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Appendix A Related works

Appendix A.1 Density-based clustering algorithm

In the field of clustering, density-based algorithms offer an alternative approach compared to traditional K-means methods that

are limited in their ability to handle non-convex data sets. The fundamental principle of density clustering is rooted in considering

data point density and the interconnectivity between samples, and expanding clusters accordingly. A prominent instance of such an

algorithm is the DBSCAN algorithm [1]. The DBSCAN method involves identifying high-density samples and linking adjacent high-

density points to form clusters. Its widespread use has sparked the creation of various advanced versions, including GDBSCAN [2],

Recon-DBSCAN [3], RNN-DBSCAN [4], and OPTICS [5].

The DPC algorithm [6], introduced in 2014, presents a novel approach to density-based clustering. This algorithm operates on

the assumption that the local density of data points near the cluster center is relatively low, and the distance between a cluster

center and high-density points is substantial. To accomplish the clustering task, the DPC algorithm computes two values for each

data point xi: the local density ρi and the distance to the closest high-density point δi. Let dij represents the distance between

points xi and xj , dc is a predefined cut-off distance. The definition of ρi is given as:

ρi =
∑
j

χ(dij − dc) (A1)

where

χ(x) =

{
1 x < 0

0 otherwise
(A2)

In the context of clustering, when the sample size is limited, the Gaussian kernel is often utilized as an alternative to the density

method (as defined in Equation 1) for calculating the density of data points. The Gaussian kernel function is defined as follows:

ρi =
∑
j

exp(−
d2ij

d2c
) (A3)

δi is then defined by

δi =


min

j:ρi<ρj
(dij) ρi ̸= max(ρ)

max
j

(dij) otherwise
(A4)

Following the computation of ρi and δi, the points exhibiting high values of both parameters are selected as cluster centers by

means of a decision graph. The remaining data points are then assigned to the nearest neighbor cluster center. While the DPC

algorithm has demonstrated efficacy as a simple and effective approach to clustering, it is not without limitations. For instance,

there exists no objective criterion for defining the size of a data set and determining whether the Gaussian kernel or the formula 1

method should be utilized. Furthermore, the DPC algorithm only considers the Euclidean distance in its classification procedure,

which can result in ”chain reaction” errors. To address these shortcomings, various advancements have been made in recent years,

such as the optimization of the density function in KNN-DPC [7] and the introduction of a graph-based connectivity estimation

strategy in DPC-CE [8].
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Appendix A.2 Tensor Network Machine Learning Algorithms

Recently, the tensor network method has become an important theoretical and computational tool in the fields of classical statistics

and quantum many-body physics [9–11]. At the same time, machine learning inspired by tensor networks becomes an emerging

topic. Tensor networks are able to capture the underlying structures and patterns in complex data by efficiently representing high-

dimensional tensors using a much lower number of parameters. This makes them well-suited for tasks such as data compression,

feature extraction, and dimensionality reduction, which are all important tasks in machine learning. Since tensor networks can

map precisely to quantum circuits, one exciting line of research in tensor network machine learning is to deploy and even train such

models on quantum hardware [12, 13]. At the same time, since tensor networks can learn probability distributions for given data,

this also naturally bridges quantum many-body physics and machine learning.

Tensor network can be combined with machine learning in two ways. One is to directly use tensor network as machine learning

model architecture. The other is to use tensor networks to compress layers or other auxiliary tasks in the neural network architecture.

In [14], MPS have been used as proof-of-principle for tensor networks in supervised learning. In [15], MPS have been used to

parameterize generative models, and update the tensors in MPS by gradient descent. Sun et al. [16] implemented the classification

task with MPS, and its results exceeded a series of baseline models such as naive Bayes classifiers, SVMs, etc. Alexander et

al. [17] transformed the weight matrices of fully connected layers into the Tensor Train format, significantly reducing the number

of parameters and memory footprint, while preserving the network’s expressive power. Gao et al. [18] replaced the fully connected

layers in the neural network with MPO, which greatly compresses the parameters without affecting the accuracy. By combining

with some good initialization methods, Shi et al. [19] proposed to use tensor network to solve the clustering problem, and they

achieved the best clustering results on some data sets. However, in contrast to K-means algorithm, here our quantum clustering

algorithm is based on the density peak modeling method. Therefore, unlike K-means, we do not require prior knowledge of the

number of clusters during the clustering process. This feature is closer to real-world scenarios and correspondingly increases the

complexity of the algorithm design.

Appendix B Algorithms

Appendix B.1 Training MPS

In order to train an MPS with all the data, the first thing is to map all the data into quantum states Suppose we have data set

S = {x⃗1, x⃗2, .., x⃗n}. The i-th element x⃗k
i of the input vector x⃗k = (xk

1 , x
k
2 , ..., x

k
m) of length m is mapped to a superposition of

quantum states |0⟩ and |1⟩, which can be described as

|ψk
i ⟩ = cos(

π

2
x
k
i )|0⟩ + sin(

π

2
x
k
i )|1⟩ (B1)

Therefore, the input vector x⃗k can be written as the tensor product of |ψk
i ⟩

|Ψ(x⃗
k
)⟩ = |ψk

1 ⟩ ⊗ |ψk
2 ⟩ ⊗ ...⊗ |ψk

m⟩ (B2)

It is expressible in the form of a tensor network state, as

|Ψσ⃗
k⟩ =

∑
α0,α1,...,αm

X
σ0
k,α0,α1

X
σ1
k,α1,α2...X

σm−1
k,αm−1,αm

|σ⟩ (B3)

where σi is its physical indices, αi is its auxiliary indices with α0 = α1 = ... = αn = 1. Each Xi represents a 1 × 2 × 1

third-order tensor whose elements are

X
1
i,1,1 = cos(

π

2
x
k
i ), X

2
i,1,1 = sin(

π

2
x
k
i ) (B4)

Analogously, we randomly generate a quantum state Φτ⃗ of length m and bond dimension equals to D in the form of MPS:

|Φτ⃗ ⟩ =
∑

β0,β1,...,βm

Y
τ0
β0,β1

Y
τ1
β1,β2...Y

τm−1
βm−1,βm

|τ⟩ (B5)

Where β is an auxiliary indices, which determines the upper limit of the entanglement entropy that this MPS state can accom-

modate, and 1 ⩽ βi ⩽ D. After completing the above steps, a variational matrix product states algorithm will be used to update

the parameters in the MPS. We consider the utilization of MPS to generate a probability distribution that represents the probability

distribution of the target data. In this context, we adopt the Kullback-Leibler (KL) divergence [20] as a metric to quantify the

proximity between two probability distributions. Given the empirical data distribution P (x) and the model distribution Q(x; θ),

where θ denotes the parameters of the model, the KL divergence is expressed as follows:

DKL(P (x)||Q(x; θ)) =
∑
x

P (x) ln

(
P (x)

Q(x; θ)

)
(B6)

=
∑
x

P (x) lnP (x) −
∑
x

P (x) lnQ(x; θ) (B7)

This expression encapsulates the comparison between the empirical data distribution and the model distribution, facilitating

the assessment of their relative similarities. The first term on the right-hand side corresponds to the entropy of the empirical

data distribution, capturing the level of uncertainty or disorder within the data. The second term can be understood as the
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expectation of Q(x; θ) relative to P (x). Thus, the entire KL divergence serves as a measure to quantify the disparities between the

two distributions, P (x) and Q(x; θ). In the case where the data set contains no duplicate entries, the entropy of P (x) is equivalent

to − ln |Γ|, where |Γ| represents the number of elements in the data set. By substituting P (x) = 1
|Γ|

∑
x′∈Γ δ(x − x′) into the

expression, the second term transforms into the negative log-likelihood (NLL) function:

L = −
∑
x

P (x) lnQ(x; θ) (B8)

= −
1

|Γ|
∑
x∈Γ

lnQ(x; θ) (B9)

Due to the non-negativity of the KL divergence, we establish that L ⩾ −
∑

x P (x) lnP (x). This noteworthy observation

signifies that the entropy of the empirical data distribution sets a lower limit for the NLL. When L = −
∑

x P (x) lnP (x), the

model’s distribution precisely coincides with the empirical data distribution. This remarkable alignment indicates that the model

achieves an exact replication of the empirical data, capturing its intricate characteristics and faithfully representing its underlying

distribution.

Specifically, the randomly initialized quantum state Φτ⃗ is converted into canonical forms, and the NLL function is adopted as

the loss function

f(Φ
τ⃗
) = −

1

|Γ|
∑
i

ln |⟨Ψσ⃗
i |Φ

τ⃗†⟩|2 (B10)

Gradient descent is used to update each tensor when the quantum state Φτ⃗ satisfies the normalization condition:

Y
τi − η

∂f

∂Y τi
→ Y

τi (B11)

where η is the learning rate. Tensors will be updated from the first to the last, and then back, this process is called a sweep.

The iteration process will stop when the sweep reaches the maximum number of iterations or the loss function converges. After

this, the quantum state Φτ⃗ will give the joint distribution probability of pixels.

Appendix B.2 Generation of clusters

After training through the algorithm in the last section, a quantum state Φτ⃗ with bond dimension equal to D is obtained. Similar

to the DPC algorithm, we define ρ and δ by fidelity measure instead of distance measure, and replace the Gaussian kernel function

with the Sigmoid kernel function:

ρi = tanh(fi/(10 ∗ fc)) (B12)

where fi = |⟨Ψσ⃗
i |Φ

τ⃗ ⟩| represents the fidelity between quantum state Ψσ⃗
i and Φτ⃗ , fc is a predefined cutoff distance. Similarly,

computing the fidelity fij = |⟨Ψσ⃗
i |Ψ

σ⃗
j ⟩| of the quantum states of the data points xi and xj , we get the definition of δi as follows

δi = min
j:ρj>ρi

(fij) (B13)

Different from the DPC algorithm, we adopt a method similar to Ref [21] here, and select the point with relatively large rho

and delta as the local cluster center. The definition of local clusters is given in Def 1.

Def 1: (Local Cluster Center)

A data point xi is defined as a local cluster center if it satisfies the conditions δi > fc and ρi > ρ, where ρ is the average

of all point density.

After the local cluster centers have been identified, the remaining points can be assigned to their nearest higher-density neighbor

to generate a set of local clusters. Therefore, L local clusters (C(1), C(2), ..., C(L)) are obtained.

Similar to the DBSCAN algorithm, for each local cluster C(k), core point and border point need to be defined. Therefore, for

the local cluster C(k), an MPS representation Φτ⃗
k is trained using the method in Section 3.1. The definitions of core point and

border point are given in Def 2.

Def 2: (Definition of core point and border point)

Assuming that the point ci in the local cluster Ck satisfies f ′
i > f

′
k, where f ′

i = |⟨Ψσ⃗
i |Φ

τ⃗
k⟩|, f

′
k = 1

nk

∑
cj∈C(k)

|⟨Ψσ⃗
j |Φ

τ⃗
k⟩|, and

nk is the number of points in the local cluster Ck. Then the point ci is called the core point of the local cluster Ck, otherwise

ci is the border point.

In the following, in order to determine the connectivity between local clusters, we will give the definitions of Density Directly-

connectable and Density Connectable respectively.

Def 3: (Density Directly-connectable of Clusters)

If there are core points ci ∈ Ci, cj ∈ Cj in local clusters Ci and Cj , and fij < fd, where fd is a predefined parameter, then

the local clusters Ci and Cj is directly-connectable.
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Figure B1 A flowchart of the structure tensor network-based density peak clustering algorithm. The first step involves mapping

the raw data into a high-dimensional Hilbert space and training a MPS to capture its probability distribution. This results in the

identification of local clusters based on the fidelity of the MPS representation. Finally, the merging of local clusters that satisfy

the Density Connectable criterion yields the ultimate clustering outcome.

Def 4: ((Density Connectable of Clusters)

If there are paths Ci, C1, C2, ..., Cn, Cj , where Ci and C1, Ck and C(k+1), Cn and Cj are all Density Directly-connectable,

then Ci and Cj are called Density Connectable.

Finally, all local clusters with density connectable are merged to get the final clustering result. It is easy to verify that our

algorithm does not require an input number of classes and can find clusters of arbitrary shapes. The flowchart can be found in

Fig.B1.

Appendix C Experimental results

Appendix C.1 Experimental results on synthetic data sets

Our first experiment is to apply the algorithm to six commonly used synthetic data sets: Twomoons, Jain, Threecircles, Smile,

Fourlines, and Unbalance. Both Twomoons and Jain data sets consist of two moon-shaped clusters, but the size of the two data

sets is different, and the density of the clusters is not the same. Some manifold data sets, such as Threecircles and Smile, can

be used to evaluate the performance of the algorithm on non-spherical clusters. Fourline is represented as a linearly separable

data set consisting of 4 linearly non-uniform density clusters. Unbalance is a large-scale synthetic data set consisting of multiple

spherical clusters. Their main characteristics are summarized in Table C1. Note that in the process of mapping data into quantum

states, since the mapping function is a trigonometric function, we first scale the data between 0 and 1 using max-min normalization

to avoid problems with periodicity. In comparative experiments, the proposed algorithm is compared with other methods such

as K-means [22], DPC [6], DBSCAN [1], SNN-DPC [23], DGDPC [24], DPC-CE [8]. Among them, K-means and DBSCAN are

commonly used as classical clustering algorithms. The DPC algorithm is used as the benchmark algorithm. SNN-DPC, DGDPC

and DPC-CE are three better revisions of DPC algorithm. The parameters that need to be pre-specified in all these algorithms are

listed in Table C2.

Fig. C1- C6 visualizes the differences between the DPC algorithm, our algorithm, and its true label. We use three kinds of

popular external evaluation index of clustering algorithms called FMI, ARI and NMI to evaluate all the clustering results. Table

C3 compares the effectiveness of these methods numerically. And in the iterative process of MPS, the upper limit of its sweeps is

set to 30. It can be seen from the results that our method can achieve 100% accuracy on 5 of the data sets. Significantly better

than DBSCAN and DPC algorithms on Threecircle and Jain data sets. Our algorithm also outperforms DPC on the Twomoons,

Smile and Fourlines data sets. Only on the Unbalance data set, our algorithm is slightly lower than DPC and DBSCAN.
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Figure C1 Compared results of DPC and our method on Twomoons data set.

Figure C2 Compared results of DPC and our method on Smile data set.

Figure C3 Compared results of DPC and our method on Threecircles data set.

Figure C4 Compared results of DPC and our method on Jain data set.
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Table C1 Description of the synthetic data sets.

Data set Point Attribute Clusters

Twomoons 200 2 2

Smile 266 2 3

Threecircles 299 2 3

Jain 373 2 2

Fourlines 512 2 4

Unbalance 6500 2 8

Table C2 Parameters configurations of compared algorithms and our method.

Algorithms Parameters setting

K-means cluster number k

DPC dc = 1% ∼ 5%

DBSCAN Eps = 0.5 ∼ 3,MinPts = 4

SNN-DPC dc = 2% ∼ 3%, 3 ⩽ K ⩽ 50

DGDPC dc = 1% ∼ 5%,m = 0.1 ∼ 1

DPC-CE dc = 2%, Tr = 0.25, Pr = 0.3

Our method dc = 0.05% ∼ 0.6%, fd = 0.93 ∼ 0.999, D = 8

Figure C5 Compared results of DPC and our method on Fourlines data set.

Figure C6 Compared results of DPC and our method on Unbalance data set.
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Table C3 Clustering results of all methods in real world data set, the bond dimension in MPS is set to be 8 and the best results

are stressed in bold.

Method
Twomoons Smile

FMI ARI NMI FMI ARI NMI

K-means 0.5683 0.1401 0.1077 0.6155 0.4022 0.5318

DPC 0.7175 0.4068 0.4584 0.7826 0.6683 0.7623

DBSCAN 1.0 1.0 1.0 1.0 1.0 1.0

SNN-DPC 0.7175 0.4068 0.4587 1.0 1.0 1.0

DGDPC 1.0 1.0 1.0 1.0 1.0 1.0

DPC-CE 1.0 1.0 1.0 1.0 1.0 1.0

Our Method 1.0 1.0 1.0 1.0 1.0 1.0

Method
Threecircles Jain

FMI ARI NMI FMI ARI NMI

K-means 0.4045 0.0555 0.1637 0.7005 0.3241 0.3690

DPC 0.5161 0.2514 0.3703 0.8819 0.7146 0.6522

DBSCAN 0.9193 0.8739 0.8647 0.9767 0.9473 0.8930

SNN-DPC 0.7160 0.5310 0.6860 1.0 1.0 1.0

DGDPC 1.0 1.0 1.0 1.0 1.0 1.0

DPC-CE 1.0 1.0 1.0 1.0 1.0 1.0

Our Method 1.0 1.0 1.0 1.0 1.0 1.0

Method
Fourlines Unbalance

FMI ARI NMI FMI ARI NMI

K-means 0.6462 0.5024 0.6725 0.8142 0.8463 0.8107

DPC 0.7850 0.7115 0.7698 1.0 1.0 1.0

DBSCAN 1.0 1.0 1.0 1.0 1.0 1.0

SNN-DPC 1.0 1.0 1.0 1.0 1.0 1.0

DGDPC 1.0 1.0 1.0 1.0 1.0 1.0

DPC-CE 1.0 1.0 1.0 1.0 1.0 1.0

Our Method 1.0 1.0 1.0 0.9999 0.9999 0.9994
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Table C4 Description of the real world data set.

Data set Point Attribute Clusters

Wine 178 13 3

Vehicle 846 18 4

Yeast 1484 9 10

Abalone 4177 8 29

Appendix C.2 Experimental results on real world data sets

Figure C7 Our algorithm’s performance on the Wine data set, as well as other top-performing algorithms, was evaluated under

various bond dimensions. A higher bond dimension D allows for more detailed representations, but also increases the computational

complexity of the algorithm.

In this section, experiments are validated on 4 real world data sets. Details for these data sets are given in Table C4, and parameter

information is also listed in Table C2. According to the entanglement entropy area law, in the quantum state represented by MPS,

the bond dimension D determines the upper limit of the entanglement entropy it can accommodate, and the parameter space of

the MPS grows at the scale of D2. Therefore, taking the Wine data set as an example, we compared the clustering performance

under different bond dimension D, which is shown in FIG. C7. As can be seen from the figure, when D ⩾ 4, our algorithm has

a significant improvement in the value of FMI compared to other algorithms. And at D ⩾ 3, our algorithm already exceeds the

performance of other algorithms on NMI. We believe that the quality of the clustering results has a great relationship with the

entanglement entropy of the trained MPS. The larger the entanglement entropy means the smaller the local entanglement of the

data, the stronger the expressability of the MPS to the data. More details can be found in Sec. 4.4

We still use the three metrics of NMI, ARI, and FMI to compare the clustering results with other methods. In Table C5 we

present the results of our algorithm when D = 8. It can be seen that the performance of our three indicators is currently the best

on the Wine data set, and our FMI outperforms other methods on the Vehicle and Yeast data sets. On the Abalone data set, its

FMI and NMI are the highest among these methods, and our algorithm are only 0.0210, 0.0103 and 0.0660 lower than SNN-DPC

in FMI, ARI, and NMI, respectively. In terms of ARI, the result obtained by our algorithm is 0.0416, close to the largest one

(DPC-CE’s ARI = 0.0613).

All in all, the clustering results are encouraging, and they show that the tensor network clustering algorithm can achieve better

results than other existing algorithms even when the number of clusters is not known in advance. It demonstrates the excellent

ability of our algorithm to handle real-world data sets.

Appendix C.3 Experimental results on image data sets

Finally, we compare our algorithm with other good clustering algorithms on computer vision benchmark data sets to demonstrate

the effectiveness of our algorithm. Their statistical information is shown in Table C6. Both the MNIST and Fashion data sets

have 70,000 images, each containing 28*28 grayscale pixels. The USPS data set has a relatively small number of images, with

9298 images, each containing 16*16 grayscale pixels. Like the method we deal with in the above, we use max-min normalization to

preprocess the data, which performs a linear transformation on the original data.

When data with high-dimensional feature space is involved in practical applications, a series of preprocessing steps are needed

in order to obtain better clustering, considering the time cost. Here we first use the autoencoder to reduce the dimension of the

data. The autoencoder consists of two parts. The first part is the encoder E, which compresses the initial data x to the latent

space through a learned feature vector e = f(x), and the second part is called decoding D, which learns a new function g that

maps the compressed data into the original feature space. The training process of the autoencoder can be expressed as:

argmin
(e,d)∈E×D

ϵ(x, g(f(x))) (C1)

where ϵ(x, g(f(x))) is the reconstruction error between the input data x and g(f(x)).

Although autoencoders are a common and efficient way to compress data. But it does not preserve the distance information

between data well enough. With this in mind, we need to take a further approach to the data obtained from the autoencoder.

UMAP (Uniform Manifold Approximation and Projection) [25] is a common dimensionality reduction technique that can be

used for general nonlinear dimensionality reduction, but also for t-SNE-like visualizations. UMAP is a dimensionality reduction

algorithm based on manifold learning technology and topological data analysis ideas. It is divided into two steps, the first step

is to learn the manifold structure of the data in the high-dimensional space, and the second step is to find the low-dimensional
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Table C5 Clustering results of all methods in real world data set, like before, the bond dimension in MPS is set to be 8 and the

best results are stressed in bold.

Method
Wine Vehicle

FMI ARI NMI FMI ARI NMI

K-means 0.5835 0.3711 0.4288 0.3590 0.1216 0.1867

DPC 0.5817 0.2535 0.3997 0.3973 0.0829 0.1136

DBSCAN 0.5782 0 0 0.4873 0 0

SNN-DPC 0.5520 0.0728 0.2375 0.3620 0.0532 0.0589

DGDPC 0.5570 0.2436 0.4169 0.4361 0.4982 0.4733

DPC-CE 0.5834 0.3715 0.4193 0.4254 0.4020 0.4020

Our Method 0.6616 0.4125 0.4550 0.4951 0.0006 0.0156

Method
Yeast Abalone

FMI ARI NMI FMI ARI NMI

K-means 0.2980 0.1331 0.2436 0.1119 0.0433 0.1611

DPC 0.4703 0.0107 0.1224 0.1356 0.0348 0.0432

DBSCAN 0.4037 0.0254 0.0296 0.2248 0.0385 0.0980

SNN-DPC 0.4422 0.0121 0.1182 0.2459 0.0519 0.1685

DGDPC 0.4397 0.0987 0.1226 0.1937 0.0529 0.1066

DPC-CE 0.4705 0.1185 0.1277 0.2250 0.0613 0.1373

Our Method 0.4710 0.0125 0.0653 0.2249 0.0416 0.1025

Table C6 Description of the common used image data set.

Data set Point Attribute Clusters

MNIST 70000 784 10

Fashion 70000 784 10

USPS 9298 256 10

representation of this manifold. Compared with t-SNE, it significantly improves the speed and better preserves the global structure

of the data. Therefore, in practice, we will first use the autoencoder to act on the original data to learn an initial representation,

then we relearn the data from the autoencoder by searching for a more clustered manifold using a local distance-preserving manifold

learning method. Here, the structure of the autoencoder we use is FC512 → FC256 → FC64 → FC16 → FC64 → FC256 → FC512.

Where FC512 indicates that it is a fully connected layer with 512 neurons. This means that with this autoencoder, we compress

the original data into a 16-dimensional latent space. Next, the 16-dimensional data is further reduced to 10-dimensional using the

UMAP method, which is then fed into our tensor network clustering algorithm.

Following the above works, we use two metrics, ACC (accuracy) and NMI (normalized mutual information), to evaluate the

performance of the algorithm. In Table C7, we present a comparison of our method with other top-performing algorithms. Among

all the algorithms, only DBSCAN, DPC, DDC and our method do not need to know the number of clusters in advance, While other

algorithms take real clusters numbers as known conditional inputs.

It can be seen that in the algorithm with unknown number of clusters, our algorithm demonstrates the current state-of the-art

result on the MNIST and USPS data sets. Although the ACC is a little lower than the DDC algorithm on the Fashion data

set, but our results are better than the DDC algorithm on the NMI indicator. Even compared with the state-of-the-art clustering

algorithms [19], our algorithm is only 1.24% and 3.22% lower in ACC and NMI on the MNIST data set, which provides a competitive

scheme.

Appendix D Analysis

Appendix D.1 Rationality analysis

From the Equation A1 and A3, it can be seen that Gaussian kernel function is used to reflect the distance and density relationship

between data points. From Fig. D1(a), it can be observed that the function y = e−x is monotonically decreasing for x ⩾ 0.

Therefore, in general, when a data point is closer to the rest of the points, i.e. distance dij is small, then its density ρi is high. For

our approach, the trained MPS |Φτ⃗ ⟩ describes the probability distribution of the entire data set. Therefore, for data points lying

in a high data distribution region, after being transformed into the quantum state |Ψσ⃗
i ⟩, they will exhibit relatively higher fidelity

with |Φτ⃗ ⟩. As shown in Fig. D1(a), the Sigmoid kernel function y = tanh(x) is a monotonically increasing function for x ⩾ 0.

Therefore, these points also have higher densities. This is the same as the DPC algorithm which means that our algorithm aligns

with the DPC algorithm in terms of relative density estimation.

To test this, we took the wine data set as an example and set the bond dimension to 8. We computed distance sum Di =
∑

j dij

and the fidelity Fi = |⟨Φτ⃗ |Ψσ⃗
i ⟩| for each point. The results are shown in Fig. D1(b). It can be observed that points with higher

fidelity will exhibit relatively smaller distance sums to other points, which is consistent with our observations. Furthermore, in

the DPC algorithm, δi represents the maximum distance between sample point i and other points with higher densities. Since

fidelity characterizes the similarity between two quantum states, a higher similarity leads to a larger fidelity. In our method, when

transforming the sample points into quantum states as shown in Equation B3, if two sample points are farther apart, their similarity

will be lower. Therefore, from Equation B13, it can be concluded that δi represents the minimum fidelity between sample point i

and all the sample points with higher densities, which is similar to the concept in the DPC algorithm.
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Table C7 ACC and NMI of our method compared to other top-performing image clustering models. The algorithm’s best results

with known and unknown numbers of clusters are stressed in Italian and bold, respectively.

Method
MNIST USPS Fashion

ACC NMI ACC NMI ACC NMI

K-means 53.91 49.04 65.76 60.98 52.22 51.1

DBSCAN - - 16.7 0 10.0 0

DPC - - 39.0 43.3 34.4 39.8

DEC [26] 84.3 83.4 76.2 76.7 51.8 54.6

IDEC [27] 88.06 86.72 76.05 78.46 52.9 55.7

JULE [28] 96.4 91.3 95.0 91.3 - -

DEPICT [29] 96.5 91.7 96.4 92.7 39.2 39.2

EnSC [30] 96.3 91.5 61.0 68.4 62.9 63.6

InfoGAN [31] 87.0 84.0 - - 61.0 59.0

ClusterGAN [32] 95.0 89.0 - - 63.0 64.0

DualAE [33] 97.8 94.1 86.9 85.7 66.2 64.5

ConvDEC [34] 94.0 91.6 78.4 82.0 51.4 58.8

DDC [21] 96.5 93.2 96.7 91.8 61.9 68.2

ADSSC-MPS-8 [19] 99.04 97.22 98.82 96.62 65.61 72.15

MPS-8(ours) 97.8 94.0 97.1 92.6 59.99 68.49

Figure D1 (a) The schematic plot below illustrates the behavior of the functions y=exp(-x) and y=tanh(x) for x ∈ [0,5]. As

x increases, it can be observed that y=exp(-x) gradually decreases, while y=tanh(x) gradually increases.(b) In the Wine dataset,

the blue dots represent the distance sums between each data point and all other data points. The red dots represent the fidelity

between the data points transformed into quantum states and the trained quantum state. Generally, regions with smaller blue

values correspond to larger red values.These visual representations provide a concise overview of the behavior and relationships

described in the given statements, allowing for a better understanding of the trends and patterns exhibited by the functions and

the Wine dataset.
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Figure D2 The specific structural form of MPS. The MPS is divided into two subsystems L and R from the middle to calculate

the entanglement entropy between them. Among them, the subsystem L satisfies the left canonical form, and the subsystem R

satisfies the right canonical form.

Obviously, these observations assert that the definitions of density and core points in our approach are well-defined and reason-

able. From the point of research and applications, these may aid in deepening the understanding and interpretation of data density

distribution characteristics.

Appendix D.2 Entanglement entropy of the MPS

Entanglement entropy is a fundamental concept in quantum physics that characterizes the entanglement present in a quantum

system. It is obtained by dividing the system into two subsystems and measuring the amount of entanglement between them. The

larger the entanglement entropy, the smaller the local correlations within the data and vice versa. One important property of MPS

is that they obey an area law for entanglement entropy, which means that the entanglement entropy of an MPS with bond dimension

χ and length m is upper bounded by a value that is independent of the system length. This property has significant implications

for the computational complexity of simulating and manipulating MPS, as well as for the behavior of quantum many-body systems

in general.

For a center-normalized MPS, the entanglement entropy reaches its maximum value when the Schmidt coefficients are all equal

to 1/
√
χ [35]. This can be seen by dividing the MPS into two subsystems at its orthogonal center and using Schmidt decomposition

to determine the entanglement entropy.

Take the Wine data set as an example. We consider the canonical form of the MPS trained on all data in the data set to obtain

the normalized entanglement spectrum. We convert it to the center canonical form at the ⌊m/2⌋ bond and split it into left and

right parts using Schmidt decomposition

Φ
τ⃗
=

r∑
i=1

λi|ϕL
i ⟩ ⊗ |ϕR

i ⟩ (D1)

Where r is the Schmidt rank, λi is the Schmidt coefficient, which is a non-negative real number and satisfies
∑r

i=1 λ
2
i = 1. As

shown in Fig.D2. Therefore, its entanglement entropy S can be obtained in the following

S = −
r∑

i=1

λ
2
i ln(λ

2
i ) (D2)

The result is summarized in Fig. D3. It shows that the entanglement entropy is relatively large when bond dimension equals

to 4 and 8, which is consistent with the clustering results that can work better under the corresponding bond. And its trend is

basically the same as that of FMI, ARI and NMI. It can be seen that the final clustering result has an important relationship

with the entanglement entropy of the trained MPS. Also, compared with other classical algorithms, it can be seen that establishing

entanglement through quantum methods is more conducive to finding hidden relationships between data. The strength of nonlocality

has been shown to impact the performance of the clustering algorithm in this example, with stronger nonlocality leading to improved

results.

Appendix D.3 Complexity analysis

We investigate the time complexity of our structure tensor network-based density peak clustering algorithm, applied to a data

set S = {x1, x2, ..., xn} of length L with virtual bond dimension D, physical index dimension d, and generate k local clusters.

The time complexity of our algorithm includes the following parts: (1) training the MPS for the entire data with complexity

O(LD3); (2) Compute the densities ρi and δi for all data points:Consider the inner product of two quantum states |⟨Ψσ⃗
i |Φ

σ⃗†⟩| =∑
σ
Xσ

†
L ...Xσ

†
2Xσ

†
1Y σ1Y σ2 ...Y σL .As each Xσi is a tensor of size 1 × 2 × 1, the inner product expression can be re-written as

|⟨Ψσ⃗
i |Φ

σ⃗†⟩| = (
∑
σ1

Xσ
†
1Y σ1 )(

∑
σ
Xσ

†
2Y σ2 )...(

∑
σ
Xσ

†
LY σL ). And the time complexity is O(LdD2). Thus, the time complexity for

computing all point densities ρi is O(nLdD2), and the time complexity for calculating δi is O(Ln2); (3) Similar to the above,

the time complexity for finding the core and border points is O(kLD3 + nLdD2). Therefore, the overall time complexity of our

algorithm is O(kLD3 + nLdD2 + Ln2).
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