• Supplementary File •

A Self-Selecting Memory element based on a method of interconnected Ovonic Threshold Switching device

Jinyu Wen^{1,2}, Lun Wang¹, Jiangxi Chen¹, Hao Tong^{1,2,3*} & Xiangshui Miao^{1,2,3}

¹School of Integrated Circuits, Huazhong University of Science & Technology, Wuhan 430074, China;
²Institute of Artificial Intelligence, Huazhong University of Science & Technology, Wuhan 430074, China;
³Hubei Yangtze Memory Laboratories, Wuhan 430205, China

Appendix A Other important data covered in the letter

Figure A1 (a) The distributions of V_{th} in GeTe₉ OTS device; (b) The distributions of V_{th} in the interconnected device of GeTe₉ OTS devices.

Figure A2 (a) Typical DC-IV characteristics of the interconnected device with the leakage current (48 nA); (b) Device to device of $\Delta V_{th,2,3}$ in the interconnected device.

^{*} Corresponding author (email: tonghao@hust.edu.cn)

Figure A3 (a) The relationship besides V_{in} , V_{mid} and I_{out} still in the upper part of the figure and the relationship between the voltage of OTS1 (V_{OTS1}) and I_{out} in the lower part of the figure, showing V_{th1} and V_{th2} are relevant to V_{th} of GeTe₉ device. V_{mid} still maintains voltage bias after the input pulse applied ($V_{mid,0}$) due to the charge phenomenon. Thus, after a positive pulse, when the input voltage increases, V_{OTS1} increases synchronously. When V_{OTS1} is higher than its threshold voltage (V_{th}), OTS1 is switched on and off momentarily with V_{mid} changed. However, due to V_{mid} is lower than the threshold voltage of OTS2, the interconnected device will not be switched on until V_{in} is higher than the sum of V_{th} and V_{mid} . Therefore, it is thought that V_{th1} is related to $2V_{th}$ - $V_{mid,0}$. After a negative pulse, the node charge has the same polarity as V_{in} . When OTS1 is switched on, V_{in} is higher than the threshold voltage of OTS2. Therefore, it is thought that V_{th2} is related to $V_{th}+V_{mid,0}$; (b) V_{th1} and V_{th2} of cycle tests compared with $2V_{th}$ - $V_{mid,0}$ and $V_{th}+V_{mid,0}$ of cycle tests.

Figure A4 (a) Schematic diagram of a read-and-write operation of OTS-only memory; (b) I_{off} and I_{on} during the cycle tests.