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Tensor networks have been a powerful tool in simulating

many-body physics and have recently gained recognition in

the machine learning community due to their remarkable

representation capabilities. However, using tensor networks

to address the problem of clustering with an indeterminate

number of clusters has yet to be explored.

Combining tensor networks and machine learning is an

emerging field. Ever since Bény [1] and their contemporaries

pioneered the fusion of tensor networks and machine learn-

ing in 2013, the landscape of this interdisciplinary domain

has witnessed a burgeoning wealth of exceptional contribu-

tions. For example, Stoudenmire et al. [2] were inspired

by the density matrix renormalization group (DMRG) algo-

rithm and used tensor works for classification tasks. Han

et al. [3] used tensor networks to generate models (see Ap-

pendix A for more related work).

In this study, we introduce a new approach to density-

based clustering that utilizes matrix product state (MPS) to

facilitate the identification of an unknown number of clus-

ters in a data set. Our approach is rooted in the princi-

ples of density-peak clustering (DPC) [4], but incorporates

the MPS representation to enable the capturing of data in a

higher-dimensional Hilbert space. This leads to a more com-

prehensive representation of the data, enabling the identifi-

cation of a hyperplane that can linearly separate the data,

even if it is not linearly separable in the original space. Ad-

ditionally, key properties such as density, core point, and

border point are redefined using fidelity measures to enhance

clustering performance. We evaluate this algorithm on a di-

verse range of data sets, including six synthetic data sets,

four real-world data sets, and three computer vision data

sets. Results demonstrate that this algorithm offers perfor-

mance at the state-of-the-art level on some synthetic and

real-world data sets, even when the number of clusters is

unknown. It also performs comparably with state-of-the-

art algorithms on the MNIST, USPS, and Fashion-MNIST

image data sets. These findings highlight the potential of

tensor networks for machine learning applications, and sug-

gest that our approach may be a promising direction for

further research.

Training MPS. In order to train an MPS with all the

data, the first thing is to map all the data into quantum

states. Suppose we have data set S = {x1,x2, . . . ,xn}. The

i-th element x
k
i of the input vector x

k = (xk1 , x
k
2 , . . . , x

k
m)

of length m is mapped to a superposition of quantum states

|0〉 and |1〉, which can be described as

|ψk
i 〉 = cos

(

π

2
xki

)

|0〉+ sin
(

π

2
xki

)

|1〉. (1)

Therefore, the input vector x
k can be written as the ten-

sor product of |ψk
i 〉

|Ψ(xk)〉 = |ψk
1 〉 ⊗ |ψk

2 〉 ⊗ · · · ⊗ |ψk
m〉. (2)

It is expressible in the form of a tensor network state, as

|Ψσ

k 〉 =
∑

α0,α1,...,αm

Xσ0
k,α0,α1

Xσ1
k,α1,α2

· · ·X
σm−1

k,αm−1,αm
|σ〉,

(3)

where σi is its physical indices, αi is its auxiliary indices

with α0 = α1 = · · · = αn = 1. Each Xi represents a

1× 2× 1 third-order tensor whose elements are

X1
i,1,1 = cos

(

π

2
xki

)

, X2
i,1,1 = sin

(

π

2
xki

)

. (4)

Analogously, we randomly generate a quantum state Φτ

of length m and a bond dimension equals to D in the form

of MPS

|Φτ 〉 =
∑

β0,β1,...,βm

Y τ0
β0,β1

Y τ1
β1,β2

· · ·Y
τm−1

βm−1,βm
|τ〉, (5)

where β is the auxiliary indices, which determines the upper

limit of the entanglement entropy that this MPS state can

accommodate, and 1 6 βi 6 D. After completing the above

steps, a variational matrix product states algorithm will be

used to update the parameters in the MPS.

Gradient descent is used to update each tensor when the

quantum state Φτ satisfies the normalization condition:

Y τi − η
∂f

∂Y τi
→ Y τi , (6)

where η is the learning rate. Tensors will be updated from

the first to the last, and then back, this process is called

a sweep. The iteration process will stop when the sweep
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reaches the maximum number of iterations or the loss func-

tion converges. After this, the quantum state Φτ will give

the joint distribution probability of pixels (see Appendix B.1

for details).

Generation of clusters. After training through the algo-

rithm in the last section, a quantum state Φτ with bond

dimension equal to D is obtained. Similar to the DPC al-

gorithm, we define ρ and δ by fidelity measure instead of

distance measure, and replace the Gaussian kernel function

with the Sigmoid kernel function:

ρi = tanh(fi/(10 × fc)), (7)

where fi = |〈Ψσ

i |Φ
τ 〉| represents the fidelity between quan-

tum state Ψσ

i and Φτ , fc is a predefined cutoff distance.

Similarly, computing the fidelity fij = |〈Ψσ

i |Ψ
σ

j 〉| of the

quantum states of the data points xi and xj , we get the

definition of δi as follows:

δi = min
j:ρj>ρi

(fij). (8)

After this, we will give the definition of a local cluster

center as follows:

Definition 1 (Local cluster center). A data point xi is

defined as a local cluster center if it satisfies the conditions

δi > fc and ρi > ρ, where ρ is the average of all point

density.

After the local cluster centers have been identified, the

remaining points can be assigned to their nearest higher-

density neighbor to generate a set of local clusters. There-

fore, L local clusters (C(1), C(2), . . . , C(L)) are obtained.

Similar to the density-based spatial clustering of applica-

tions with noise (DBSCAN) algorithm, for each local cluster

C(k), the core point and border point need to be defined.

Therefore, for the local cluster C(k), an MPS representation

Φτ

k
is trained. Then we define the core point and border

point as follows.

Definition 2 (Definition of core point and border point).

Assuming that the point ci in the local cluster Ck

satisfies f ′i > f
′

k, where f ′i = |〈Ψσ

i |Φ
τ

k
〉|, f

′

k =
1
nk

∑

cj∈C(k) |〈Ψσ

j |Φ
τ

k
〉|, and nk is the number of points

in the local cluster Ck. Then the point ci is called the

core point of the local cluster Ck, otherwise ci is the border

point.

In the following, in order to determine the connectiv-

ity between local clusters, we will give the definitions of

density directly-connectable and density connectable respec-

tively (see Appendix B.2 for the definitions). Finally, all lo-

cal clusters with density connectable are merged to get the

final clustering result [5].

Results and analysis. In our quest to validate our find-

ings, we standardized the bond dimension of MPS at 8

and conducted comprehensive experiments spanning syn-

thetic, real-world, and computer vision datasets (see Ap-

pendix C for details). Our algorithm demonstrated remark-

able performance on synthetic data, achieving a 100% clus-

tering accuracy, with only slight degradation on imbalanced

data. In real-world datasets, it excels, particularly on the

Wine dataset, showcasing state-of-the-art results while also

achieving the highest Fowlkes-Mallows index (FMI) on the

Vehicle and Yeast datasets. Next, we extended our analysis

to commonly employed image datasets, where we harnessed

the power of autoencoder and uniform manifold approxima-

tion and projection (UMAP) methods for data preprocess-

ing. Part of the results are shown in Table 1. Remarkably,

our algorithm demonstrates state-of-the-art performance on

the MNIST and USPS datasets without knowing the num-

ber of clusters. These results underscore the robustness and

adaptability of our approach, signifying its potential as a

valuable tool for data analysis and clustering across various

domains.

Illustrating our approach using the Wine dataset as a

prime example, we meticulously investigate the intricate in-

terplay between entanglement entropy and accuracy. Addi-

tionally, we elucidated the rationale behind opting for the

Sigmoid kernel function over the Gaussian kernel function,

providing a clear and reasoned justification for this pivotal

choice. Also, we proved our algorithm’s time complexity is

O(kLD3 + nLdD2 + n2L) (all the details can be found in

Appendix D).

Table 1 Comparison of the accuracy of our algorithm and

common algorithms on different data sets

Methods MNIST (%) USPS (%) Fashion (%)

K-means 53.91 65.76 52.22

DBSCAN – 16.7 10.0

DPC – 39.9 34.4

MPS-8 97.8 97.1 59.99

Conclusion. We introduce a density-based clustering al-

gorithm with tensor networks. In order to demonstrate its

effectiveness, we apply it to various types of data sets, in-

cluding synthetic data sets, real world data sets, and com-

puter vision data sets. Results demonstrate that it is an

efficient quantum-inspired unsupervised learning algorithm

and can recognize clusters of arbitrary shape and size. It

can also be seen that large quantum entanglement tends to

provide better clustering results.
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