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Appendix A Introduction

Applying quantum mechanics in computer science and information theory has spawned some hot research areas in recent

years. It is well accepted that in the field of quantum information, quantum teleportation (QT) [1], proposed originally by

Bennett et al. in 1993, is one of the most prominent quantum communication protocols by means of the shared entanglement

resource between the sender and the receiver. Subsequently, Lo [2], Pati [3], and Bennett et al. [4] presented a similar protocol

called remote state preparation (RSP), i.e., teleportation of a known state, in which the sender has complete knowledge of

the initial state while the receiver does not. Similar to QT, to achieve the task of RSP, the sender and the receiver require

sharing an entangled channel in advance with the assistance of some classical information. But in contrast to QT, in RSP

it is possible to exhibit a substantial trade-off between the required entanglement and the cost of classical communication.

Due to the remarkable advantages, the RSP has been extensively studied in discrete variable systems theoretically [5–13]

and experimentally [14–23]. Moreover, discrete variable RSP schemes have been generalized to the cases of continuous

variable RSP [24–27]. Further, there can be multiple senders, rather than one, who share the information of the initial

state. A novel kind of RSP with multiple senders is called joint RSP (JRSP), first proposed by Xia et al. [28]. Soon after,

the two-sender JRSP protocols using a single GHZ-like state and a pair of EPR-like states were studied [29], where the

shared quantum channel cannot necessarily be maximally entangled. Since then, the study of JRSP has begun to develop

rapidly. Many schemes of remotely preparing two-qubit states [30–34], three-qubit states [35–38], four-qubit states [39,40],

and multi-qubit states [41] have been examined in succession. Besides, remote preparation of an arbitrary single-photon

pure state is designed using a linear optics system [42].

Generally, quantum systems inevitably interact with their surroundings, losing their mysterious quantum properties.

Thus, considering the JRSP protocol in noise environments is of great significance. As we know, a master equation can

describe the dynamic behavior of JRSP in a dissipative environment. Chen et al. [43] investigated the influence of Pauli

noises on the deterministic JRSP. Li et al. [44] showed that the average fidelity of JRSP of an arbitrary two-qubit state

decreases gradually to a stable value with a dampened revival amplitude in the non-Markovian regime. Furthermore, Gu

et al. [45] investigated a bidirectional controlled remote preparation of a single-qubit state in dissipative environments and

adopted two methods of weak measurement reversal and detuning modulation to improve the average fidelity. On the

other hand, by using the Kraus operator description [46], the effects of various types of noises on different JRSP processes

have been studied by many researchers. Wang et al. [47] and Qian et al. [48] investigated the JRSP of any single-qubit

state in noise environments. Adepoju et al. [49] reported the effect of five different noises on the deterministic JRSP of

two-qubit equatorial states, using tripartite GHZ states as the entangled resource. In addition, the effects of various noise

environments on other JRSP schemes of two-qubit states [50–52] and mixed states [53] were investigated.

Currently, many cloud quantum computing platforms are accessible and conveniently used for research, application

exploration, and education. Some platforms based on superconducting processors have been launched for online users,

such as IBM Quantum Experience, Rigetti Cloud Services and ScQ Cloud, where a series of theoretical schemes in the

field of quantum communication [54,55], quantum fault tolerance [56–58], entangled state generation [59,60], distinguishing

unitary gates [61], and so forth [62–68], have been performed and verified. Nevertheless, to our knowledge, there have not

been verifications of the JRSP protocol utilizing quantum platforms. To verify the feasibility of the JRSP protocol [35],

we use Origin Quantum Cloud for the experimental realization and noise simulation. We analyze the influence of four

environmental noises on the average fidelity of the JRSP process using analytical derivation and numerical calculations.
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Table B1 The corresponding relation among Alice’s measurement results for qubits 0 and 1 (MA), unitary operations

for qubits 2 and 3 (U23), and unitary operations for qubits 4 and 5 (U45), while the corresponding relation between Bob’s

measurement results for qubits 2 and 3 (MB) and unitary operations for qubits 4 and 5 (U45).

MA U23 U45 MB U45

|ϕ0〉01 I2 ⊗ I3 I4 ⊗ I5 |φ0〉23 I4 ⊗ I5
|ϕ1〉01 I2 ⊗ (iσy)3 (σx)4 ⊗ I5 |φ1〉23 (σz)4 ⊗ I5
|ϕ2〉01 (σz)2 ⊗ (iσy)3 I4 ⊗ (σx)5 |φ2〉23 I4 ⊗ (σz)5

|ϕ3〉01 (σx)2 ⊗ (iσy)3 (σx)4 ⊗ (σx)5 |φ3〉23 (σz)4 ⊗ (σz)5

Additionally, we examine the JRSP of two unique initial states on the Origin Noise Quantum Virtual Machine (NQVM)

platform in four noise environments. Specifically, we find that replacing the Hadamard gates in the GHZ state preparation

circuit with parameterized unitary operations can enhance the fidelity of remotely preparing certain states in the presence

of phase-flip and amplitude-damping noises. Our work could shed some light on the physical realization of more complex

quantum communication tasks.

This paper is organized as follows. We briefly review the deterministic JRSP protocol of an arbitrary two-qubit pure

state via two GHZ states in Appendix B. Implementation of the JRSP protocol on Origin Wuyuan Chip is described in

Appendix C. Appendix D is devoted to the fidelities of the protocol in several noise environments. Besides, we verify the

theoretical fidelities by remotely preparing two unique states on the NQVM and propose a method to improve the fidelities

of the JRSP process in Appendix E. Finally, we end our paper with a conclusion in Appendix F. The Detailed data is

presented in Appendixes G-H.

Appendix B Review of the deterministic joint remote preparation of an arbitrary two-

qubit pure state via GHZ states

In this appendix, we briefly review the deterministic joint remote preparation protocol of an arbitrary two-qubit pure state

via GHZ states [35]. Assume there are three valid parties in the protocol, where Alice and Bob are the senders, and Charlie

is the receiver. Alice and Bob wish to jointly prepare an arbitrary two-qubit pure state in the location of Charlie. The

initial state of being remotely prepared [12] can be expressed as

|Ψ〉 = α0|00〉+ α1eiλ1 |01〉+ α2eiλ2 |10〉+ α3eiλ3 |11〉, (B1)

where the real parameters λk ∈ [0, 2π] (k = 1, 2, 3), and αj > 0 (j = 0, 1, 2, 3) meet the normalization condition
∑3
j=0 α

2
j =

1. We assume that Alice and Bob know the parameters αj and λk, respectively. Thus, the two senders have complete

knowledge of the state |Ψ〉 through collaboration. To achieve the preparation, the three parties need to cooperate and take

the following steps.

Step 1 Alice, Bob, and Charlie initially share two GHZ states as their quantum channel

|Φ〉024 =
1
√

2
(|000〉024 + |111〉024),

|Φ〉135 =
1
√

2
(|000〉135 + |111〉135),

(B2)

of which particles 0 and 1 belong to Alice, particles 2 and 3 belong to Bob, and particles 4 and 5 belong to Charlie. To

help Charlie remotely prepare the state |Ψ〉, Alice first carries out a projective measurement (PM1) on her particles 0

and 1 according to her knowledge. She chooses a set of orthonormal vectors {|ϕr〉01 = U1(r)|ϕ0〉01, (r = 0, 1, 2, 3)} as

measurement basis with U1(0) = I0 ⊗ I1, U1(1) = I0 ⊗ (−iσy)1, U1(2) = (−iσy)0 ⊗ (σz)1, U1(3) = (−iσy)0 ⊗ (σx)1, and

|ϕ0〉01 = (α0|00〉+α1|01〉+α2|10〉+α3|11〉)01, where I is an identity operation, and σx, σy , σz are Pauli operations. Then

Alice transmits her measurement result to Bob and Charlie through classical channels.

Step 2 Bob does not measure his particles right after he receives the message. According to Alice’s measurement

result, Bob performs corresponding local unitary operations on particles 2 and 3. Subsequently, he implements a projective

measurement (PM2) on his particles under the basis {|φr〉23 = U2(r′)|φ0〉23, (r′ = 0, 1, 2, 3)} with U2(0) = I2 ⊗ I3,

U2(1) = I2⊗ (σz)3, U3(2) = (σz)2⊗ I3, U2(3) = (σz)2⊗ (σz)3, and |φ0〉23 = 1
2

(|00〉+ e−iλ1 |01〉+ e−iλ2 |10〉+ e−iλ3 |11〉)23,

and then informs Charlie of his measurement outcome.

Step 3 Based on the classical messages from Alice and Bob, Charlie performs corresponding local unitary operations

on particles 4 and 5. Finally, the initial state |Ψ〉 can be successfully restored at Charlie’s side with unit probability.

During the JRSP process, the relation between Alice’s and Bob’s measurement results and the corresponding unitary

operations performed by Bob and Charlie is shown in Table B1. Note that Chen et al. [43] have constructed an optimized

quantum circuit of the JRSP protocol with a set of single- and two-qubit logical gates. To execute the above protocol on

Origin Quantum Cloud, we adjust the order of some quantum gates in Chen’s circuit. This is necessary because Origin

Quantum uses a specific ordering where the n-th qubit is situated on the left-hand side of the tensor product, which is

different from the convention found in many physics textbooks. In this way, our designed quantum circuit is shown in

Figure B1, where the dot ’•’ denotes the control qubit while the cross ’⊕’ denotes the target qubits. Here, the two-qubit
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Figure B1 (Color online) (a) Quantum circuits for the deterministic JRSP of an arbitrary two-qubit pure state via GHZ

states. The top two qubits belong to Alice, the two in the middle are owned by Bob, and the others belong to Charlie.

Circuits before the red dashed line are designed to generate two GHZ states. (b) The unitary operations performed by Bob

depend on Alice’s classical message. (c) The unitary operations that Charlie implements on particles 4 and 5, according to

messages from Alice and Bob. Mq (q ∈ {0, 1, 2, 3}) denotes the single-qubit projective measurement on particle q, and the

double line represents the classical information.

unitary amplitude operation UA and phase operation UB take the following respective forms

UA =


α0 α1 α2 α3

α1 −α0 α3 −α2

α2 −α3 −α0 α1

α3 α2 −α1 −α0

 , (B3)

UB =
1

2


1 eiλ1 eiλ2 eiλ3

1 −eiλ1 eiλ2 −eiλ3

1 eiλ1 −eiλ2 −eiλ3

1 −eiλ1 −eiλ2 eiλ3

 . (B4)

Appendix C Experimental realization of deterministic joint remote preparation of an ar-

bitrary two-qubit pure state via GHZ states

In this appendix, we describe how to perform the above deterministic JRSP protocol on the Origin Wuyuan 6-qubit chip

with a superconducting system. We select the following six different initial states [69] to be remotely prepared

|Ψ1〉 = |00〉,
|Ψ2〉 = |11〉,

|Ψ3〉 =
1

2
(|0〉+ |1〉)(|0〉+ |1〉),

|Ψ4〉 =
1

2
(|0〉+ i|1〉)(|0〉+ i|1〉),

|Ψ5〉 =
1
√

2
(|00〉+ |11〉),

|Ψ6〉 =
1
√

2
(|01〉 − |10〉),

(C1)

which can be grouped into three categories: |Ψ1〉 and |Ψ2〉 are product states of the two qubits in the computational basis;

|Ψ3〉 and |Ψ4〉 are product states of the two qubits in the superposition basis; |Ψ5〉 and |Ψ6〉 are two of the four Bell states.

The quantum circuit of remotely preparing state |Ψ1〉 on the Origin Quantum Cloud is shown in Figure C1 as an example.

Here, Alice’s unitary transformation UA and Bob’s unitary transformation UB are decomposed with a combination of single-

qubit and CNOT gates. Moreover, the unitary operations RY, RZ, and Controlled-Z are expressed as

RY =

(
cos( ξ

2
) − sin( ξ

2
)

sin( ξ
2

) cos( ξ
2

)

)
, RZ =

(
e−i δ

2 0

0 ei
δ
2

)
, Controlled-Z =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 . (C2)

We also run our circuits of the above six states on the Origin quantum simulator to compare the probability distribution

between the real device (Origin 6-qubit chip) and the virtual quantum simulator. Both with 8192 shots, as shown in

Figure C2, the probability distribution of each state of the real device is similar to the case of the simulator. However, why

is there a discrepancy? Due to the unavoidably noise environment surrounding the real chip, decoherence in the quantum
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Figure C1 (Color online) The quantum circuit of remotely preparing state |Ψ1〉 on the Origin Quantum Cloud, where each

of six qubits is initially prepared in the state |0〉, and each numerical value in the logical gate represents the corresponding

gate parameter.
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Figure C2 (Color online) Histogram of the probability distribution obtained by the Origin 6-qubit chip and the Origin

simulator for remotely preparing (a)-(f) |Ψ1〉 − |Ψ6〉.

channel, state preparation errors, and gate errors, all these factors play important roles in reducing the fidelity of our JRSP

protocol.

Fidelity is defined to calculate the distance between quantum states, which we use to show how well the initial state is

prepared remotely. The fidelity is given by

F (ρT , ρE) =

(
tr

√√
ρT ρE

√
ρT
)2

, (C3)

where ρT is the theoretical density matrix, and ρE is the experimental one. Here, we take |Ψ3〉 as an example whose ρT is

obtained as

ρT =
1

4


1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

 . (C4)

The experimental density matrix ρE for two-qubit states is given by

ρE =
1

4

3∑
j1,j2=0

Tj1j2 (σj1 ⊗ σj2 ), (C5)

where σj (j = 0, 1, 2, 3) correspond to the identity matrix I and σx, σy , σz Pauli matrices, respectively, and Tj1j2 = Sj1×Sj2 .

Sj1 and Sj2 are the Stokes parameters expressed as S0 = P|0I〉 + P|1I〉, S1 = P|0X〉 − P|1X〉, S2 = P|0Y 〉 − P|1Y 〉, and

S3 = P|0Z〉 − P|1Z〉, where P|0j〉 and P|1j〉 represent the probability of the qubit being in |0〉 and |1〉, respectively, when

measured in j basis.
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Figure C3 (Color online) Density matrices of remote preparation of (a)-(f) |Ψ1〉 − |Ψ6〉 by quantum state tomography.
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Figure C4 (Color online) Experimental results of remote preparation of six initial states using the Origin Wuyuan 6-qubit

chip. Error bars (marked in red) represent the deviation from average fidelities shown in the blue dots since the JRSP

protocol is implemented ten times to gain the fidelities for each initial state.

The results of quantum state tomography are shown in Figure C3. For example, from the data obtained by the Origin

6-qubit chip (Figure C3(c)), the experimental density matrix of |Ψ3〉 can be written as follows

ρE =


0.2458 0.1807 0.1338 0.0937

0.1807 0.2539 0.1001 0.1528

0.1338 0.1001 0.2696 0.1921

0.0937 0.1528 0.1921 0.2549

+ i


0 −0.0013 −0.0010 −0.0033

0.0013 0 0.0066 −0.0008

0.0010 −0.0066 0 −0.0096

0.0033 0.0008 0.0096 0

 . (C6)

The fidelity between the theoretical density matrix of Eq. (C4) and the experimental one of Eq. (C6) is 0.6766. The density

matrices and state fidelities of the other five remotely prepared states are shown in the Appendix G. We run the Origin

Wuyuan 6-qubit chip ten times for each of the six initial states to calculate the mean fidelity. Despite the experimental

noise, the average measured fidelities (Figure C4) of the six states are all well above 0.40 —— the classical limit, defined in

Ref. [69] as the optimal mean fidelity of state estimation of a two-qubit system with single copy [70]. Significantly, the mean

experimental fidelity of JRSP of |Ψ3〉 is about 0.19 more than that of teleportation of |Ψ3〉 in [54], which is only 0.4919.
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Appendix D Deterministic joint remote preparation of an arbitrary two-qubit pure state

in noise environments

In natural quantum systems, there are often inevitable errors due to the physical properties of qubits themselves. In order

to better simulate these errors in the quantum system, we use the NQVM on Origin Quantum Cloud. The simulation of

the virtual machine with noise is closer to the natural quantum systems, which makes the protocols more applicable. Under

the assumption of Markov and Born approximations, and after tracing over the environmental degrees of freedom, how a

system couples with an environment can be described in terms of the operator-sum of Kraus operators.

From Figure B1, the input qubits of the quantum circuit are all set to state |0〉. The output states of the GHZ state

preparation process and our whole JRSP protocol in particles 4 and 5 become

ρGHZ = UGHZ(ρin)U†GHZ ,

ρout = Tr0123{UJRSP (ρGHZ)U†JRSP },
(D1)

respectively, where ρin = |0〉⊗6 and Tr0123 is the partial trace over qubits 0, 1, 2, and 3. The unitary operation UGHZ and

UJRSP are given by

UGHZ = CX1→5CX0→4CX1→3CX0→2H1H0, (D2)

UJRSP = CZ3→5CZ2→4CX1→5CX0→4(UB)23CZ1→2CiY1→3CiY0→2(UA)01, (D3)

respectively. Here, Hp(p = 0, 1) represents the Hadamard gate on qubit p, CXm→n, CiYm→n, and CZm→n are the

controlled X, iY , and Z gates where qubit n is controlled by qubit m. If the control qubit m is in the state |1〉, the

controlled gate performs a corresponding unitary operation on the target qubit n, while the qubit n keeps invariant when

the qubit m is in the state |0〉.
In the following, we only consider the preparation process of two GHZ states subjected to the Pauli noises. Four typical

kinds of noise often encountered in reality are phase-flip (P), bit-flip (B), amplitude-damping (A), and depolarizing (D),

which can be described by Kraus representation. The transformation of the density matrix in the noise environment can

be written as

ρ→ E(ρ) =
∑
k

EkρE
†
k, (D4)

where Ek is the Kraus operator for different noise types. Suppose that each of the qubits independently suffers from

the same kind of noise, then the Kraus operator of the double-qubit noise model has a corresponding relationship with

the single-qubit noise model. If the Kraus operators of single-qubit noise are E0 and E1, those of double-qubit noise are

E0 ⊗ E0, E0 ⊗ E1, E1 ⊗ E0, and E1 ⊗ E1. The single- and double-qubit noise acts on every single and controlled gate,

respectively.

(i) At first, we consider the situation that all operators in UGHZ are subjected to phase-flip noise, whose Kraus operators

take the form of

E0 =

(√
1− p 0

0
√

1− p

)
, E1 =

(√
p 0

0 −√p

)
, (D5)

where p describes the probability of the qubit coupling with its environment. Calculated by Eq. (C6) in the phase-flip noise

environment, the density matrix of the output state consisting of particles 4 and 5 can be derived as

ρ̃45 =


α2
0 e−iλ1 (1− 2p)5α0α1 e−iλ2 (1− 2p)5α0α2 e−iλ3 (1− 2p)10α0α3

eiλ1 (1− 2p)5α0α1 α2
1 ei(λ1−λ2)(1− 2p)10α1α2 ei(λ1−λ3)(1− 2p)5α1α3

eiλ2 (1− 2p)5α0α2 ei(λ2−λ1)(1− 2p)10α1α2 α2
2 ei(λ2−λ3)(1− 2p)5α2α3

eiλ3 (1− 2p)10α0α3 ei(λ3+λ1)(1− 2p)5α1α3 ei(λ3−λ2)(1− 2p)5α2α3 α2
3

 . (D6)

According to Eq. (C3), we obtain the fidelity

FP = α4
0 + α4

1 + α4
2 + α4

3 + 2(1− 2p)5(α2
0α

2
1 + α2

0α
2
2 + α2

1α
2
3 + α2

2α
2
3) + 2(1− 2p)10(α2

1α
2
2 + α2

0α
2
3). (D7)

The fidelity FP depends only on the amplitude information of the initial state to be remotely prepared but not on the

phase information of the state |Ψ〉. And since the input state is an arbitrary pure state of two qubits, it is more important

to analyze the average fidelity of all possible input states, which is defined as [43]

Fav =

(∫ 2π

0

∫ 2π

0

∫ 2π

0
dλ1dλ2dλ3

∫ π

0

∫ π

0

∫ π

0
dαdβdδ F sinα sinβ sin δ

)
/(64π3), (D8)

where α0 = cos α
2

cos β
2

, α1 = cos α
2

sin β
2

, α2 = sin α
2

cos δ
2

, α3 = sin α
2

sin δ
2

, and α, β, δ ∈ [0, π]. Substituting Eq. (D7)

into Eq. (D8), the corresponding average fidelity can be calculated as

FPav =
1

9
p{4p [2p (p (2p− 5) + 5)− 5] + 5}{6p [4p (2p (p (2p− 5) + 5)− 5) + 5]− 13}+ 1. (D9)

(ii) Next, we consider the case when every gate of the GHZ states preparation process is affected by the bit-flip noise.

In this case, the Kraus operators take the form of

E0 =

(√
1− p 0

0
√

1− p

)
, E1 =

(
0
√
p

√
p 0

)
. (D10)
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The fidelity FB is calculated as

FB =8
(
α2
1α

2
2 + α2

0α
2
3

)
p2(p− 1)2 − 4

(
α2
1 + α2

2

) (
α2
0 + α2

3

)
p
(
2p2 − 2p+ 1

)
(p− 1)

+
(
α4
0 + α4

1 + α4
2 + α4

3

) (
2p2 − 2p+ 1

)2
+ α0α1α2α3p(p− 1){4i

(
2p2 − 2p+ 1

)
× sin (λ1 − λ2 − λ3)− 16p

(
4p2 − 6p+ 3

)
cos (λ1 − λ2) cos (λ3) cos2[

1

2
(λ1 + λ2 − λ3)]

− 4p
(
4p2 − 5p+ 2

)
(cos (2λ3)− i sin (2 (λ1 − λ2))) + 8

(
4p3 − 6p2 + 3p− 1

)
× [cos (λ1 + λ2 − λ3) + 1]}+ 2p2

(
16p4 − 40p3 + 42p2 − 22p+ 5

)
{α2

1α
2
2 cos[2 (λ1 − λ2)]

+ α2
0α

2
3 cos (2λ3)}+ 2p2

(
16p4 − 44p3 + 50p2 − 27p+ 6

)
{
(
α2
0α

2
2 + α2

1α
2
3

)
cos (λ1 − λ2 − λ3)

+
(
α2
0α

2
1 + α2

2α
2
3

)
cos (λ1 − λ2 + λ3)}+ 2

(
α2
1 + α2

2

) (
α2
0 + α2

3

) (
16p4 − 20p3 + 14p2 − 5p+ 1

)
× (p− 1)2 + 2

(
α2
1α

2
2 + α2

0α
2
3

) (
16p4 − 24p3 + 18p2 − 6p+ 1

)
(p− 1)2 − 2

(
α2
1 + α2

2

) (
α2
0 + α2

3

)
× p

(
16p5 − 44p4 + 50p3 − 31p2 + 11p− 2

)
cos (λ1 + λ2 − λ3)− 8

(
α2
1α

2
2 + α2

0α
2
3

)
× p

(
8p5 − 24p4 + 29p3 − 18p2 + 6p− 1

)
cos (λ1 − λ2) cos (λ3)

+ 2p
(
16p5 − 52p4 + 70p3 − 49p2 + 18p− 3

)
{α2

0[α2
1 cos (2λ1) + α2

2 cos (2λ2)]

+ α2
3[α2

1 cos (2 (λ1 − λ3)) + α2
2 cos (2 (λ2 − λ3))]}.

(D11)

And using Eq. (D8), we obtain the corresponding average fidelity

FBav = 1−
1

144
p{−3π2 [p(8p− 5) + 2] (p− 1)2 − 8p [p (4p (p (40p− 133) + 188)− 601) + 302] + 728}. (D12)

(iii) Thirdly, we consider the case when every gate of the GHZ states preparation process is subjected to amplitude-

damping noise. The Kraus operators take the form of

E0 =

(
1 0

0
√

1− p

)
, E1 =

(
0
√
p

0 0

)
. (D13)

Using a similar method as the above cases, the fidelity FA can be obtained as

FA =2
(
α2
1α

2
2 + α2

0α
2
3

)
(p− 1)5

(
p3 − p2 − 1

)
+
(
α4
0 + α4

1 + α4
2 + α4

3

) (
p4 − 3p3 + 3p2 − p+ 1

)2
+
(
α2
1 + α2

2

) (
α2
0 + α2

3

)
(p− 1)2[−2p6 + 8p5 + 3

(√
1− p− 4

)
p4

+
(

8− 10
√

1− p
)
p3 +

(
11
√

1− p− 4
)
p2 − (1− p)5/2(p− 2)p cos (λ1 + λ2 − λ3)

+
(

2− 4
√

1− p
)
p+ 2

√
1− p] + 2α0α1α2α3e−i(λ1+λ2+λ3)

(
ei(λ1+λ2) + eiλ3

)
2p(1− p)11/2.

(D14)

The corresponding average fidelity can be calculated as

FAav =
1

288
{16

(
7
√

1− p+ 11
)
− p[−64p7 + 384p6 + 3

(
π2
√

1− p− 8
(

7
√

1− p+ 40
))

p5

+
(
−15π2

√
1− p+ 896

√
1− p+ 1328

)
p4 + 2

(
15π2

√
1− p− 952

√
1− p− 672

)
p3

+ 6
(
−5π2

√
1− p+ 336

√
1− p+ 216

)
p2 +

(
15π2

√
1− p− 1176

√
1− p− 976

)
p

+ 64
(

7
√

1− p+ 6
)
− 3π2

√
1− p]}.

(D15)

(iv) At last, we consider the case when every gate of the GHZ states preparation process is subjected to depolarizing

noise. The Kraus operators take the form of

E0 =

√
1−

3p

4
I, E1 =

√
p

2
σx, E2 =

√
p

2
σy , E3 =

√
p

2
σz . (D16)

The fidelity FD can be obtained as

FD =
(
α2
1α

2
2 + α2

0α
2
3

)
[
1

2
(p− 2)2p2 + 2(p− 1)10] +

1

4

(
α4
0 + α4

1 + α4
2 + α4

3

) (
p2 − 2p+ 2

)2
+

1

2

(
α2
1 + α2

2

) (
α2
0 + α2

3

)
{2p2

(
p2 − 2p+ 2

)
+ (1− p)5[−2p3 +

(
2p2 − 5p+ 4

)
× p cos (λ1 + λ2 − λ3) + 7p2 − 8p+ 4]}+ 2α0α1α2α3(p− 2)p(p− 1)5 (cos (λ1 + λ2 − λ3) + 1) .

(D17)

The corresponding average fidelity can be calculated as

FDav =
1

192
π2(p− 2)p(p− 1)5 +

1

72
p{p[p(p(p(p(p(2p(6(p− 10)p+ 277)− 1559) + 2961)

− 3962) + 3784)− 2555) + 1183]− 352}+ 1.

(D18)

Summarizing cases (i)–(iv), we find that FP and FA do not depend on the phase information of the initial state to be

prepared, and it is easy to verify the four kinds of fidelities all equal to 1 in the absence of noise. The average fidelities of the

JRSP protocol over p under the influence of four typical kinds of noise environments are plotted in Figure D1. Moreover,

for p→ 1, the fidelities FAav and FDav steadily approach 4
9

and 1
4

, respectively.
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Figure D1 (Color online) The average fidelities of JRSP of an arbitrary two-qubit state in four different noise environments

are plotted as a function of p.

Appendix E Experimental results and optimization of deterministic joint remote prepa-

ration of two unique two-qubit states in noise environments

In this appendix, we run our quantum circuit on the Origin NQVM, implementing the noises only on gates before the red

dashed line in Figure B1. Without loss of generality, we consider remotely preparing the separated state |Ψ3〉 and the

maximally entangled state |Ψ5〉 described in Eq. (C1),

|Ψ3〉 =
1

2
(|0〉+ |1〉)(|0〉+ |1〉),

|Ψ5〉 =
1
√

2
(|00〉+ |11〉),

(E1)

which indicates the amplitude parameters α0 = α1 = α2 = α3 = 1
2

, and α1 = α2 = 0, α0 = α3 = 1√
2

, respectively, and

the phase parameters λ1 = λ2 = λ3 = 0. The probability parameter p we set goes from 0 to 1 in steps of 0.001. For each

p, the NQVM runs 1000 times to calculate the experimental density matrix by quantum state tomography.

Using Eqs. (D7, D11, D14, D17), the theoretical fidelity F γi (γ ∈ {P,B,A,D} and i = 3, 5 for the two states above) can

be calculated as

FP3 =
1

4
[1 + (1− 2p)10 + 2(1− 2p)5],

FP5 =
1

2
(1 + (1− 2p)10),

FB3 = 1,

FB5 = 1− 4p+ 12p2 − 16p3 + 8p4,

FA3 =
1

4
[1 + 2(1− p)5/2 + (1− p)5],

FA5 = 1−
7

2
p+ 9p2 − 14p3 +

37

2
p4 −

41

2
p5 + 15p6 − 6p7 + p8,

FD3 =
1

4
[1− (1− p)10 + 2(1− p)5],

FD5 =
1

4
[2 + 2(1− p)10 − 4p+ 6p2 − 4p3 + p4],

(E2)

respectively. How the state fidelities vary against p in the four different types of noise environments are shown in Figures E1-

E4, respectively.

From Figure E1, it can be seen that the experimental data is in good agreement with the theoretical fidelities under the

influence of phase-flip noise. Moreover, it is also easy to verify that in the absence of phase-flip noise, all the fidelities are

equal to 1. The state fidelity FP3 for JRSP of |Ψ3〉 decreases as p increases from zero, which is usual. However, for remotely

preparing the state |Ψ5〉, as p increases further to the value larger than 1
2

, the protocol revives (i.e., back to service) with

FP5 increasing, which seems unusual since it would mean that more noise better quality. These similar phenomena also

happen in noisy quantum teleportation [71] and noisy JRSP of a single-qubit state [72]. Nevertheless, how can we improve

the fidelity of our JRSP protocol, preventing the fidelity from falling to zero? In the presence of noises, the state working

in channels is not the initial entangled resource but the decohered one. Specifically, when p 6= 0, the working state in
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Figure E1 (Color online) Fidelity of remotely preparing the state |Ψ3〉 (a) and |Ψ5〉 (b) in the phase-flip noise environment.

The optimized theoretical FP3 for any p are over 0.25.

our protocol may be the decohered state rather than GHZ states. Similar to the physical interpretations in Ref. [72], we

consider the working state in our protocol to be the form of

|Q(θ)〉024 = (cos
θ

2
|000〉024 + sin

θ

2
|111〉024),

|Q(θ)〉135 = (cos
θ

2
|000〉135 + sin

θ

2
|111〉135).

(E3)

In the following, let us see what Alice and Bob can do to improve the fidelity of different noises acting on the quantum

channel. Since the ideal state |Q(π/2)〉 is maximally entangled, generally, the efficiency of the JRSP protocol will be

enhanced as the |Q(θ)〉〈Q(θ)| approaches |Q(π/2)〉〈Q(π/2)|. To investigate the validity of this idea, we conduct tests

involving the remote preparation of the two initial states shown in Eq. (E1) under four distinct noise environments.

According to the Kraus operators described by Eq. (D5), the fidelities when considering the working state become

F ′P3 =
1

4
[(1− 2p)10 sin2(θ)− 2(2p− 1)5 sin(θ) + 1],

F ′P5 =
1

2
[(1− 2p)10 sin2(θ) + 1].

(E4)

The optimal value of θ that maximizes the fidelity can be determined from the equation ∂F ′

∂θ
= 0 and the restraint condition

∂2F ′

∂θ2
< 0. For F ′P3 and F ′P5 , the optimal values of θ are

θP3 =


π

2
, for p 6

1

2

−
π

2
, for p >

1

2
,

θP5 = ±
π

2
,

(E5)

respectively. For remotely preparing state |Ψ3〉, |Q(θ = −π/2)〉〈Q(θ = −π/2)| is closest to ρGHZ when the probability

parameter p is larger than 1
2

. By choosing an appropriate θ for state |Q(θ)〉, i.e. replacing the two Hadamard gates in

Eq. (D2) with the parameterized unitary operation

U(θ) =

(
cos θ

2
sin θ

2

sin θ
2
− cos θ

2

)
, (E6)

the entanglement degree contained in the working state enhances with the increase of p (> 1
2

). After optimization, FP3
becomes

(FP3 )opt =


1

4
[1 + (1− 2p)10 + 2(1− 2p)5], for p 6

1

2
1

4
[1 + (1− 2p)10 − 2(1− 2p)5], for p >

1

2
,

(E7)

which is shown in Figure E1, while FP5 can not be optimized.

Further, we consider the JRSP in the bit-flip noise environment. The optimal values of θ are found to be

θB3 = θB5 = ±
π

2
. (E8)

The original GHZ states in Eq. (B2) are one of the two optimal states, so the optimal fidelities are the same as FB3 and

FB5 in Eq. (E2), respectively. It can be seen when implementing the JRSP of state |Ψ3〉 in the bit-flip noise environment

(Figure E2(a)), the fidelity is always unit for any p. That is to say, the bit-flip noise can not influence the JRSP of state |Ψ3〉.
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Figure E2 (Color online) Fidelity of remotely preparing the state |Ψ3〉 (a) and |Ψ5〉 (b) in the bit-flip noise environment.

Theoretical FB3 are always one, and theoretical FB5 are all over 0.5.
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Figure E3 (Color online) Fidelity of remotely preparing the state |Ψ3〉 (a) and |Ψ5〉 (b) in the amplitude-damping noise

environment. Theoretical FA3 has a lower limit of 0.25, and the optimized theoretical FA5 are above 0.5.

And interestingly, for remotely preparing a maximally entangled state |Ψ5〉, a complete revival (Figure E2(b)) happens in

the bit-flip noise environment when p→ 1.

Affected by the amplitude-damping noise, the optimal values of θ are found to be

θA3 =
π

2
,

θA5 =


± 2 arctan

(√
p2 − 3p+ 1

4p5 − 12p4 + 12p3 − 3p2 − p+ 1

)
, for p 6

1

2

(
3−
√

5
)

0, for p >
1

2

(
3−
√

5
)
.

(E9)

The optimal average fidelity (FA3 )opt is the same as FA3 in Eq. (E2) while (FA5 )opt is different and derived as the form

(FA5 )opt =


2− p(p(p((p− 7)p+ 15)− 15) + 7)

4(p− 1)p2 + 2
, for p 6

1

2

(
3−
√

5
)

1

2
, for p >

1

2

(
3−
√

5
)
.

(E10)

The experimental result of the optimized JRSP of state |Ψ5〉 in amplitude-damping noise environment derived from the

Origin NQVM is shown in Figure E3. After optimization, we improve the fidelity FA5 all above 1
2

.

Finally, we consider the JRSP in the depolarizing noise environment. Straightforward calculations obtain the optimal

values of θ as

θD3 =
π

2
,

θD5 = ±
π

2
.

(E11)

As displayed in Figure E4, the fidelities FD3 and FD5 decline when p rises from 0 to 1, which our method cannot optimize.
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Figure E4 (Color online) Fidelity of remotely preparing the state |Ψ3〉 (a) and |Ψ5〉 (b) in the depolarizing noise envi-

ronment. Theoretical FD3 and FD5 are all above 0.25.

Appendix F Conclusions

In summary, by employing two tripartite GHZ states as entanglement channels, we have realized the deterministic JRSP

protocol of six unique initial two-qubit states on the Origin Wuyuan 6-qubit chip. The probability comparison between the

simulator and real device, and the density matrices reconstructed by quantum state tomography, show that the protocol

is successfully demonstrated on Origin Quantum Cloud, with all six experimental fidelities exceeding 0.4 —— the classical

limit.

The effect of four kinds of noises on JRSP of any two-qubit pure state is investigated, and we have analytically derived the

fidelity and their corresponding average one. Furthermore, for JRSP of a separated state and a maximally entangled state,

the theoretical fidelities as a function of probability parameter p are verified by the Origin NQVM. Especially for remotely

preparing certain states in the presence of phase-flip and amplitude-damping noises, we have proposed a practical approach

to enhance the fidelity by substituting the two Hadamard gates in the GHZ states preparation circuit with parameterized

unitary operations. Simulated results on NQVM indicate that this approach can be implemented in the actual JRSP

experiment. Our work proves the feasibility of JRSP of an arbitrary two-qubit state and could pave the way for developing

and verifying more complex quantum communication tasks.

Appendix G The density matrices and fidelities of the initial states

For each of the six initial states |Ψ1〉 − |Ψ6〉, we run the Origin 6-qubit chip 10 times to calculate the mean fidelity. For

simplicity, in the following, we present the theoretical density matrix and one of ten experimental density matrices of each

state. Besides, ten experimental fidelities of each state are calculated accordingly.

(i) |Ψ1〉 = |00〉

ρT1 =


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 , (G1)

ρE1 =


0.7015 −0.0043 0.0023 −0.0056

−0.0043 0.1227 −0.0064 −0.0015

0.0023 −0.0064 0.1490 0.0086

−0.0056 −0.0015 0.0086 0.0269

+ i


0 0.0119 0.0076 −0.0005

−0.0119 0 −0.0104 −0.0008

−0.0076 0.0104 0 0.0025

0.0005 0.0008 −0.0025 0

 . (G2)

Here, the fidelity F1 = 0.70147. The ten experimental fidelities are 0.69995, 0.695388, 0.652813, 0.689813, 0.690826, 0.70147,

0.698429, 0.694881, 0.699443, 0.69032.

(ii) |Ψ2〉 = |11〉

ρT2 =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

 , (G3)

ρE2 =


0.0335 0.0023 0.0058 0.0035

0.0023 0.1343 −0.0079 −0.0152

0.0058 −0.0079 0.1272 0.0020

0.0035 −0.0152 0.0020 0.7050

+ i


0 0.0038 0.0063 0.0142

−0.0038 0 −0.0018 −0.0010

−0.0063 0.0018 0 −0.0142

−0.0142 0.0010 0.0142 0

 , (G4)
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the fidelity F2 = 0.705018. Ten experimental fidelities are 0.69336, 0.695895, 0.68373, 0.608211, 0.694881, 0.692854,

0.705018, 0.690826, 0.615307, 0.696402.

(iii) |Ψ3〉 = 1
2

(|0〉+ |1〉)(|0〉+ |1〉)

ρT3 =
1

4


1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

 , (G5)

ρE3 =


0.2458 0.1807 0.1338 0.0937

0.1807 0.2539 0.1001 0.1528

0.1338 0.1001 0.2696 0.1921

0.0937 0.1528 0.1921 0.2549

+ i


0 −0.0013 −0.0010 −0.0033

0.0013 0 0.0066 −0.0008

0.0010 −0.0066 0 −0.0096

0.0033 0.0008 0.0096 0

 , (G6)

the fidelity F3 = 0.676635. Ten experimental fidelities are 0.674607, 0.648505, 0.656108, 0.674861, 0.669286, 0.651039,

0.66143, 0.676635, 0.651293, 0.667765.

(iv) |Ψ4〉 = 1
2

(|0〉+ i|1〉)(|0〉+ i|1〉)

ρT4 =
1

4


1 i i −1

i −1 −1 −i

i −1 −1 −i

−1 −i −i 1

 , (G7)

ρE4 =


0.2387 −0.0073 −0.0020 −0.0659

−0.0073 0.2499 0.0793 −0.0003

−0.0020 0.0793 0.2676 −0.0015

−0.0659 −0.0003 −0.0015 0.2438

+ i


0 −0.1444 −0.1217 0.0030

0.1444 0 −0.0003 −0.1113

0.1217 0.0003 0 −0.1417

−0.0030 0.1113 0.1417 0

 , (G8)

the fidelity F4 = 0.58210. Ten experimental fidelities are 0.575773, 0.570451, 0.544856, 0.578054, 0.581602, 0.582109,

0.574253, 0.575773, 0.579321, 0.581602.

(v) |Ψ5〉 = 1√
2

(|00〉+ |11〉)

ρT5 =
1

2


1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

 , (G9)

ρE5 =


0.3634 0.0043 −0.0056 0.2126

0.0043 0.1485 0.0112 0.0094

−0.0056 0.0112 0.1343 0.0015

0.2126 0.0094 0.0015 0.3538

+ i


0 −0.0038 −0.0068 −0.0086

0.0038 0 −0.0023 0.0081

0.0068 0.0023 0 −0.0142

0.0086 −0.0081 0.0142 0

 , (G10)

the fidelity F5 = 0.571214. Ten experimental fidelities are 0.528386, 0.521543, 0.571214, 0.558036, 0.564118, 0.553475,

0.556262, 0.54866, 0.520783, 0.551447.

(vi) |Ψ6〉 = 1√
2

(|01〉 − |10〉)

ρT =
1

2


0 0 0 0

0 1 −1 0

0 −1 1 0

0 0 0 0

 , (G11)

ρE6 =


0.1338 0.0069 −0.0048 −0.0051

0.0069 0.3492 −0.1579 0.0051

−0.0048 −0.1579 0.3730 0.0021

−0.0051 0.0051 0.0021 0.1439

+ i


0 −0.0053 0.0107 −0.0028

0.0053 0 0.0015 −0.0058

−0.0107 −0.0015 0 0.0010

0.0028 0.0058 −0.0010 0

 , (G12)

the fidelity F6 = 0.519009. Ten experimental fidelities are 0.489612, 0.518756, 0.518756, 0.505578, 0.51242, 0.505324,

0.492907, 0.50127, 0.519009, 0.483277.

Appendix H Density matrix of JRSP of an arbitrary two-qubit state in different noise

environments

Here, we list the theoretical density matrix elements of JRSP of an arbitrary two-qubit state in different noise environments

as follows.
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(i) Bit-flip noise

In a similar calculation to the case of phase-flip noises, for the bit-flip noise environment, the density matrix elements of

particles 4 and 5 are derived as

ρ00 = α2
0

(
2p2 − 2p+ 1

)2
+ 4α2

3(p− 1)2p2 − 2
(
α2
1 + α2

2

)
(p− 1)p

(
2p2 − 2p+ 1

)
,

ρ11 = α2
1

(
2p2 − 2p+ 1

)2
+ 4α2

2(p− 1)2p2 − 2
(
α2
0 + α2

3

)
(p− 1)p

(
2p2 − 2p+ 1

)
,

ρ22 = 4α2
1(p− 1)2p2 + α2

2

(
2p2 − 2p+ 1

)2 − 2
(
α2
0 + α2

3

)
(p− 1)p

(
2p2 − 2p+ 1

)
,

ρ33 = 4α2
0(p− 1)2p2 + α2

3

(
2p2 − 2p+ 1

)2 − 2
(
α2
1 + α2

2

)
(p− 1)p

(
2p2 − 2p+ 1

)
,

ρ10 = ρ∗01 = α2α3(p− 1)p{−ei(λ3−λ2) + 2ip
(
4p2 − 6p+ 3

)
[sin (λ1)− sin (λ2 − λ3)]− eiλ1}

+ α0α1{ei(λ2−λ3)p2
(
16p4 − 44p3 + 50p2 − 27p+ 6

)
+
(
16p4 − 20p3 + 14p2 − 5p+ 1

)
× (p− 1)2eiλ1 − ei(λ3−λ2)p

(
16p5 − 44p4 + 50p3 − 31p2 + 11p− 2

)
− p

(
16p5 − 52p4 + 70p3 − 49p2 + 18p− 3

)
e−iλ1},

ρ20 = ρ∗02 = α1α3(p− 1)p{−ei(λ3−λ1) + 2ip
(
4p2 − 6p+ 3

)
[sin (λ2)− sin (λ1 − λ3)]− eiλ2}

+ α0α2[eiλ2
(
16p4 − 20p3 + 14p2 − 5p+ 1

)
(p− 1)2 + ei(λ1−λ3)p2

×
(
16p4 − 44p3 + 50p2 − 27p+ 6

)
− ei(λ3−λ1)p

(
16p5 − 44p4 + 50p3 − 31p2 + 11p− 2

)
− p

(
16p5 − 52p4 + 70p3 − 49p2 + 18p− 3

)
e−iλ2 ],

ρ30 = ρ∗03 = α1α2(p− 1)p[2
(
−2p2 + 2p− 1

)
cos (λ1 − λ2)− 2p

(
4p2 − 5p+ 2

)
e−iλ3

+ 2
(
4p3 − 7p2 + 4p− 1

)
eiλ3 ] + α0α3[

(
16p4 − 24p3 + 18p2 − 6p+ 1

)
(p− 1)2eiλ3

+ p2
(
16p4 − 40p3 + 42p2 − 22p+ 5

)
e−iλ3

− 4p
(
8p5 − 24p4 + 29p3 − 18p2 + 6p− 1

)
cos (λ1 − λ2)],

ρ21 = ρ∗12 = α0α3(p− 1)p[−2ei(λ1−λ2)p
(
4p2 − 5p+ 2

)
+ 2

(
−2p2 + 2p− 1

)
cos (λ3)

+ 2ei(λ2−λ1)
(
4p3 − 7p2 + 4p− 1

)
] + α1α2[ei(λ2−λ1)

(
16p4 − 24p3 + 18p2 − 6p+ 1

)
(p− 1)2

+ ei(λ1−λ2)p2
(
16p4 − 40p3 + 42p2 − 22p+ 5

)
− 2p

(
8p5 − 24p4 + 29p3 − 18p2 + 6p− 1

)
× e−iλ3 − 2p

(
8p5 − 24p4 + 29p3 − 18p2 + 6p− 1

)
eiλ3 ],

ρ31 = ρ∗13 = α0α2(p− 1)p{−ei(λ3−λ1) + 2ip
(
4p2 − 6p+ 3

)
[sin (λ2)− sin (λ1 − λ3)]− eiλ2}

+ α1α3[ei(λ3−λ1)
(
16p4 − 20p3 + 14p2 − 5p+ 1

)
(p− 1)2 + p2

(
16p4 − 44p3 + 50p2 − 27p+ 6

)
× e−iλ2 − ei(λ1−λ3)p

(
16p5 − 52p4 + 70p3 − 49p2 + 18p− 3

)
− p

(
16p5 − 44p4 + 50p3 − 31p2 + 11p− 2

)
eiλ2 ],

ρ32 = ρ∗23 = α0α1(p− 1)p{−ei(λ3−λ2) + 2ip
(
4p2 − 6p+ 3

)
[sin (λ1)− sin (λ2 − λ3)]− eiλ1}

+ α2α3[ei(λ3−λ2)
(
16p4 − 20p3 + 14p2 − 5p+ 1

)
(p− 1)2

+ p2
(
16p4 − 44p3 + 50p2 − 27p+ 6

)
e−iλ1 − ei(λ2−λ3)p

(
16p5 − 52p4 + 70p3 − 49p2 + 18p− 3

)
− p

(
16p5 − 44p4 + 50p3 − 31p2 + 11p− 2

)
eiλ1 ].

(H1)

(ii) Amplitude-damping noise
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For the amplitude-damping noise environment, the density matrix elements of particles 4 and 5 are derived as

ρ00 = α2
3p

2(1− p)6 + α2
0

(
p(p− 1)3 + 1

)2
+
(
α2
1 + α2

2

)
(1− p)3p

(
p(p− 1)3 + 1

)
,

ρ11 = α2
2p

2(1− p)6 + α2
1

(
p(p− 1)3 + 1

)2
+
(
α2
0 + α2

3

)
(1− p)3p

(
p(p− 1)3 + 1

)
,

ρ22 = α2
1p

2(1− p)6 + α2
2

(
p(p− 1)3 + 1

)2
+
(
α2
0 + α2

3

)
(1− p)3p

(
p(p− 1)3 + 1

)
,

ρ33 = α2
0p

2(1− p)6 + α2
3

(
p(p− 1)3 + 1

)2
+
(
α2
1 + α2

2

)
(1− p)3p

(
p(p− 1)3 + 1

)
,

ρ01 = ρ∗10 =
1

2
(1− p)5/2{α0α1[e−iλ1

(
p(3p− 4)(p− 1)2 + 2

)
− ei(λ2−λ3)(p− 2)(p− 1)2p]

− α2α3

(
e−iλ1 + ei(λ2−λ3)

)
(p− 1)3p},

ρ02 = ρ∗20 =
1

2
(1− p)5/2{α0α2[e−iλ2

(
p(3p− 4)(p− 1)2 + 2

)
− ei(λ1−λ3)(p− 2)(p− 1)2p]

− α1α3

(
e−iλ2 + ei(λ1−λ3)

)
(p− 1)3p},

ρ03 = ρ∗30 = α0α3e−iλ3 (1− p)5,
ρ12 = ρ∗21 = α2

1 + p(p− 1)3
(
2α2

1 − α2
3 +

(
α2
1 + α2

2 − α2
3

)
p(p− 1)3 + α2

0

(
−p(p− 1)3 − 1

))
,

ρ13 = ρ∗31 = α1α2ei(λ1−λ2)(1− p)5,

ρ23 = ρ∗32 =
1

2
(1− p)5/2{α2α3[ei(λ2−λ3)

(
p(3p− 4)(p− 1)2 + 2

)
− e−iλ1 (p− 2)(p− 1)2p]

− α0α1

(
e−iλ1 + ei(λ2−λ3)

)
(p− 1)3p}.

(H2)

(iii) Depolarizing noise

For the depolarizing noise environment, the density matrix elements of particles 4 and 5 are derived as

ρ00 =
1

4

(
α2
0

(
p2 − 2p+ 2

)2
+ α2

3(p− 2)2p2 +
(
α2
1 + α2

2

)
(2− p)p

(
p2 − 2p+ 2

))
,

ρ11 =
1

4

(
α2
1

(
p2 − 2p+ 2

)2
+ α2

2(p− 2)2p2 +
(
α2
0 + α2

3

)
(2− p)p

(
p2 − 2p+ 2

))
,

ρ22 =
1

4

(
α2
1(p− 2)2p2 + α2

2

(
p2 − 2p+ 2

)2
+
(
α2
0 + α2

3

)
(2− p)p

(
p2 − 2p+ 2

))
,

ρ33 =
1

4

(
α2
0(p− 2)2p2 + α2

3

(
p2 − 2p+ 2

)2
+
(
α2
1 + α2

2

)
(2− p)p

(
p2 − 2p+ 2

))
,

ρ01 = ρ∗10 =
1

4
(p− 1)5{α0α1

(
e−iλ1 (p− 2)(p(2p− 3) + 2)− ei(λ2−λ3)p(p(2p− 5) + 4)

)
+ α2α3

(
e−iλ1 + ei(λ2−λ3)

)
(p− 2)p},

ρ02 = ρ∗20 =
1

4
(p− 1)5{α0α2

(
e−iλ2 (p− 2)(p(2p− 3) + 2)− ei(λ2−λ3)p(p(2p− 5) + 4)

)
+ α1α3

(
e−iλ2 + ei(λ1−λ3)

)
(p− 2)p},

ρ03 = ρ∗30 = α0α3e−iλ3 (p− 1)10,

ρ12 = ρ∗21 = α1α2ei(λ1−λ2)(p− 1)10,

ρ13 = ρ∗31 =
1

4
(p− 1)5{α0α2

(
e−iλ2 + ei(λ1−λ3)

)
(p− 2)p

+ α1α3

(
e−iλ2p((5− 2p)p− 4) + ei(λ1−λ3)(p− 2)(p(2p− 3) + 2)

)
},

ρ23 = ρ∗32 =
1

4
(p− 1)5{α0α1

(
e−iλ1 + ei(λ2−λ3)

)
(p− 2)p

+ α2α3

(
e−iλ1p((5− 2p)p− 4) + ei(λ1−λ3)(p− 2)(p(2p− 3) + 2)

)
}.

(H3)
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