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Scene text recognition (STR) is drawing increasing attention

nowadays due to its wide application in real life. Charac-

ter counting information, as auxiliary information, has been

shown to be effective in boosting text recognition perfor-

mance. However, most previous methods only utilize it

for visual feature enhancement [1, 2]. It can also benefit

the semantic models by providing useful global clues for

sequence-to-sequence character prediction. Given the previ-

ously output characters, the language model (LM) can pro-

vide the character probability distribution p(yt|y0, . . . , yt−1)

for the next character prediction through a statistic rule

of reading words. If considering text length n, we can get

p(yt|y0, . . . , yt−1) =
∑

n
p(n)p(yt|y0, . . . , yt−1, n). If n is

known as prior, the LM could generate a finer constraint on

the sequence, making the character prediction more precise.

In this study, we rethink character counting in STR from

a principled viewpoint. The STR model aims to output the

predicted word Y : (y0, y1, . . . , yt) with the maximum prob-

ability given image representation V . In our framework, we

use the law of total probability to expand P (Y |V ) with a

predicted text length T . Given ground truth Y ∗, the opti-

mization goal of training the model is to maximize (1):

logP (Y ∗|V ) = log

max(T )∑

T=1

P (T |V )P (Y ∗|V, T )

Step1
= log

max(T )∑

T=1

P (T |V )
T∏

t=1

P (yt|vt, T )P (yt|Yt−1, T )

P (yt|T )

Step2
= logP (T ∗|V ) +

T
∗∑

t=1

log
P (y∗

t
|vt, T ∗)P (y∗

t
|Yt−1, T

∗)

P (y∗
t
|T ∗)

Step3
= logP (T ∗|V )+

T
∗∑

t=1

logP (y∗t |vt, T
∗)P (y∗t |Yt−1,T

∗)−α

= −(Lcc + Lrec),
(1)

where max(T ) is the maximum length of given text images,

and Yt−1 = {y0, . . . , yt−1}. Lcc and Lrec are the corre-

sponding character counting loss and character prediction

loss, respectively. The inference of Step1 is provided in Ap-

pendix A. Step2 holds because the correct labels can only

be predicted when the correct character count T ∗ is given.

α = P (y∗
t
|T ∗) in Step3 is a constant and could be ignored in

training and test phrases. Because during training, the la-

bels y∗
t
and T ∗ are known. During the test phase, however,

the character sequence given length T ∗ is dependent on the

text image, and the probability of sequence depends on a

universe LM. If this external LM is available, it is used in

recognition only (not in training). Whereas, in most studies

of STR, the external LM is not used. Hence, we can ignore

it. From the above formulation, we can see the loss for pre-

dicting character yt at time step t has relations with both

visual feature vt, previous linguistic context Yt−1, and text

length T ∗.

The proposed model. Based on the formulated problem,

we propose a character counting aware scene text recognizer.

The full model can be found in Appendix B. Given an input

image, a backbone network first extracts the local represen-

tations V 0. A character counting involved encoder is built

upon the Transformer architecture. The positional infor-

mation and an additional character counting token V 0
c are

added to the encoder. V 0
c is initialized by averaging features

of V 0. It outputs context-enhanced local representations V

and a global character counting feature Vc. They are fur-

ther fed into two independent decoders, a counting-aware

semantic decoder, and a vision decoder.

The encoder is a stack of L identical character counting

aggregated (CCA) layers, each of which includes a global ag-

gregated attention (GAA) block and a feed-forward neural

network (FFN). GAA block is designed to achieve context

information for each local representation and also capture

a comprehensive global representation. It is implemented

by the multi-head self-attention [3] (MHSA). Both features

V l and the global feature V l
c are fed into MHSA in the l

layer and then followed by a residual connection and a layer-

normalization (LN) process. Finally, the FFN is used to get

the output of the (l + 1)th layer.

The vision decoder consists of L′ identical layers, where
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each contains the multi-head cross attention (MHCA) mod-

ule to extract positional enhanced visual features and a

gate mechanism to transfer the complementary character

counting information for character prediction. V L and

V L
c from the encoder are input into the vision decoder.

The positional embedding vector pt, which is projected

from one-hot vectors at each time step t, is passed into

an MHCA module as the query. The features of V L are

projected to the key and value. We could obtain p̂l+1
t

=

MHCA(pl
t
, V L, V L) after cross-attention in the lth layer.

For the first layer, p0
t

is pt. Then, a gating mechanism,

defined as σ = sigmoid((pl
t
)TV L

c ), is used to control the

importance of global information by the query pl
t
and the

count information V L
c . After that, we adaptively fuse the

global representation to update the output from MHCA

as pl+1
t

= p̂l+1
t

+ σ × V L
c . Finally, the refined output of

layer l is obtained by using residual connections and LN

pl
t
= LN(pl

t
+ pl+1

t
).

The counting-aware semantic decoder is designed in

two ways, an long short-term memory (LSTM)-based or

a Transformer-based decoder. The first one consists of a

double-layer stacked LSTM network with 512-dimensional

hidden units and an attention module. The first layer of the

stacked LSTM network takes the previously predicted char-

acter embedding as input and operates from left to right

over the word sequence. The hidden states of the first layer

is defined as h0
t
= LSTM(yt−1, h

0
t−1), where LSTM is the

recurrent unit, and yt−1 is the decoded output result at time

step t − 1. We set y0 as a special start token 〈start〉. The

global counting information V L
c is integrated into the second

stacked layer to output h1
t

= LSTM(MLP[h0
t
; V L

c ], h1
t−1),

where MLP[·; ·] is the integration operation using a multi-

layer perceptron (MLP). h1
t
is then input into the consequent

attention module as the query feature vector to compute at-

tention αt

i
= softmax(h1T

t
V L

i
). This attention enables the

STR model to learn a language model involving character-

level counting that represents output class dependencies.

Finally, a glimpse vector Gt aggregates the context-aware

visual information V L for the character prediction during

decoding by Gt =
∑

i
αt

i
V L

i
.

The alternative Transformer-based decoder is composed

of stacked L′′ identical masked MHSA layers and one MHCA

layer. The previously predicted character embeddings are

concatenated with the character counting V L
c and order em-

beddings, and then input to the masked MHSA layers. The

last L′′th layer outputs the interacted character embedding

hL
′′

t−1, and it is further input to MHCA layer as the query

to compute attention αt

i
= softmax(hL

′′T
t−1 V L

i
). The glimpse

vector Gt is achieved in the same way as in the LSTM-based

decoder.

Finally, a fusion [4] module is conducted on the counting-

aware features pt and Gt for character prediction via an

element-wise gate mechanism.

Except for Lrec for auto-regressive character prediction

and Lcc for character counting, we additionally regard con-

nectionist temporal classification (CTC) with character pre-

dictions as output labels as a regularizer [5] and stack

it onto the encoder for STR modeling. Overall, the to-

tal loss function can be expressed by the sum of losses

Lall = Lrec + Lcc + λLctc.

Experimental results. Our experiments mainly include

the implementation, ablation studies, comparison experi-

ments, character counting accuracy, and generalization of

fancy text images. More details can be found in Appendix C.

We report the test accuracy on the regular and irregular

datasets with state-of-the-art (SOTA) methods in Table 1.

The result demonstrates our method achieves comparable

accuracy with SOTA methods. Specifically, our method us-

ing an LSTM-based semantic encoder (i.e., OursLSTM) gets

the best performance on IIIT5K. RF-LN [1] and ACE [2]

also utilized the counting information in the vision-based

STR model. However, our model is better than them on all

test sets since we inject the character counting information

in both vision and language models, which could further

enhance the recognition accuracy.

Table 1 Accuracy (%) comparison with SOTA STR methods

on six standard benchmarksa)

Method
Regular Irregular

IIIT5K SVT IC13 SVTP IC15 CUTE

CRNN 78.2 80.9 89.4 – – –

NRTR 90.1 91.5 95.8 86.6 79.4 80.9

ACE 82.3 82.6 89.7 70.1 68.9 82.6

RobustScanner 95.3 88.1 94.8 79.5 77.1 90.3

SEED 93.8 89.6 92.8 81.4 80.0 83.6

SCATTER 93.2 90.9 94.1 86.2 82.0 84.8

RF-LN 94.0 87.7 93.5 84.7 76.7 77.8

SRN 94.8 91.5 95.5 85.1 82.7 87.8

ABINet-LV 96.2 93.5 97.4 89.3 86.0 89.2

S-GTR 95.8 94.1 96.8 87.9 84.6 92.3

CornerTrans. 95.9 94.6 96.4 91.5 86.3 92.0

SVTR-L 96.3 91.7 97.2 88.4 86.6 95.1

CDistNet 96.4 93.5 97.2 88.7 86.0 93.4

OursLSTM 97.4 93.6 96.8 87.8 84.0 91.3

OursTransformer 96.9 93.6 97.2 89.0 84.8 92.4

a) The best results are in bold; the second best results are
underlined.

Conclusion. In this work, we study character counting in

STR from a new viewpoint, giving a principled framework

showing that the counting information is involved in both

visual decoding and semantic decoding. Based on the prin-

cipled framework, we propose a novel scene text recognizer

with a dual character counting-aware visual and semantic

modeling network, where the counting information is fused

in both vision and language branches. Experimental results

demonstrate the effectiveness of our model.
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