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Appendix A Related works
Appendix A.1 Density-based clustering algorithm

In the field of clustering, density-based algorithms offer an alternative approach compared to traditional K-means methods that
are limited in their ability to handle non-convex data sets. The fundamental principle of density clustering is rooted in considering
data point density and the interconnectivity between samples, and expanding clusters accordingly. A prominent instance of such an
algorithm is the DBSCAN algorithm [1]. The DBSCAN method involves identifying high-density samples and linking adjacent high-
density points to form clusters. Its widespread use has sparked the creation of various advanced versions, including GDBSCAN [2],
Recon-DBSCAN [3], RNN-DBSCAN [4], and OPTICS [5].

The DPC algorithm [6], introduced in 2014, presents a novel approach to density-based clustering. This algorithm operates on
the assumption that the local density of data points near the cluster center is relatively low, and the distance between a cluster
center and high-density points is substantial. To accomplish the clustering task, the DPC algorithm computes two values for each
data point x;: the local density p; and the distance to the closest high-density point §;. Let d;; represents the distance between
points x; and x;, d. is a predefined cut-off distance. The definition of p; is given as:

pi =Y x(dij —de) (A1)
J
where
@) 1 z<0 (A2)
) =
x 0 otherwise

In the context of clustering, when the sample size is limited, the Gaussian kernel is often utilized as an alternative to the density
method (as defined in Equation 1) for calculating the density of data points. The Gaussian kernel function is defined as follows:

4 A3
=) (A3)

pi = exp(—
3

d; is then defined by

min (di;) pi # maz(p)
JpPi<pj
6 = (A4)

max(d;;) otherwise
i

Following the computation of p; and §;, the points exhibiting high values of both parameters are selected as cluster centers by
means of a decision graph. The remaining data points are then assigned to the nearest neighbor cluster center. While the DPC
algorithm has demonstrated efficacy as a simple and effective approach to clustering, it is not without limitations. For instance,
there exists no objective criterion for defining the size of a data set and determining whether the Gaussian kernel or the formula 1
method should be utilized. Furthermore, the DPC algorithm only considers the Euclidean distance in its classification procedure,
which can result in ”chain reaction” errors. To address these shortcomings, various advancements have been made in recent years,
such as the optimization of the density function in KNN-DPC [7] and the introduction of a graph-based connectivity estimation
strategy in DPC-CE [8].
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Appendix A.2 Tensor Network Machine Learning Algorithms

Recently, the tensor network method has become an important theoretical and computational tool in the fields of classical statistics
and quantum many-body physics [9-11]. At the same time, machine learning inspired by tensor networks becomes an emerging
topic. Tensor networks are able to capture the underlying structures and patterns in complex data by efficiently representing high-
dimensional tensors using a much lower number of parameters. This makes them well-suited for tasks such as data compression,
feature extraction, and dimensionality reduction, which are all important tasks in machine learning. Since tensor networks can
map precisely to quantum circuits, one exciting line of research in tensor network machine learning is to deploy and even train such
models on quantum hardware [12,13]. At the same time, since tensor networks can learn probability distributions for given data,
this also naturally bridges quantum many-body physics and machine learning.

Tensor network can be combined with machine learning in two ways. One is to directly use tensor network as machine learning
model architecture. The other is to use tensor networks to compress layers or other auxiliary tasks in the neural network architecture.
In [14], MPS have been used as proof-of-principle for tensor networks in supervised learning. In [15], MPS have been used to
parameterize generative models, and update the tensors in MPS by gradient descent. Sun et al. [16] implemented the classification
task with MPS, and its results exceeded a series of baseline models such as naive Bayes classifiers, SVMs, etc. Alexander et
al. [17] transformed the weight matrices of fully connected layers into the Tensor Train format, significantly reducing the number
of parameters and memory footprint, while preserving the network’s expressive power. Gao et al. [18] replaced the fully connected
layers in the neural network with MPO, which greatly compresses the parameters without affecting the accuracy. By combining
with some good initialization methods, Shi et al. [19] proposed to use tensor network to solve the clustering problem, and they
achieved the best clustering results on some data sets. However, in contrast to K-means algorithm, here our quantum clustering
algorithm is based on the density peak modeling method. Therefore, unlike K-means, we do not require prior knowledge of the
number of clusters during the clustering process. This feature is closer to real-world scenarios and correspondingly increases the
complexity of the algorithm design.

Appendix B Algorithms
Appendix B.1 Training MPS

In order to train an MPS with all the data, the first thing is to map all the data into quantum states Suppose we have data set

S = {i’l,fz, .,Z"}. The i-th element ff of the input vector #* = (x’f,aclj, ...,xfn) of length m is mapped to a superposition of
quantum states |0) and |1), which can be described as
k T ok Tk
[6£) = cos(Zab)[0) + sin(S o)1) (B1)

Therefore, the input vector ¥ can be written as the tensor product of |'¢)f)

[W(@)) = [¢7) ® [v5) © ... ® [y, (B2)

It is expressible in the form of a tensor network state, as

g\ 10) o1 Tm—1
[vy) = Z Xk.ao,alXk,al,az...Xk,am_l,am|‘7> (B3)
QX5
where o; is its physical indices, «; is its auxiliary indices with a9 = @1 = ... = a, = 1. Each X, represents a 1 X 2 x 1

third-order tensor whose elements are

1 Tk 2 Tk
Xi1a= 003(511)7)(1,1,1 = sm(giﬂi) (B4)

Analogously, we randomly generate a quantum state &7 of length m and bond dimension equals to D in the form of MPS:

P 0 1 Tm—1
127y = X0 Y s Yalss Yer lamlT) (B5)
Bo,B1:---Bm

Where S is an auxiliary indices, which determines the upper limit of the entanglement entropy that this MPS state can accom-
modate, and 1 < 8; < D. After completing the above steps, a variational matrix product states algorithm will be used to update
the parameters in the MPS. We consider the utilization of MPS to generate a probability distribution that represents the probability
distribution of the target data. In this context, we adopt the Kullback-Leibler (KL) divergence [20] as a metric to quantify the
proximity between two probability distributions. Given the empirical data distribution P(z) and the model distribution Q(z;#8),
where 6 denotes the parameters of the model, the KL divergence is expressed as follows:

D (P@)[1Q(:0)) = 3 P(a)In (%) (B6)

=> P(x)InP(z) — > P(z) nQ(x;0) (B7)
x x
This expression encapsulates the comparison between the empirical data distribution and the model distribution, facilitating

the assessment of their relative similarities. The first term on the right-hand side corresponds to the entropy of the empirical
data distribution, capturing the level of uncertainty or disorder within the data. The second term can be understood as the
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expectation of Q(z; 0) relative to P(z). Thus, the entire KL divergence serves as a measure to quantify the disparities between the
two distributions, P(z) and Q(z;0). In the case where the data set contains no duplicate entries, the entropy of P(z) is equivalent
to —In ||, where |I'| represents the number of elements in the data set. By substituting P(z) = ﬁ Y arer 0(x — 2') into the
expression, the second term transforms into the negative log-likelihood (NLL) function:

L=-) P(x)InQ(x;0) (B8)

= ! Z In Q(z; 0) (B9)

Tl Fet

Due to the non-negativity of the KL divergence, we establish that £ > — 3% P(z)InP(z). This noteworthy observation
signifies that the entropy of the empirical data distribution sets a lower limit for the NLL. When £ = — 3 P(z)InP(z), the
model’s distribution precisely coincides with the empirical data distribution. This remarkable alignment indicates that the model
achieves an exact replication of the empirical data, capturing its intricate characteristics and faithfully representing its underlying
distribution.

Specifically, the randomly initialized quantum state &7 is converted into canonical forms, and the NLL function is adopted as
the loss function

- 1 L
f@7) = = 2o Ke7 (@™ (B10)
i
Gradient descent is used to update each tensor when the quantum state &7 satisfies the normalization condition:

. af
YyTio—
oy

— YTi (B11)

where 7 is the learning rate. Tensors will be updated from the first to the last, and then back, this process is called a sweep.
The iteration process will stop when the sweep reaches the maximum number of iterations or the loss function converges. After
this, the quantum state ®” will give the joint distribution probability of pixels.

Appendix B.2 Generation of clusters

After training through the algorithm in the last section, a quantum state ®” with bond dimension equal to D is obtained. Similar
to the DPC algorithm, we define p and § by fidelity measure instead of distance measure, and replace the Gaussian kernel function
with the Sigmoid kernel function:

pi = tanh(f; /(10 * f.)) (B12)

where f; = [(¥7|®7)| represents the fidelity between quantum state W7 and @7, f. is a predefined cutoff distance. Similarly,
computing the fidelity fi; = [(¥7|¥7)| of the quantum states of the data points z; and z;, we get the definition of §; as follows

0; = min (fi;) (B13)
JiPj>pi

Different from the DPC algorithm, we adopt a method similar to Ref [21] here, and select the point with relatively large rho
and delta as the local cluster center. The definition of local clusters is given in Def 1.

Def 1: (Local Cluster Center)
A data point x; is defined as a local cluster center if it satisfies the conditions §; > f. and p; > p, where p is the average
of all point density.

After the local cluster centers have been identified, the remaining points can be assigned to their nearest higher-density neighbor
to generate a set of local clusters. Therefore, L local clusters (C(l)7 C<2)7 . C<L)) are obtained.

Similar to the DBSCAN algorithm, for each local cluster (Z’<k)7 core point and border point need to be defined. Therefore, for
the local cluster C(k), an MPS representation @g is trained using the method in Section 3.1. The definitions of core point and
border point are given in Def 2.

Def 2: (Definition of core point and border point)
Assuming that the point c; in the local cluster C* satisfies f] > f;‘., where f] = \(\Ilf|‘i’g>|,f;€ = ﬁ > KEFIeL)|, and
c;jec(k)
nk s the number of points in the local cluster C*. Then the point ¢; is called the core point of the local cluster C’“, otherwise
c; 1s the border point.

In the following, in order to determine the connectivity between local clusters, we will give the definitions of Density Directly-
connectable and Density Connectable respectively.

Def 3: (Density Directly-connectable of Clusters)
If there are core points c¢' € C*, ¢ € C? in local clusters C* and C7, and f;; < faq, where fq is a predefined parameter, then
the local clusters C* and C7 is directly-connectable.
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Figure B1 A flowchart of the structure tensor network-based density peak clustering algorithm. The first step involves mapping
the raw data into a high-dimensional Hilbert space and training a MPS to capture its probability distribution. This results in the
identification of local clusters based on the fidelity of the MPS representation. Finally, the merging of local clusters that satisfy
the Density Connectable criterion yields the ultimate clustering outcome.

Def 4: ((Density Connectable of Clusters)

If there are paths C*,CY,C?,...,C™, CY, where C* and C*, c* and C<k+1), C™ and C7 are all Density Directly-connectable,
then C* and C? are called Density Connectable.

Finally, all local clusters with density connectable are merged to get the final clustering result. It is easy to verify that our
algorithm does not require an input number of classes and can find clusters of arbitrary shapes. The flowchart can be found in
Fig.B1.

Appendix C Experimental results
Appendix C.1 Experimental results on synthetic data sets

Our first experiment is to apply the algorithm to six commonly used synthetic data sets: Twomoons, Jain, Threecircles, Smile,
Fourlines, and Unbalance. Both Twomoons and Jain data sets consist of two moon-shaped clusters, but the size of the two data
sets is different, and the density of the clusters is not the same. Some manifold data sets, such as Threecircles and Smile, can
be used to evaluate the performance of the algorithm on non-spherical clusters. Fourline is represented as a linearly separable
data set consisting of 4 linearly non-uniform density clusters. Unbalance is a large-scale synthetic data set consisting of multiple
spherical clusters. Their main characteristics are summarized in Table C1. Note that in the process of mapping data into quantum
states, since the mapping function is a trigonometric function, we first scale the data between 0 and 1 using max-min normalization
to avoid problems with periodicity. In comparative experiments, the proposed algorithm is compared with other methods such
as K-means [22], DPC [6], DBSCAN [1], SNN-DPC [23], DGDPC [24], DPC-CE [8]. Among them, K-means and DBSCAN are
commonly used as classical clustering algorithms. The DPC algorithm is used as the benchmark algorithm. SNN-DPC, DGDPC
and DPC-CE are three better revisions of DPC algorithm. The parameters that need to be pre-specified in all these algorithms are
listed in Table C2.

Fig. C1- C6 visualizes the differences between the DPC algorithm, our algorithm, and its true label. We use three kinds of
popular external evaluation index of clustering algorithms called FMI, ARI and NMI to evaluate all the clustering results. Table
C3 compares the effectiveness of these methods numerically. And in the iterative process of MPS, the upper limit of its sweeps is
set to 30. It can be seen from the results that our method can achieve 100% accuracy on 5 of the data sets. Significantly better
than DBSCAN and DPC algorithms on Threecircle and Jain data sets. Our algorithm also outperforms DPC on the Twomoons,
Smile and Fourlines data sets. Only on the Unbalance data set, our algorithm is slightly lower than DPC and DBSCAN.
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Figure C1 Compared results of DPC and our method on Twomoons data set.
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Figure C2 Compared results of DPC and our method on Smile data set.
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Figure C3 Compared results of DPC and our method on Threecircles data set.
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Figure C4 Compared results of DPC and our method on Jain data set.
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Table C1 Description of the synthetic data sets.

Data set Point Attribute Clusters
Twomoons 200 2 2
Smile 266 2 3
Threecircles 299 2 3
Jain 373 2 2
Fourlines 512 2 4
Unbalance 6500 2 8

Table C2 Parameters configurations of compared algorithms and our method.

Algorithms Parameters setting
K-means cluster number k
DPC de = 1% ~ 5%

DBSCAN Eps = 0.5 ~ 3, MinPts = 4

SNN-DPC de =2% ~ 3%,3 < K <50

DGDPC de =1% ~5%,m=0.1~1

DPC-CE de = 2%, T, =0.25, P, = 0.3
Our method de = 0.05% ~ 0.6%, fq = 0.93 ~ 0.999, D =8
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Figure C5 Compared results of DPC and our method on Fourlines data set.
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Table C3 Clustering results of all methods in real world data set, the bond dimension in MPS is set to be 8 and the best results
are stressed in bold.

Method Twomoons Smile
FMI ARI NMI FMI ARI NMI
K-means 0.5683 0.1401 0.1077 0.6155 0.4022 0.5318
DPC 0.7175 0.4068 0.4584 0.7826 0.6683 0.7623
DBSCAN 1.0 1.0 1.0 1.0 1.0 1.0
SNN-DPC 0.7175 0.4068 0.4587 1.0 1.0 1.0
DGDPC 1.0 1.0 1.0 1.0 1.0 1.0
DPC-CE 1.0 1.0 1.0 1.0 1.0 1.0
Our Method 1.0 1.0 1.0 1.0 1.0 1.0
Method Threecircles Jain
FMI ARI NMI FMI ARI NMI
K-means 0.4045 0.0555 0.1637 0.7005 0.3241 0.3690
DPC 0.5161 0.2514 0.3703 0.8819 0.7146 0.6522
DBSCAN 0.9193 0.8739 0.8647 0.9767 0.9473 0.8930
SNN-DPC 0.7160 0.5310 0.6860 1.0 1.0 1.0
DGDPC 1.0 1.0 1.0 1.0 1.0 1.0
DPC-CE 1.0 1.0 1.0 1.0 1.0 1.0
Our Method 1.0 1.0 1.0 1.0 1.0 1.0
Method Fourlines Unbalance
FMI ARI NMI FMI ARI NMI
K-means 0.6462 0.5024 0.6725 0.8142 0.8463 0.8107
DPC 0.7850 0.7115 0.7698 1.0 1.0 1.0
DBSCAN 1.0 1.0 1.0 1.0 1.0 1.0
SNN-DPC 1.0 1.0 1.0 1.0 1.0 1.0
DGDPC 1.0 1.0 1.0 1.0 1.0 1.0
DPC-CE 1.0 1.0 1.0 1.0 1.0 1.0

Our Method 1.0 1.0 1.0 0.9999 0.9999 0.9994
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Table C4 Description of the real world data set.

Data set Point Attribute Clusters
Wine 178 13 3

Vehicle 846 18 4
Yeast 1484 9 10

Abalone 4177 8 29

Appendix C.2 Experimental results on real world data sets
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Figure C7 Our algorithm’s performance on the Wine data set, as well as other top-performing algorithms, was evaluated under
various bond dimensions. A higher bond dimension D allows for more detailed representations, but also increases the computational
complexity of the algorithm.

In this section, experiments are validated on 4 real world data sets. Details for these data sets are given in Table C4, and parameter
information is also listed in Table C2. According to the entanglement entropy area law, in the quantum state represented by MPS,
the bond dimension D determines the upper limit of the entanglement entropy it can accommodate, and the parameter space of
the MPS grows at the scale of D?2. Therefore, taking the Wine data set as an example, we compared the clustering performance
under different bond dimension D, which is shown in FIG. C7. As can be seen from the figure, when D > 4, our algorithm has
a significant improvement in the value of FMI compared to other algorithms. And at D > 3, our algorithm already exceeds the
performance of other algorithms on NMI. We believe that the quality of the clustering results has a great relationship with the
entanglement entropy of the trained MPS. The larger the entanglement entropy means the smaller the local entanglement of the
data, the stronger the expressability of the MPS to the data. More details can be found in Sec. 4.4

We still use the three metrics of NMI, ARI, and FMI to compare the clustering results with other methods. In Table C5 we
present the results of our algorithm when D = 8. It can be seen that the performance of our three indicators is currently the best
on the Wine data set, and our FMI outperforms other methods on the Vehicle and Yeast data sets. On the Abalone data set, its
FMI and NMI are the highest among these methods, and our algorithm are only 0.0210, 0.0103 and 0.0660 lower than SNN-DPC
in FMI, ARI, and NMI, respectively. In terms of ARI, the result obtained by our algorithm is 0.0416, close to the largest one
(DPC-CE’s ARI = 0.0613).

All in all, the clustering results are encouraging, and they show that the tensor network clustering algorithm can achieve better
results than other existing algorithms even when the number of clusters is not known in advance. It demonstrates the excellent
ability of our algorithm to handle real-world data sets.

Appendix C.3 Experimental results on image data sets

Finally, we compare our algorithm with other good clustering algorithms on computer vision benchmark data sets to demonstrate
the effectiveness of our algorithm. Their statistical information is shown in Table C6. Both the MNIST and Fashion data sets
have 70,000 images, each containing 28*28 grayscale pixels. The USPS data set has a relatively small number of images, with
9298 images, each containing 16*16 grayscale pixels. Like the method we deal with in the above, we use max-min normalization to
preprocess the data, which performs a linear transformation on the original data.

When data with high-dimensional feature space is involved in practical applications, a series of preprocessing steps are needed
in order to obtain better clustering, considering the time cost. Here we first use the autoencoder to reduce the dimension of the
data. The autoencoder consists of two parts. The first part is the encoder E, which compresses the initial data = to the latent
space through a learned feature vector e = f(z), and the second part is called decoding D, which learns a new function g that
maps the compressed data into the original feature space. The training process of the autoencoder can be expressed as:

argmin_e(z, g(f(x))) (€1)
(e, d)eEXD

where €(z, g(f(z))) is the reconstruction error between the input data z and g(f(z)).

Although autoencoders are a common and efficient way to compress data. But it does not preserve the distance information
between data well enough. With this in mind, we need to take a further approach to the data obtained from the autoencoder.

UMAP (Uniform Manifold Approximation and Projection) [25] is a common dimensionality reduction technique that can be
used for general nonlinear dimensionality reduction, but also for t-SNE-like visualizations. UMAP is a dimensionality reduction
algorithm based on manifold learning technology and topological data analysis ideas. It is divided into two steps, the first step
is to learn the manifold structure of the data in the high-dimensional space, and the second step is to find the low-dimensional
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Table C5 Clustering results of all methods in real world data set, like before, the bond dimension in MPS is set to be 8 and the
best results are stressed in bold.

Method Wine Vehicle
FMI ARI NMI FMI ARI NMI
K-means 0.5835 0.3711 0.4288 0.3590 0.1216 0.1867
DPC 0.5817 0.2535 0.3997 0.3973 0.0829 0.1136
DBSCAN 0.5782 0 0 0.4873 0 0
SNN-DPC 0.5520 0.0728 0.2375 0.3620 0.0532 0.0589
DGDPC 0.5570 0.2436 0.4169 0.4361 0.4982 0.4733
DPC-CE 0.5834 0.3715 0.4193 0.4254 0.4020 0.4020
Our Method 0.6616 0.4125 0.4550 0.4951 0.0006 0.0156
Method Yeast Abalone
FMI ARI NMI FMI ARI NMI
K-means 0.2980 0.1331 0.2436 0.1119 0.0433 0.1611
DPC 0.4703 0.0107 0.1224 0.1356 0.0348 0.0432
DBSCAN 0.4037 0.0254 0.0296 0.2248 0.0385 0.0980
SNN-DPC 0.4422 0.0121 0.1182 0.2459 0.0519 0.1685
DGDPC 0.4397 0.0987 0.1226 0.1937 0.0529 0.1066
DPC-CE 0.4705 0.1185 0.1277 0.2250 0.0613 0.1373
Our Method 0.4710 0.0125 0.0653 0.2249 0.0416 0.1025
Table C6 Description of the common used image data set.
Data set Point Attribute Clusters
MNIST 70000 784 10
Fashion 70000 784 10
USPS 9298 256 10

representation of this manifold. Compared with t-SNE, it significantly improves the speed and better preserves the global structure
of the data. Therefore, in practice, we will first use the autoencoder to act on the original data to learn an initial representation,
then we relearn the data from the autoencoder by searching for a more clustered manifold using a local distance-preserving manifold
learning method. Here, the structure of the autoencoder we use is FCgs12 — FCas6 — FCgq4 — FC16 — FCgqy — FCa56 — FCs12.
Where FCsi12 indicates that it is a fully connected layer with 512 neurons. This means that with this autoencoder, we compress
the original data into a 16-dimensional latent space. Next, the 16-dimensional data is further reduced to 10-dimensional using the
UMAP method, which is then fed into our tensor network clustering algorithm.

Following the above works, we use two metrics, ACC (accuracy) and NMI (normalized mutual information), to evaluate the
performance of the algorithm. In Table C7, we present a comparison of our method with other top-performing algorithms. Among
all the algorithms, only DBSCAN, DPC, DDC and our method do not need to know the number of clusters in advance, While other
algorithms take real clusters numbers as known conditional inputs.

It can be seen that in the algorithm with unknown number of clusters, our algorithm demonstrates the current state-of the-art
result on the MNIST and USPS data sets. Although the ACC is a little lower than the DDC algorithm on the Fashion data
set, but our results are better than the DDC algorithm on the NMI indicator. Even compared with the state-of-the-art clustering
algorithms [19], our algorithm is only 1.24% and 3.22% lower in ACC and NMI on the MNIST data set, which provides a competitive
scheme.

Appendix D Analysis
Appendix D.1 Rationality analysis

From the Equation Al and A3, it can be seen that Gaussian kernel function is used to reflect the distance and density relationship
between data points. From Fig. D1(a), it can be observed that the function y = e~ " is monotonically decreasing for z > 0.
Therefore, in general, when a data point is closer to the rest of the points, i.e. distance d;; is small, then its density p; is high. For
our approach, the trained MPS |‘i’;> describes the probability distribution of the entire data set. Therefore, for data points lying
in a high data distribution region, after being transformed into the quantum state \\Ilf), they will exhibit relatively higher fidelity
with |®7). As shown in Fig. D1(a), the Sigmoid kernel function y = tanh(z) is a monotonically increasing function for = > 0.
Therefore, these points also have higher densities. This is the same as the DPC algorithm which means that our algorithm aligns
with the DPC algorithm in terms of relative density estimation.

To test this, we took the wine data set as an example and set the bond dimension to 8. We computed distance sum D; = Zj dij

and the fidelity F; = |(<I>’_'|\I/f)| for each point. The results are shown in Fig. D1(b). It can be observed that points with higher
fidelity will exhibit relatively smaller distance sums to other points, which is consistent with our observations. Furthermore, in
the DPC algorithm, §; represents the maximum distance between sample point ¢ and other points with higher densities. Since
fidelity characterizes the similarity between two quantum states, a higher similarity leads to a larger fidelity. In our method, when
transforming the sample points into quantum states as shown in Equation B3, if two sample points are farther apart, their similarity
will be lower. Therefore, from Equation B13, it can be concluded that §; represents the minimum fidelity between sample point %
and all the sample points with higher densities, which is similar to the concept in the DPC algorithm.
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Table C7 ACC and NMI of our method compared to other top-performing image clustering models.
with known and unknown numbers of clusters are stressed in Italian and bold, respectively.

The algorithm’s best results

MNIST USPS Fashion
Method
ACC NMI ACC NMI ACC NMI
K-means 53.91 49.04 65.76 60.98 52.22 51.1
DBSCAN - - 16.7 0 10.0 0
DPC - - 39.0 43.3 34.4 39.8
DEC [26] 84.3 83.4 76.2 76.7 51.8 54.6
IDEC [27] 88.06 86.72 76.05 78.46 52.9 55.7
JULE [28] 96.4 91.3 95.0 91.3 - -
DEPICT [29] 96.5 91.7 96.4 92.7 39.2 39.2
EnSC [30] 96.3 91.5 61.0 68.4 62.9 63.6
InfoGAN ([31] 87.0 84.0 - - 61.0 59.0
ClusterGAN [32] 95.0 89.0 - - 63.0 64.0
DualAE [33] 97.8 94.1 86.9 85.7 66.2 64.5
ConvDEC [34] 94.0 91.6 78.4 82.0 51.4 58.8
DDC [21] 96.5 93.2 96.7 91.8 61.9 68.2
ADSSC-MPS-8 [19] 99.04 97.22 98.82 96.62 65.61 72.15
MPS-8(ours) 97.8 94.0 97.1 92.6 59.99 68.49
(a) (b)
1.0
0.65 L 160000
0.8 4 0.60 F 140000
064 120000
> Q
— exp(-x) £ 055 S
> g 8
— tanh(x) 2 - 100000 2
= S
0.4
0.0 L 80000
0.24
0.45 I 60000
0.04
. . . . . . . . . ) —+ 40000
0 1 3 4 5 0 25 50 75 125 150 175
X
Figure D1 (a) The schematic plot below illustrates the behavior of the functions y=exp(-x) and y=tanh(x) for x € [0,5]. As

x increases, it can be observed that y=exp(-x) gradually decreases, while y=tanh(x) gradually increases.(b) In the Wine dataset,
the blue dots represent the distance sums between each data point and all other data points. The red dots represent the fidelity
between the data points transformed into quantum states and the trained quantum state. Generally, regions with smaller blue
values correspond to larger red values.These visual representations provide a concise overview of the behavior and relationships
described in the given statements, allowing for a better understanding of the trends and patterns exhibited by the functions and
the Wine dataset.
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Figure D2 The specific structural form of MPS. The MPS is divided into two subsystems L and R from the middle to calculate
the entanglement entropy between them. Among them, the subsystem L satisfies the left canonical form, and the subsystem R
satisfies the right canonical form.

Obviously, these observations assert that the definitions of density and core points in our approach are well-defined and reason-
able. From the point of research and applications, these may aid in deepening the understanding and interpretation of data density
distribution characteristics.

Appendix D.2 Entanglement entropy of the MPS

Entanglement entropy is a fundamental concept in quantum physics that characterizes the entanglement present in a quantum
system. It is obtained by dividing the system into two subsystems and measuring the amount of entanglement between them. The
larger the entanglement entropy, the smaller the local correlations within the data and vice versa. One important property of MPS
is that they obey an area law for entanglement entropy, which means that the entanglement entropy of an MPS with bond dimension
x and length m is upper bounded by a value that is independent of the system length. This property has significant implications
for the computational complexity of simulating and manipulating MPS, as well as for the behavior of quantum many-body systems
in general.

For a center-normalized MPS, the entanglement entropy reaches its maximum value when the Schmidt coefficients are all equal
to 1//x [35]. This can be seen by dividing the MPS into two subsystems at its orthogonal center and using Schmidt decomposition
to determine the entanglement entropy.

Take the Wine data set as an example. We consider the canonical form of the MPS trained on all data in the data set to obtain
the normalized entanglement spectrum. We convert it to the center canonical form at the |m/2] bond and split it into left and
right parts using Schmidt decomposition

7 =" Nilof) ® o) (D1)

i=1

Where 7 is the Schmidt rank, \; is the Schmidt coefficient, which is a non-negative real number and satisfies > 7_; )\? =1. As
shown in Fig.D2. Therefore, its entanglement entropy S can be obtained in the following

S= 3 () (D2)

=1

The result is summarized in Fig. D3. It shows that the entanglement entropy is relatively large when bond dimension equals
to 4 and 8, which is consistent with the clustering results that can work better under the corresponding bond. And its trend is
basically the same as that of FMI, ARI and NMI. It can be seen that the final clustering result has an important relationship
with the entanglement entropy of the trained MPS. Also, compared with other classical algorithms, it can be seen that establishing
entanglement through quantum methods is more conducive to finding hidden relationships between data. The strength of nonlocality
has been shown to impact the performance of the clustering algorithm in this example, with stronger nonlocality leading to improved
results.

Appendix D.3 Complexity analysis

We investigate the time complexity of our structure tensor network-based density peak clustering algorithm, applied to a data
set S = {zl,az2, ...,z } of length L with virtual bond dimension D, physical index dimension d, and generate k local clusters.
The time complexity of our algorithm includes the following parts: (1) training the MPS for the entire data with complexity
O(LD?); (2) Compute the densities p; and §; for all data points:Consider the inner product of two quantum states [(¥7|®7T)| =

T T
STXL...X72X71Y71Y 2, . .)Y?L As each X7 is a tensor of size 1 X 2 x 1, the inner product expression can be re-written as
- i i i
(EZ 07T = (X 1Y°1) (X X72Y92)...(3 X LY?L). And the time complexity is O(LdD?). Thus, the time complexity for
o1 - -

computing all point densities p; is O(nLdD?), and the time complexity for calculating &; is O(Ln?); (3) Similar to the above,
the time complexity for finding the core and border points is O(kLD3 + nLdD2). Therefore, the overall time complexity of our
algorithm is O(kLD?® 4+ nLdD? + Ln?).
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