_{0}=K_{0}^{T} \geqslant 0 . k, q \leftarrow 0\).
    2. Loop \(K_{k+1 / 2} \leftarrow K_{k}+h_{k}\left(A^{\top} K_{k}+K_{k} A-K_{k} B R^{-1} B^{T} K_{k}+Q+\triangle_{k}\right)\)
    3. If \(\left|K_{k+1 / 2}\right|>q\) or \(K_{k+1 / 2} \ngtr 0\) then
    4. \(K_{k+1} \leftarrow K_{0} . q \leftarrow q+1\).
    5. else
    6. \(K_{k+1} \leftarrow K_{k+1 / 2}\)
    7. \(k \leftarrow k+1\)
```

In the above, where \triangle_{k} is a stochastic process defined on a complete probability space, and $\sum_{k=0}^{\infty} h_{k} \triangle_{k}$ converges with probability 1. $\left\{h_{k}\right\}_{k=0}^{\infty}$ is a real sequence satisfying $h_{k}>0, \lim _{k \rightarrow \infty} h_{k}=0, \sum_{k=0}^{\infty} h_{k}<\infty$.

Applying Itô's formula, we have

$$
\begin{aligned}
d\left(\tilde{x}_{i}^{T} P \tilde{x}_{i}\right) & =2 \tilde{x}_{i}^{T} P\left(A \tilde{x}_{i}+B \tilde{u}_{i}\right) d t+\frac{N-1}{N} D^{T} P D d t+2 \tilde{x}_{i}^{T} P D d \tilde{W}_{i} \\
& =\left(\psi^{i}\left(z^{i}\right)\right)^{T} \theta(P) d t-r_{1}(z) d t+2 \tilde{x}_{i}^{T} P D d \tilde{W}_{i}
\end{aligned}
$$

$$
\begin{align*}
d\left(\left(x^{(N)}\right)^{T} \Pi x^{(N)}\right) & =2\left(x^{(N)}\right)^{T} \Pi\left((A+G) x^{(N)}+B u^{(N)}\right) d t+\frac{1}{N} D^{T} \Pi D d t+2\left(x^{(N)}\right)^{T} \Pi D d W^{(N)} \\
& =\phi^{T}(y) \alpha(\Pi) d t-r_{2}(y) d t+2\left(x^{(N)}\right)^{T} \Pi D d W^{(N)}, \tag{B3}
\end{align*}
$$

where $z^{i}=\left[\tilde{x}_{i}^{T}, \tilde{u}_{i}^{T}, 1\right]^{T}, y=\left[\left(x^{(N)}\right)^{T},\left(u^{(N)}\right)^{T}, 1\right]^{T}, \phi(y)=\left[y_{1}^{2}, 2 y_{1} y_{2}, \cdots, 2 y_{1} y_{n+m+1}, y_{2}^{2}, \cdots, y_{n+m+1}^{2}\right]^{T}$, $\psi^{i}\left(z^{i}\right)=\left[\left(z_{1}^{i}\right)^{2}, 2 z_{1}^{i} z_{2}^{i}, \cdots, 2 z_{1}^{i} z_{n+m+1}^{i},\left(z_{2}^{i}\right)^{2}, \cdots,\left(z_{n+m+1}^{i}\right)^{2}\right]^{T}$, and

$$
\begin{gathered}
\theta(P)=\operatorname{vech}\left(\left[\begin{array}{ccc}
P A+A^{T} P+Q & P B & 0 \\
B^{T} P & R & 0 \\
0 & 0 & \frac{N-1}{N} D^{T} P D
\end{array}\right]\right), \\
\alpha(\Pi)=\operatorname{vech}\left(\left[\begin{array}{ccc}
\Pi(A+G)+(A+G)^{T} \Pi+Q-\Xi \Pi B & 0 \\
B^{T} \Pi & R & 0 \\
0 & 0 & \frac{1}{N} D^{T} P D
\end{array}\right]\right) .
\end{gathered}
$$

Multiplying both sides of (B2) by $\psi^{i}(z)$, we can get

$$
\begin{equation*}
\frac{1}{T} \int_{0}^{T} \psi^{i}\left(\psi^{i}\right)^{T} d t \theta(P)=\frac{1}{T} \int_{0}^{T} \psi^{i} d\left(\tilde{x}_{i}^{T} P \tilde{x}_{i}\right)+\frac{1}{T} \int_{0}^{T} \psi^{i} r_{1} d t-\frac{2}{T} \int_{0}^{T} \psi^{i} \tilde{x}_{i}^{T} P D d \tilde{W}_{i} . \tag{B4}
\end{equation*}
$$

Multiplying both sides of (B3) by $\phi(y)$, we can obtain

$$
\begin{equation*}
\frac{1}{T} \int_{0}^{T} \phi \phi^{T} d t \alpha(\Pi)=\frac{1}{T} \int_{0}^{T} \phi d\left(\left(x^{(N)}\right)^{T} \Pi x^{(N)}\right)+\frac{1}{T} \int_{0}^{T} \phi r_{2} d t-\frac{2}{T} \int_{0}^{T} \phi\left(x^{(N)}\right)^{T} \Pi D d W^{(N)} \tag{B5}
\end{equation*}
$$

By [3, Theorem 6.1], we know

$$
\begin{equation*}
\lim _{t_{k} \rightarrow \infty} \frac{1}{t_{k}^{2}} \mathbb{E}\left[\left\|\int_{0}^{t_{k}} \psi^{i} \tilde{x}_{i}^{T} P D d \tilde{W}_{i}\right\|^{2}\right]=\lim _{t_{k} \rightarrow \infty} \frac{N-1}{N} \frac{1}{t_{k}^{2}} \mathbb{E}\left[\int_{0}^{t_{k}}\left\|\psi^{i} \tilde{x}_{i}^{T} P D\right\|^{2} d t\right]=0, \tag{B6}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{t_{k} \rightarrow \infty} \frac{1}{t_{k}^{2}} \mathbb{E}\left[\left\|\int_{0}^{t_{k}} \phi\left(x^{(N)}\right)^{T} \Pi D d W^{(N)}\right\|^{2}\right]=\lim _{t_{k} \rightarrow \infty} \frac{1}{N} \frac{1}{t_{k}^{2}} \mathbb{E}\left[\int_{0}^{t_{k}}\left\|\phi\left(x^{(N)}\right)^{T} \Pi D\right\|^{2} d t\right]=0 \tag{B7}
\end{equation*}
$$

Then under (A3) and (B6), (B7), we denote

$$
\begin{equation*}
\hat{\theta}^{i}\left(P, t_{k}\right)=\left(\int_{0}^{t_{k}} \psi^{i}\left(\psi^{i}\right)^{T} d s\right)^{-1}\left(\int_{0}^{t_{k}} \psi^{i} d\left(\tilde{x}_{i}^{T} P_{k} \tilde{x}_{i}\right)+\int_{0}^{t_{k}} \psi^{i} r_{1} d s\right), \tag{B8}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{\alpha}\left(\Pi, t_{k}\right)=\left(\int_{0}^{t_{k}} \phi \phi^{T} d s\right)^{-1}\left(\int_{0}^{t_{k}} \phi d\left(\left(x^{(N)}\right)^{T} \Pi_{k} x^{(N)}\right)+\int_{0}^{t_{k}} \phi r_{2} d s\right) \tag{B9}
\end{equation*}
$$

where the time sequence $\left\{t_{0}, t_{1}, \ldots, t_{k}, \ldots\right\}$ is increasing. $\hat{\theta}^{i}\left(P, t_{k}\right)$ and $\hat{\alpha}\left(\Pi, t_{k}\right)$ represent the values of $\theta(P)$ and $\alpha(\Pi)$ at time t_{k}, respectively.

Appendix C Lemma 1 and proof of Theorem 1

First we denote

$$
\Delta_{k}(P)=\hat{\theta}^{i}\left(P, t_{k}\right)-\theta(P), \quad \Delta_{k}(\Pi)=\hat{\alpha}\left(\Pi, t_{k}\right)-\alpha(\Pi)
$$

Let's take $\Delta_{k}(\Pi)$ as an example to start the following discussion, and $\Delta_{k}(P)$ is similar.
Lemma C1. $\lim _{k \rightarrow \infty} \Delta_{k}(\Pi)=0, \quad$ a.s.
Proof. Under (A3), we have

$$
\begin{aligned}
\Delta_{k}(\Pi) & =2\left(\int_{0}^{t_{k}} \phi \phi^{T} d s\right)^{-1} \int_{0}^{t_{k}} \phi\left(x^{(N)}\right)^{T} \Pi D d W^{(N)} \\
& \leqslant 2\left(t_{k} \bar{\beta} I\right)^{-1} \int_{0}^{t_{k}} \phi\left(x^{(N)}\right)^{T} \Pi D d W^{(N)} .
\end{aligned}
$$

Recalling $u \in \mathcal{U}_{a d}$ and Lemma 12.3 of [2], for $\forall \epsilon>0$, we have

$$
\int_{0}^{t_{k}} \phi\left(x^{(N)}\right)^{T} \Pi D d W^{(N)}=O\left(t_{k}^{\frac{1}{2}+\epsilon}\right)
$$

so $\Delta_{k}(\Pi) \rightarrow 0$, a.s. $k \rightarrow \infty$.

Author A, et al. Sci China Inf Sci 4

Now the updating equation for Π_{k} in Algorithm 1 is equivalent to

$$
\Pi_{k+1} \leftarrow \Pi_{k}+h_{k}\left(\mathscr{R}\left(\Pi_{k}\right)+\Delta_{k}\left(\Pi_{k}\right)\right.
$$

where $\mathscr{R}(\Pi)=(A+G)^{T} \Pi+\Pi(A+G)-\Pi B R^{-1} B^{T} \Pi+Q-\Xi$.
Proof of Theorem 1 Below we only prove $\lim _{k \rightarrow \infty} \Pi_{k}=\Pi^{*}$. First we construct a differential matrix Riccati equation

$$
\dot{\Pi}=(A+G)^{T} \Pi+\Pi(A+G)-\Pi B R^{-1} B^{T} \Pi+Q-\Xi,
$$

by [4, Proposition 3.6], we know Π is exponentially stable at Π^{*}, and have a smooth Lyapunov function [4, Lemma 3.3] $\mathcal{V}: R_{A} \rightarrow \mathcal{R}$, where $R_{A} \subset S^{n}$ represents the attraction of Π^{*}, such that for $\Pi \in R_{A}$

$$
\left\langle\partial_{x} \mathcal{V}(\Pi), \mathscr{R}(\Pi)\right\rangle_{F}<0,\left\langle\partial_{x} \mathcal{V}\left(\Pi^{*}\right), \mathscr{R}\left(\Pi^{*}\right)\right\rangle_{F}=0, \mathcal{V}\left(\Pi^{*}\right)=0
$$

We can find a sufficiently small constant $\eta>0$, such that for all $\xi \in S^{n}$ satisfying $\|\xi\|<\eta$,

$$
\begin{equation*}
\left\langle\partial_{x} \mathcal{V}(\Pi), \mathscr{R}(\Pi)+\xi\right\rangle_{F}=-\iota \tag{C1}
\end{equation*}
$$

where $\iota>0$. At the same time, $\{\Pi: \mathcal{V}(\Pi)<C\}$ is compact and a subset of R_{A} for all $C>0$. Therefore, there exist $C_{0}>0$ and $C_{1}>0$ such that

$$
C_{0}<\mathcal{V}\left(\Pi_{0}\right)<C_{1}
$$

By contradiction, suppose $\left\{\Pi_{k}\right\}_{k=0}^{\infty}$ is unbounded. Then there would exist an uncrossing interval [$\left.C_{2}, C_{3}\right]$ such that $\left\{\Pi_{k}\right\}_{k=0}^{\infty}$ crosses this interval infinitely many times, and $\mathcal{V}\left(\Pi_{0}\right)<C_{2}<C_{3}<C_{1}$. Obviously, there exist two subsequences $\left\{\Pi_{k_{j}}\right\},\left\{\Pi_{k_{j}^{\prime}}\right\}$, such that

$$
\mathcal{V}\left(\Pi_{k_{j}}\right)<C_{2}<\mathcal{V}\left(\Pi_{m}\right)<C_{3}<\mathcal{V}\left(\Pi_{k_{j}^{\prime}}\right), \quad k_{j} \leqslant m<k_{j}^{\prime}
$$

Choosing a sufficiently small $\varepsilon>0$, such that for any $\Pi \in\left\{\Pi_{k_{j}}\right\}$, we have

$$
\begin{equation*}
\varepsilon<\left\|\Pi_{L_{\varepsilon}(j)}-\Pi_{k_{j}}\right\|=\left\|\sum_{i=k_{j}}^{L_{\varepsilon}(j)-1} h_{i}\left(\mathscr{R}\left(\Pi_{i}\right)+\Delta_{i}\left(\Pi_{i}\right)\right)\right\| \leqslant \gamma \sum_{i=k_{j}}^{L_{\epsilon}(j)-1} h_{i} \tag{C2}
\end{equation*}
$$

where $\gamma>0$ is a constant and $L_{\varepsilon}(j)=\inf \left\{i \geqslant k_{j}:\left\|\Pi_{i}-\Pi_{k_{j}}\right\|>\varepsilon\right\}$. Then we have

$$
\begin{aligned}
\mathcal{V}\left(\Pi_{L_{\varepsilon}(j)}\right)-\mathcal{V}\left(\Pi_{k_{j}}\right)= & \int_{0}^{1}\left\langle\partial_{x} \mathcal{V}\left(\Pi_{k_{j}}+t\left(\Pi_{L_{\varepsilon}(j)}-\Pi_{k_{j}}\right)\right),\left(\Pi_{L_{\varepsilon}(j)}-\Pi_{k_{j}}\right)\right\rangle_{F} d t \\
= & \left\langle\partial_{x} \mathcal{V}\left(\Pi_{k_{j}}\right),\left(\Pi_{L_{\varepsilon}(j)}-\Pi_{k_{j}}\right)\right\rangle_{F} \\
& +\int_{0}^{1} \int_{0}^{1}\left\langle\frac{d}{d s} \partial_{x} \mathcal{V}\left(\Pi_{k_{j}}+s t\left(\Pi_{L_{\varepsilon}(j)}-\Pi_{k_{j}}\right)\right), t\left(\Pi_{L_{\varepsilon}(j)}-\Pi_{k_{j}}\right)^{2}\right\rangle_{F} d s d t \\
= & \sum_{i=k_{j}}^{L_{\varepsilon}(j)-1} h_{i}\left\langle\partial_{x} \mathcal{V}\left(\Pi_{k_{j}}\right), \mathscr{R}\left(\Pi_{k_{j}}\right)+\mathscr{R}_{\Delta_{i}}+\Delta_{i}\left(\Pi_{i}\right)\right\rangle_{F} \\
& +\int_{0}^{1} \int_{0}^{1}\left\langle\frac{d}{d s} \partial_{x} \mathcal{V}\left(\Pi_{k_{j}}+s t\left(\Pi_{L_{\varepsilon}(j)}-\Pi_{k_{j}}\right)\right), t\left(\Pi_{L_{\varepsilon}(j)}-\Pi_{k_{j}}\right)^{2}\right\rangle_{F} d s d t
\end{aligned}
$$

where $\mathscr{R}_{\Delta_{i}}=\mathscr{R}\left(\Pi_{i}\right)-\mathscr{R}\left(\Pi_{k_{j}}\right)$. Note that

$$
\lim _{j \rightarrow \infty}\left\|\Pi_{L_{\varepsilon}(j)}-\Pi_{k_{j}}\right\|=\varepsilon
$$

because $\lim _{k \rightarrow \infty} h_{k}=0$, then we have

$$
\lim _{j \rightarrow \infty}\left|\int_{0}^{1} \int_{0}^{1}\left\langle\frac{d}{d s} \partial_{x} \mathcal{V}\left(\Pi_{k_{j}}+s t\left(\Pi_{L_{\varepsilon}(j)}-\Pi_{k_{j}}\right)\right), t\left(\Pi_{L_{\varepsilon}(j)}-\Pi_{k_{j}}\right)^{2}\right\rangle_{F} d s d t\right|=O\left(\varepsilon^{2}\right)
$$

By Lemma 1 and $\lim _{k \rightarrow \infty} h_{k}=0$, we have $\lim _{j \rightarrow \infty} \sum_{i=k_{j}}^{L_{\varepsilon}(j)-1} h_{i} \Delta_{i}\left(\Pi_{i}\right)=0$ a.s., there exists a sufficiently large \bar{j}, such that for all $j>\bar{j}$, by choosing sufficiently small ε, it follows that

$$
\begin{aligned}
\mathcal{V}\left(\Pi_{L_{\varepsilon}(j)}\right)-\mathcal{V}\left(\Pi_{k_{j}}\right) & =\sum_{i=k_{j}}^{L_{\varepsilon}(j)-1} h_{i}\left\langle\partial_{x} \mathcal{V}\left(\Pi_{k_{j}}\right), \mathscr{R}\left(\Pi_{k_{j}}\right)+\mathscr{R}_{\Delta_{i}}+\Delta_{i}\left(\Pi_{i}\right)\right\rangle_{F}+O\left(\varepsilon^{2}\right) \\
& <\sum_{i=k_{j}}^{L_{\varepsilon}(j)-1} h_{i}\left\langle\partial_{x} \mathcal{V}\left(\Pi_{k_{j}}\right), \Delta_{i}\left(\Pi_{i}\right)\right\rangle_{F}-\frac{\iota \varepsilon}{\gamma}+O\left(\varepsilon^{2}\right) \\
& <0
\end{aligned}
$$

which shows that $\left\{\Pi_{k}\right\}_{k=0}^{\infty}$ is bounded with probalility 1 .

Appendix D An offline robust learning algorithm for the unseparable case

(A4) There exists $t_{0}>0, c>0$, such that for all $1 \leqslant i \leqslant N, t>t_{0}$, the inequality

$$
\frac{1}{t} \int_{0}^{t}\left[\begin{array}{c}
\psi^{i} \\
\phi
\end{array}\right]\left[\left(\psi^{i}\right)^{T} \phi^{T}\right] d s \geqslant c I
$$

with probability 1.
Similarly, we first apply the Itô's formula

$$
\begin{align*}
\left.d\left(\tilde{x}_{i}^{T} P \tilde{x}_{i}+\left(x^{(N)}\right)^{T} \Pi x^{(N)}\right)\right)= & 2 \tilde{x}_{i}^{T} P\left(A \tilde{x}_{i}+B \tilde{u}_{i}\right) d t+\frac{N-1}{N} D^{T} P D d t+2 \tilde{x}_{i}^{T} P D d \tilde{W}_{i} \\
& +2\left(x^{(N)}\right)^{T} \Pi\left((A+G) x^{(N)}+B u^{(N)}\right) d t+\frac{1}{N} D^{T} \Pi D d t+2\left(x^{(N)}\right)^{T} \Pi D d W^{(N)} \\
= & \left(\psi^{i}\right)^{T}\left(z^{i}\right) \theta(P) d t+\phi^{T}(y) \alpha(\Pi) d t-r(z, y) d t+2 \tilde{x}_{i}^{T} P D d \tilde{W}_{i}+2\left(x^{(N)}\right)^{T} \Pi D d W^{(N)} \\
= & {\left[\left(\psi^{i}\right)^{T}\left(z^{i}\right) \phi^{T}(y)\right]\left[\begin{array}{c}
\theta(P) \\
\alpha(\Pi)
\end{array}\right] d t-r(z, y) d t+2 \tilde{x}_{i}^{T} P D d \tilde{W}_{i}+2\left(x^{(N)}\right)^{T} \Pi D d W^{(N)} . } \tag{D1}
\end{align*}
$$

Multiplying both sides of (D1) by $\left[\begin{array}{c}\psi^{i}\left(z^{i}\right) \\ \phi(y)\end{array}\right]$, we have

$$
\begin{aligned}
\frac{1}{T} \int_{0}^{T}\left[\begin{array}{c}
\psi^{i} \\
\phi
\end{array}\right]\left[\left(\psi^{i}\right)^{T} \phi^{T}\right] d t\left[\begin{array}{c}
\theta(P) \\
\alpha(\Pi)
\end{array}\right]= & \frac{1}{T} \int_{0}^{T}\left[\begin{array}{c}
\psi^{i} \\
\phi
\end{array}\right] d\left(\tilde{x}_{i}^{T} P \tilde{x}_{i}+\left(x^{(N)}\right)^{T} \Pi x^{(N)}\right)+\frac{1}{T} \int_{0}^{T}\left[\begin{array}{c}
\psi^{i} \\
\phi
\end{array}\right] r d t \\
& -\frac{2}{T} \int_{0}^{T}\left[\begin{array}{c}
\psi^{i} \\
\phi
\end{array}\right]\left(\tilde{x}_{i}^{T} P D d \tilde{W}_{i}+\left(x^{(N)}\right)^{T} \Pi D d W^{(N)}\right)
\end{aligned}
$$

Denote

$$
\hat{\beta}_{\theta, \alpha}\left(P, \Pi, t_{k}\right)=\left(\int_{0}^{t_{k}}\left[\begin{array}{c}
\psi^{i} \\
\phi
\end{array}\right]\left[\left(\psi^{i}\right)^{T} \phi^{T}\right] d s\right)^{-1}\left(\int_{0}^{t_{k}}\left[\begin{array}{c}
\psi^{i} \\
\phi
\end{array}\right] d\left(\tilde{x}_{i}^{T} P_{k} \tilde{x}_{i}+\left(x^{(N)}\right)^{T} \Pi_{k} x^{(N)}\right)+\int_{0}^{t_{k}}\left[\begin{array}{c}
\psi^{i} \\
\phi
\end{array}\right] r d s\right)
$$

and

$$
\mathcal{H}\left(\hat{\beta}_{k}\right)=\left[\begin{array}{c}
\mathcal{T}\left(\hat{\theta}_{k}^{i}\right) \\
\Lambda\left(\hat{\alpha}_{k}\right)
\end{array}\right]
$$

then we have the following Algorithm D1.

Appendix E Numerical example

This section shows the effectiveness of the online robust VI algorithm described in Algorithm 1. Consider a stochastic twodimensional system with four agents. Take the parameter matrices in (1) as

$$
A=\left[\begin{array}{cc}
-2 & -2 \\
4 & 1
\end{array}\right], \quad B=\left[\begin{array}{l}
0.2 \\
0.1
\end{array}\right], \quad G=\left[\begin{array}{ll}
0.2 & 0.3 \\
0.1 & 0.2
\end{array}\right], \quad D=\left[\begin{array}{l}
1 \\
3
\end{array}\right]
$$

The parameter matrices in the cost function (2) are chosen as $Q=\left[\begin{array}{ll}4 & 0 \\ 0 & 5\end{array}\right], R=1.25$, and $\Gamma=\left[\begin{array}{ll}0.2 & 0.4 \\ 0.4 & 0.2\end{array}\right]$. Then we can get $\Xi=\left[\begin{array}{ll}0.64 & 2.88 \\ 2.88 & 0.16\end{array}\right]$ in (4). Set the initial state values of four agents to be $x_{1}(0)=[1,-1]^{T}, x_{2}(0)=[2,-4]^{T}, x_{3}(0)=[-3,2]^{T}$, $x_{4}(0)=[4,3]^{T}$, respectively. Set the initial value of P^{i} and Π to be

$$
P_{0}^{i}=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right], \quad \Pi_{0}=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

P_{k}^{i} and Π_{k} are updated in real time when we run the Algorithm 1. By (B8) and (B9), we can obtain 4 sequences $\left\{P_{k}^{i}\right\}_{k=0}^{\infty}$, $i=1,2,3,4$ and 1 sequence $\left\{\Pi_{k}\right\}_{k=0}^{\infty}$, which eventually convergence to P^{*} and Π^{*} respectively. The converge matrices P^{*} and Π^{*} are shown below:

$$
P^{*}=\left[\begin{array}{cc}
2.2283 & -4.0928 \\
-4.0928 & 5.4287
\end{array}\right], \quad \Pi^{*}=\left[\begin{array}{cc}
2.0362 & -4.3194 \\
-4.3194 & 5.8537
\end{array}\right]
$$

The trajectories of $\left\{P_{k}^{i}\right\}_{k=0}^{\infty}$ and $\left\{\Pi_{k}\right\}_{k=0}^{\infty}$ are given in Figure 1 and Figure 2 respectively.
Figure 3 shows the evolution of the first state components of agents 1, 2, 3, and 4. Figure 4 shows the evolution of the second state components of agents $1,2,3$, and 4 .

Figure E1 The iteration trajectories of $\left\{P_{k}\right\}_{k=0}^{\infty}, i=1,2,3,4$.

Figure E2 The iteration trajectories of $\left\{\Pi_{k}\right\}_{k=0}^{\infty}$

```
Algorithm D1 An online robust learning algorithm for mean field LQ social control: unseparable case
    1. Initialize \(P_{0}^{i}=\left(P_{0}^{i}\right)^{T} \geqslant 0, \Pi_{0}=\Pi_{0}^{T} \geqslant 0 k, q \leftarrow 0\).
    2. Loop
    \(\hat{\beta}_{k}^{i} \leftarrow\left(\int_{0}^{t_{k}}\left[\begin{array}{c}\psi^{i} \\ \phi\end{array}\right]\left[\left(\psi^{i}\right)^{T} \phi^{T}\right] d s\right)^{-1}\left(\int_{0}^{t_{k}}\left[\begin{array}{c}\psi^{i} \\ \phi\end{array}\right] d\left(\tilde{x}_{i}^{T} P_{k}^{i} \tilde{x}_{i}+\left(x^{(N)}\right)^{T} \Pi_{k} x^{(N)}\right)+\int_{0}^{t_{k}}\left[\begin{array}{c}\psi^{i} \\ \phi\end{array}\right] r d s\right)\)
    \(\left[\begin{array}{c}P_{k+1 / 2}^{i} \\ \Pi_{k+1 / 2}\end{array}\right] \leftarrow\left[\begin{array}{c}P_{k}^{i} \\ \Pi_{k}\end{array}\right]+h_{k} \mathcal{H}\left(\hat{\beta}_{k}^{i}\right)\)
    3. if \(\left[\begin{array}{c}P_{k+1 / 2}^{i} \\ \Pi_{k+1 / 2}\end{array}\right]>0\) and \(\left(\left|P_{k+1 / 2}^{i}-P_{k}^{i}\right|+\left|\Pi_{k+1 / 2}-\Pi_{k}\right|\right) / h_{k}<\bar{\varepsilon}\) then
    \(\operatorname{return}\left[\begin{array}{c}P_{k}^{i} \\ \Pi_{k}\end{array}\right]\) as an approximation to \(\left[\begin{array}{l}P^{*} \\ \Pi^{*}\end{array}\right]\)
    else if \(\left|\left[\begin{array}{c}P_{k+1 / 2}^{i} \\ \Pi_{k+1 / 2}\end{array}\right]\right|>q\) or \(\left[\begin{array}{c}P_{k+1 / 2}^{i} \\ \Pi_{k+1 / 2}\end{array}\right] \leqslant 0\) then
    \(\left[\begin{array}{c}P_{k+1}^{i} \\ \Pi_{k+1}\end{array}\right] \leftarrow\left[\begin{array}{c}P_{0}^{i} \\ \Pi_{0}\end{array}\right], q \leftarrow q+1\).
    else \(\left[\begin{array}{c}P_{k+1}^{i} \\ \Pi_{k+1}\end{array}\right] \leftarrow\left[\begin{array}{c}P_{k+1 / 2}^{i} \\ \Pi_{k+1 / 2}\end{array}\right], k \leftarrow k+1\)
```


Figure E3 Evolution of the first state components of agents 1, 2, 3, and 4

Figure E4 Evolution of the second state components of agents 1, 2, 3, and 4

References

1 Anderson B D O, Moore J B, Molinari B P. Linear optimal control. Englewood Cliffs, NJ : Prentice-Hall, 1971.
2 Chen H F, Guo L. Identification and stochastic adaptive control. Boston, MA: Birkhäuser, 1991.
3 Steele J M. Stochastic calculus and financial applications. New York: Springer, 2001.
4 Bian T, Jiang Z P. Continuous-time robust dynamic programming. SIAM J Control Optim, 2019, 57: 4150-4174.

[^0]: * Corresponding author (email: shumeili@mail.sdu.edu.cn.)

