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Abstract In this paper, we solve the output feedback control problem of stochastic high-order planar

nonlinear systems with output constraint and stochastic integral input-to-state stability (SiISS) inverse dy-

namics. By employing a key coordinate transformation, a stochastic nonlinear system with output constraint

and SiISS inverse dynamics is converted into an unconstrained system. By skillfully constructing an observer

and adopting SiISS small-gain conditions, we develop a new output feedback control design and analysis

method, and prove that all the closed-system signals are bounded almost surely, the output constraint is not

violated almost surely, and the equilibrium point of the closed-loop system is stochastically asymptotically

stable.

Keywords stochastic high-order planar nonlinear system, output constraint, stochastic inverse dynamics,

output feedback stabilization, stochastic integral input-to-state stability (SiISS)

1 Introduction

Due to the intrinsic nonlinearity of high-order nonlinear systems and the potential nonexistence of the
Jacobian linearization at the origin, the stabilization of high-order nonlinear systems has been recog-
nized as a challenging problem. Fortunately, with the help of the adding a power integrator technique,
these difficulties were successfully overcome by [1]. Subsequently, this method was applied to stochastic
nonlinear systems and produced many interesting results. Regarding state feedback control design, the
adaptive state feedback stabilization of stochastic high-order systems with nonlinear parameterization
was first addressed in [2]. Subsequently, some issues, such as inverse optimal stabilization [3], adaptive
control [4,5], control of stochastic systems with a time-varying delay [6–8], and the stabilization problem
for stochastic high-order switched nonlinear systems [9], were further addressed. Regarding output feed-
back control design, stochastic high-order nonlinear systems were first considered in [10]. Then, in [11,12],
the output feedback stabilization was achieved under some weak assumptions on high-order nonlinearities
as well as drift and diffusion terms. In [13], the output tracking problem for a benchmark stochastic high-
order mechanical system was investigated. In [14], stochastic high-order nonlinear systems were further
investigated using homogeneous domination and the sign function.

A more desirable objective than the conventional stabilization task is the stabilization of stochastic
nonlinear systems with the pre-specified output constraint. This is necessary for the system operation
security and performance specifications. By incorporating the barrier Lyapunov function (BLF) [15]
into control design, the finite-time stabilization and the adaptive control problem for stochastic high-
order nonlinear systems with output constraint were investigated in [16–18], respectively. Then, in [19],
these results were extended to the systems with full-state constraints. These control methods, which
were reported in [16–19], essentially depend on the information about the state of the entire system.
In many practical applications, because of the difficulty of measuring all states, developing some new
methods based on output feedback design is an interesting topic. In [20,21], two explicit stabilizer design
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schemes were presented by merging a tan-type BLF into an output feedback control design. However,
the radial unboundedness of the Lyapunov function constructed in [20, 21] cannot be ensured, and then
the stochastic stability theorem cannot directly be applied to stability analysis. Recently, in [22], a
system transformation method in [23] was developed and successfully solved this problem in stochastic
high-order planar nonlinear systems. However, its obvious drawback is that stochastic inverse dynamics
are neglected.

Unmodeled dynamics, which are one of the main causes of system instability, exist in many practical
systems. To deal with these dynamics, input-to-state stability (ISS) in [24] and integral input-to-state
stability (iISS) in [25] are regarded as the two most representative tools. Refs. [26, 27] extended ISS
to stochastic systems and proposed the definition of stochastic input-to-state stability (SISS). Using
this definition, a sufficient condition for SISS based on the Lyapunov function was formulated in [28].
By applying this condition, state feedback stabilization, global practical tracking control, and output
feedback control for a stochastic system with SISS inverse dynamics, were studied in [29–31], respectively.
Stochastic integral input-to-state stability (SiISS), a weaker concept than SISS, was proposed in [32]
and refined in [33], in which the authors established two SiISS small-gain conditions. By applying the
results obtained in [32,33], some feedback control problems of stochastic systems with SiISS were studied
in [34–37]. However, all these results are not applicable if an output constraint exists in the system,
which provides great motivation for our research goal.

Due to the existence of stochastic noise, inherent nonlinearities of stochastic nonlinear systems, and
invalidity of BLFs, the design of an output feedback controller and analysis methods to deal with the
output constraint and stochastic inverse dynamics is a challenging and interesting problem. The objective
of this paper is to design an output feedback controller for stochastic high-order planar nonlinear systems
with output constraint and SiISS inverse dynamics. Our main contributions are summarized as follows:

(i) Our work is not an easy generalization of [22]. In fact, even without considering stochastic inverse
dynamics, the results in our work are also new and more general than those in [22] since the powers of
the studied system are greater or equal to one rather than some ratios of two odd numbers.

(ii) Based on a new state transformation function, the output-constrained system can be converted
into an unconstrained form. For this unconstrained system, by using the adding a power integrator
technique and introducing a delicate manipulation of sign function, an innovative state feedback controller
is designed without employing some commonly-used BLFs. To implement the output feedback, a reduced-
order nonsmooth observer equipped with a nonlinear gain function is constructed accordingly by taking
into consideration the inherent nonlinearities of the system. Then, by combining the state feedback
controller with this observer, an output feedback controller is constructed to ensure that all the closed-
loop system signals are bounded almost surely, the output constraint is not violated almost surely, and
the equilibrium point of the closed-loop system is stochastically asymptotically stable.

Notations. R, R
+, and R

n represent the set of all real numbers, the set of all nonnegative real
numbers, and the real n-dimensional space, respectively. For any x, |x| represents its norm. Ci is the
set of functions with the ith continuous partial derivatives. a ∧ b is the minimum of a and b. K is the
set of all functions that are strictly increasing, continuous and vanishes at the origin. K∞ is the set of
all functions that are of class K and unbounded. For simplicity, a function f(x(t)) is usually defined as
f(x) or f . Tr{A} denotes the trace of matrix A. ⌈·⌉̺ = sgn(·)| · |̺, ̺ is a positive constant, and sgn(·)
represents sign function.

2 Preliminaries and problem statement

2.1 Preliminaries

Consider the following stochastic nonlinear system:

dx(t) = f(x(t))dt+ gT(x(t))dω, ∀t > 0, (1)

where x(t) ∈ R
n is the system state with the initial value x(0) = x0, ω is an m-dimensional standard

Wiener process defined on a complete probability space (Ω,F , P ), and f(x) : Rn → R
n and g(x) : Rn →

R
m×n are local Lipschitz with f(0) = 0 and g(0) = 0. For any given V (x(t)) ∈ C2, define the differential

operator

LV =
∂V

∂x
+

1

2
Tr

{

g
∂2V

∂x2
gT

}

. (2)
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Definition 1 ([38]). The equilibrium x = 0 of system (1) is (i) stochastically globally stable, if for any
ε > 0, there exists a class of K function λ(·) such that P{|x(t)| < λ(|x0|)} > 1− ε, ∀t > 0, x0 ∈ R

n\{0};
or (ii) stochastically asymptotically stable, if it is stochastically globally stable and P{limt→∞ |x(t)| =
0} = 1, x0 ∈ R

n.

Lemma 1 ( [39]). Let q1 > 0, q2 > 0, and a > 0 be real numbers. For any x, y ∈ R, there holds

|x|q1 |y|q2 6 (q1/(q1 + q2))a|x|
q1+q2 + (q2/(q1 + q2))a

−
q1
q2 |y|q1+q2 .

Lemma 2 ([40]). For a given continuous function p(x, y) with x ∈ R
m, y ∈ R

n, there exist smooth
functions c(x) > 0, d(y) > 0, u(x) > 1, and v(y) > 1 such that |p(x, y)| 6 c(x)+d(y), |p(x, y)| 6 u(x)v(y).

Lemma 3 ([14]). p(x) = ⌈x⌉c, c > 2 is a C2 function for x ∈ R and ṗ(x) = c|x|c−1, p̈(x) = c(c−1)⌈x⌉c−2.

Lemma 4 ([41]). Let l = a
b
> 1 with n > 1 and s > 0 be real values. For any x, y ∈ R, |⌈x⌉l − ⌈y⌉l| 6

l(1 + 2l−2)(|x − y|l + |x − y||y|l−1), |⌈x⌉
1
l − ⌈y⌉

1
l | 6 21−

1
l |x − y|

1
l , |xl − yl| 6 21−

1
b |⌈x⌉a − ⌈y⌉a|

1
b ,

−⌈x− y⌉s(⌈x⌉l − ⌈y⌉l) 6 −21−l|x− y|l+s.

Lemma 5 ([41]). For a given continuous monotone function p(x) : [a, b] → R with p(a) = 0, there holds
∫ b

a
p(s)ds 6 |p(b)| · |b− a|.

Lemma 6 ([39]). Let l > 1 be real numbers. For any xi ∈ R, i = 1, . . . , n, there holds (
∑n

i=1 |xi|)
l 6

b
∑n
i=1 |xi|

l, where b = nl−1 if l > 1 and b = 1 if l < 1.

Lemma 7 ([38]). For the stochastic system (1), if there exists a C2 function V (x), a nonnegative function
W (x), class K∞ functions α1 and α2, constants c1 > 0 and c2 > 0 such that α1(|x|) 6 V (x) 6 α2(|x|),
LV (x) 6 −c1W (x) + c2. Then (i) there exists an almost surely unique solution on [0,∞). (ii) When
c2 = 0 and W (x) is a continuous positive definite function, the equilibrium point x = 0 is stochastically
asymptotically stable.

2.2 Problem statement

This paper considers a class of stochastic high-order planar nonlinear systems,























dz0 = f0(z0, x1)dt+ gT0 (z0, x1)dω,

dx1 = (⌈x2⌉
p1 + f1(z0, x1))dt+ gT1 (z0, x1)dω,

dx2 = (⌈u⌉p2 + f2(z0, x))dt+ gT2 (z0, x)dω,

y = x1,

(3)

with a symmetric output constraint

y(t) ∈ Ωy = {y(t) ∈ R : −ka1 < y(t) < ka1}, (4)

where x = x̄2 = [x1, x2]
T ∈ R

2 is the system state with the initial value x(0) = x0, z0 = (z1, . . . , zl)
T ∈ R

l

is stochastic inverse dynamics with the initial value z0(0) = z01, u(t) ∈ R and y(t) ∈ R are control input
and the measurable output, and x2(t) ∈ R is unmeasurable. System powers pi > 1, i = 1, 2, are two
positive values. ω is an m-dimensional standard Wiener process defined on a complete probability space
(Ω,F , P ). For i = 1, 2, fi : R

l×R
i → R and gi : R

l×R
i → R

m×1 are continuously differentiable functions
with fi(0, 0) = 0 and gi(0, 0) = 0, and f0 : Rl × R → R

l and g0 : Rl × R → R
m×l are locally Lipschitz

continuous functions with f0(0, 0) = 0 and g0(0, 0) = 0. ka1 is a given positive constant.
The objective of this paper is to design an output feedback controller for the system (3) such that

all the closed-system signals are bounded almost surely, symmetric output constraint (4) is not violated
almost surely, and the equilibrium point of the closed-loop system is stochastically asymptotically stable.

To achieve this objective, we need some assumptions.

Assumption 1. For i = 1, 2 and g1(z0, x1) ≡ 0, there exist a nonnegative constant ̟ and some
nonnegative smooth functions β1i, β2i, β23, and β24 such that

|fi(z0, x̄i)| 6 β1i(|z0|)|z0|
ri+̟ + β2i(x1)

i
∑

j=1

|xj |
ri+̟

rj , (5)

|g2(z0, x) 6 β23(|z0|)|z0|
2r2+̟

2 + β24(x1)

2
∑

j=1

|xj |
2r2+̟

2rj , (6)
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where r1 = 1, r2 = r1+̟
p1

. Meanwhile, one of the following conditions should be satisfied:

(i)
r1
r2

= 1, (ii) r2 +̟ > r1 and
r1
r2

> 2. (7)

Assumption 2. The z0-subsystem in system (3) is SiISS with x1 being the input, along with a Lyapunov
function V0(z0) ∈ C2 such that

α1(|z0|) 6 V0(z0) 6 α2(|z0|), LV0(z0) 6 −α3(|z0|) + γ(|x1|), (8)

where α1, α2, and γ are K∞ functions and α3 is a positive definite continuous function.

Remark 1. As shown in Assumption 1, the selection of ̟ makes the values of r2+̟
rj

and 2r2+̟
2rj

to be

in a certain interval [ 1
pi−1

, 0) with i, j = 1, 2, and 1
p0

= 1. Though Refs. [32, 36, 37] considered output

feedback control for stochastic nonlinear systems with SiISS inverse dynamics, their assumptions on fi
and gi, i = 1, . . . , n, just depend on z0 and x1. More importantly, output constraint is also ignored in
these studies. When z0 = 0, Assumption 1 reduces to Assumption 1 in [22].

Assumption 2 implies that z0-subsystem is characterized by SiISS. Compared with SISS, SiISS is a
weaker condition since α3 is only positive definite continuous instead of K∞.

Remark 2. Compared with the existing result [22] on output feedback control for stochastic nonlinear
systems with output constraint, system (3) is more general since the powers in this work only need
some values to be greater than one rather than some fractional powers with both odd numerators and
denominators. What’s more, SiISS inverse dynamics are also not included in [22].

3 Main results

3.1 System transformation

Inspired by [22, 23], we first introduce an equivalent coordinate transformation

z0(t) = z0(t), ξ1(t) = T (x1(t)) = tan

(

x1(t)

K1

)

, ξ2(t) = x2(t), (9)

where K1 =
2ka1

π
. By the properties of tangent function, we have

x1(t) = T−1(ξ1(t)) = K1 arctan(ξ1(t)). (10)

It is obvious that x1(t) is strictly increasing and smooth with respect to ξ1(t), and the following properties
are obtained:

{

x1(t) → −ka1 , when ξ1(t) → −∞;

x1(t) → ka1 , when ξ1(t) → ∞.
(11)

Namely, for given initial state y(0) = x1(0) ∈ Ωy, the symmetric output constraint (4) is not violated al-
most surely provided that ξ1(t) is bounded almost surely. From (3), (9), and Itô’s formula, the constrained
system (3) is converted into an unconstrained form:















dz0 = f̄0(z0, ξ1)dt+ ḡT0 (z0, ξ1)dω,

dξ1 =
(

Hξ1⌈ξ2⌉
p1 + f̄1(z0, ξ1)

)

dt+ ḡT1 (z0, ξ1)dω,

dξ2 =
(

⌈u⌉p2 + f̄2(z0, ξ)
)

dt+ ḡT2 (z0, ξ)dω,

(12)

where ξ = (ξ1, ξ2)
T, f̄0(z0, ξ1) = f0(z0, ξ1), ḡ0(z0, ξ1) = g0(z0, ξ1), Hξ1(ξ1) =

1+ξ21
K1

, f̄1(z0, ξ1) = Hξ1f1(z0,

ξ1), ḡ
T
1 (z0, ξ1) = 0, f̄2(z0, ξ) = f2(z0, ξ), and ḡ

T
2 (z0, ξ) = g2(z0, ξ).
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3.2 State-feedback controller design

Before constructing a state-feedback controller for the system (12), we choose a constant λ > 1 such that
max16i62{

ri+̟
λ

} 6 r1 and set τ = r1.

Step 1. Set z1 = ⌈ξ1⌉
τ
r1 , ξ∗1 = 0 and consider the Lyapunov function

V1(ξ1) =W1(ξ1) =

∫ ξ1

ξ∗1

⌈

⌈s⌉
τ
r1 − ⌈ξ∗1⌉

τ
r1

⌉

4τλ−̟−r1
τ

ds. (13)

By (2), (12), (13), and Itô’s formula,

LV1 = Hξ1⌈z1⌉
4τλ−̟−r1

τ (⌈ξ2⌉
p1 − ⌈ξ∗2⌉

p1) +
∂V1
∂ξ1

f̄1 +Hξ1⌈z1⌉
4τλ−̟−r1

τ ⌈ξ∗2⌉
p1 . (14)

From the definition of tangent function, it follows that

| arctanx| 6 |x|, ∀x ∈ R. (15)

Taking this into consideration, and using (10) and Assumption 2, we have

LV0 6 −α3(|z0|) + γ(K1| arctan ξ1|) 6 −α3(|z0|) + γ̃(|ξ1|), (16)

where γ̃(|ξ1|) = γ(K1|ξ1|). By (5), (10), (13), (15), and Lemmas 1 and 2,

∂V1
∂ξ1

f̄1 6 Hξ1 |z1|
4τλ−̟−r1

τ

(

β11|z0|
r1+̟ + β21|x1|

r1+̟

r1

)

6 Hξ1 |z1|
4τλ−̟−r1

τ β11|z0|
r1+̟ +Hξ1 |z1|

4τλ−̟−r1
τ β21K

r1+̟

r1
1 |ξ1|

r1+̟

r1

6 a11(ξ1)|z1|
4λ + ψ1(|z0|)|z0|

4τλ, (17)

where a11 and ψ1 are some nonnegative smooth functions. Choose the virtual controller

ξ∗2(ξ1) = −

(

a11(ξ1) + 2 + ν1(ξ1)

H1

)
1
p1

⌈z1⌉
r2
τ , −σ1(ξ1)⌈z1⌉

r2
τ , (18)

where H1 , 1
K1

6
1+ξ21
K1

= Hξ1 and ν1 is a nonnegative smooth function to be determined. Substituting
(17) and (18) into (14) and considering (16), we get

L(V1 + V0) 6 −2|z1|
4λ − ν1(ξ1)|z1|

4λ + ψ1(|z0|)|z0|
4τλ − α3(|z0|)

+γ̃(|ξ1|) +Hξ1⌈z1⌉
4τλ−̟−r1

τ (⌈ξ2⌉
p1 − ⌈ξ∗2⌉

p1). (19)

Step 2. Set

W2(ξ) =

∫ ξ2

ξ∗2

⌈

⌈s⌉
τ
r2 − ⌈ξ∗2⌉

τ
r2

⌉

4τλ−̟−r2
τ

ds, (20)

and define V2(z0, ξ) = V0(z0) + V1(ξ1) +W2(ξ) and z2 = ⌈ξ2⌉
τ
r2 − ⌈ξ∗2⌉

τ
r2 . By (2), (12), (19), (20), and

Itô’s formula, then

LV2 6 −2|z1|
4λ − ν1(ξ1)|z1|

4λ + ψ1(|z0|)|z0|
4τλ +Hξ1⌈z1⌉

4τλ−̟−r1
τ (⌈ξ2⌉

p1 − ⌈ξ∗2⌉
p1)− α3(|z0|)

+γ̃(|ξ1|) +
∂W2

∂ξ1
(Hξ1⌈ξ2⌉

p1 + f̄1) +
∂W2

∂ξ2
(⌈u⌉p2 + f̄2) +

1

2

∂2W2

∂ξ22
ḡT2 ḡ2. (21)

By the definition of τ and λ, it is easy to get 4τλ−̟−r2
τ

> 2. By Lemma 3, there holds

∂W2

∂ξ1
= −

∫ ξ2

ξ∗2

∣

∣

∣
⌈s⌉

τ
r2 − ⌈ξ∗2⌉

τ
r2

∣

∣

∣

4τλ−̟−r2
τ

−1

ds ·

(

4τλ−̟ − r2
τ

)

∂⌈ξ∗2⌉
τ
r2

∂ξ1
, (22)

∂W2

∂ξ2
= ⌈z2⌉

4τλ−̟−r2
τ , (23)
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∂2W2

∂ξ22
=

(

4τλ−̟ − r2
τ

)

|z2|
4τλ−̟−r2

τ
−1 ∂z2
∂ξ2

. (24)

It follows from (5), (10), (15), (18), (22), and Lemmas 1, 2, and 4–6 that

∂W2

∂ξ1

(

Hξ1⌈ξ2⌉
p1 + f̄1

)

6 b11(ξ1)

∣

∣

∣

∣

∫ ξ2

ξ∗2

∣

∣

∣
⌈s⌉

τ
r2 − ⌈ξ∗2⌉

τ
r2

∣

∣

∣

4τλ−̟−r2
τ

−1

ds

∣

∣

∣

∣

∣

∣

∣

∣

∂⌈ξ∗2⌉
τ
r2

∂ξ1

∣

∣

∣

∣

·

(

β11|z0|
r1+̟ +K

r1+̟

r1
1 β21|z1|

r1+̟

τ + |ξ2|
p1

)

6 b11(ξ1)

∣

∣

∣

∣

∫ ξ2

ξ∗2

∣

∣

∣
⌈s⌉

τ
r2 − ⌈ξ∗2⌉

τ
r2

∣

∣

∣

4τλ−̟−r2
τ

−1

ds

∣

∣

∣

∣

∣

∣

∣

∣

∂⌈ξ∗2⌉
τ
r2

∂ξ1

∣

∣

∣

∣

·
(

̺11(|z0|)|z0|
r1+̟ + ̺12(ξ1)|z1|

r1+̟

τ + ̺13(ξ1)|z2|
r1+̟

τ

)

6
1

4
|z1|

4λ + a21(ξ1)|z2|
4λ + ψ21(|z0|)|z0|

4τλ, (25)

where b11, a21, ψ21, ̺11, ̺12, and ̺13 are some nonnegative smooth functions. By (5), (9), (10), (15),
(18), (23), and Lemmas 1, 2, and 6,

∂W2

∂ξ2
f̄2 6 |z2|

4τλ−̟−r2
τ

(

β12|z0|
r2+̟ +K

r2+̟

r1
1 β22|z1|

r2+̟

τ + β22|ξ2|
r2+̟

r2

)

6 |z2|
4τλ−̟−r2

τ

(

̺21(|z0|)|z0|
r2+̟ + ̺22(ξ1)|z1|

r2+̟

τ + ̺23(ξ1)|z2|
r2+̟

τ

)

6
1

4
|z1|

4λ + a22(ξ1)|z2|
4λ + ψ22(|z0|)|z0|

4τλ, (26)

where a22, ψ22, ̺21, ̺22, and ̺23 are some nonnegative smooth functions. From (6), (9), (10), (15), (18),
(24), and Lemmas 1, 2, 4, and 6, it is clear that

1

2

∂2W2

∂ξ22
ḡT2 ḡ2 6

(

4τλ −̟ − r2
τ

)

|z2|
4τλ−̟−r2

τ
−1

∣

∣

∣

∣

∂z2
∂ξ2

∣

∣

∣

∣

(

β23|z0|
2r2+̟

2

+K
2r2+̟

2r1
1 β24|z1|

2r2+̟

2τ + β24|ξ2|
2r2+̟

2r2

)2

6

(

4τλ −̟ − r2
τ

)

|z2|
4τλ−̟−r2

τ
−1

∣

∣

∣

∣

∂z2
∂ξ2

∣

∣

∣

∣

(

̺31(|z0|)|z0|
2r2+̟

+̺32(ξ1)|z1|
2r2+̟

τ + ̺33(ξ1)|z2|
2r2+̟

τ

)

6
1

4
|z1|

4λ + a23(ξ1)|z2|
4λ + ψ23(|z0|)|z0|

4τλ, (27)

where a23, ψ23, ̺31, ̺32, and ̺33 are some nonnegative smooth functions. Due to r2p1
τ

> 1, by Lemma 4,

(⌈ξ2⌉
p1 − ⌈ξ∗2⌉

p1) 6

∣

∣

∣

∣

⌈

⌈ξ2⌉
τ
r2

⌉

r2p1
τ

−
⌈

⌈ξ∗2⌉
τ
r2

⌉

r2p1
τ

∣

∣

∣

∣

6
r2p1
τ

(

1 + 2
r2p1

τ
−2

)

(

|z2|
r2p1

τ +
∣

∣

∣
⌈ξ∗2⌉

τ
r2

∣

∣

∣

r2p1
τ

−1

|z2|

)

, (28)

which, together with (18), and Lemmas 1 and 2, implies that

Hξ1⌈z1⌉
4τλ−̟−r1

τ (⌈ξ2⌉
p1 − ⌈ξ∗2⌉

p1) 6 b21(ξ1)|z1|
4τλ−̟−r1

τ

(

|z2|
r2p1

τ +
∣

∣

∣
⌈ξ∗2⌉

τ
r2

∣

∣

∣

r2p1
τ

−1

|z2|

)

6
1

4
|z1|

4λ + a24(ξ1)|z2|
4λ, (29)

where b21 and a24 are some nonnegative smooth functions. Substituting (23), (25)–(27), and (29) into
(21) yields

LV2 6 −|z1|
4λ + ψ1(|z0|)|z0|

4τλ + ψ2(|z0|)|z0|
4τλ + a2(ξ1)|z2|

4λ
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−ν1(ξ1)|z1|
4λ − α3(|z0|) + γ̃(|ξ1|) + |z2|

4τλ−̟−r2
τ ⌈u⌉p2 , (30)

where ψ2 =
∑3

i=1 ψ2i and a2 =
∑4

i=1 a2i. Choose the state-feedback controller

u(ξ) = −(1 + a2(ξ1))
1
p2 ⌈z2⌉

r3
τ , −σ2(ξ1)⌈z2⌉

r3
τ , (31)

with r3 = r2+̟
p2

. Putting (30) and (31) together yields

LV2 6 −|z1|
4λ − |z2|

4λ + ψ1(|z0|)|z0|
4τλ + ψ2(|z0|)|z0|

4τλ − ν1(ξ1)|z1|
4λ − α3(|z0|) + γ̃(|ξ1|). (32)

3.3 Output feedback controller design

Since x2 = ξ2 is unmeasurable, a reduced-order observer is constructed as follows:

ż = −L(ξ1)
(

Hξ1⌈z + S(ξ1)⌉
r1+̟

τ + f̄1

)

, (33)

where S(ξ1) is a smooth function with S(0) = 0 and ∂S(ξ1)
∂ξ1

= L(ξ1) > 0 which will be defined later. Let

ξ̂2 be the estimate of ξ2 with ⌈ξ̂2⌉
τ
r2 = z + S(ξ1) and e = ⌈ξ2⌉

τ
r2 − ⌈ξ̂2⌉

τ
r2 . It follows from (12), (33),

Lemma 3, and Itô’s formula

de =

(

τ

r2
|ξ2|

τ
r2

−1(⌈u⌉p2 + f̄2) +
τ

2r2

(

τ

r2
− 1

)

⌈ξ2⌉
τ
r2

−2ḡT2 ḡ2

−LHξ1

(

⌈ξ2⌉
p1 − ⌈ξ̂2⌉

p1
)

)

dt+
τ

r2
|ξ2|

τ
r2

−1
ḡT2 dω. (34)

Choosing W3(e) =
τ

4τλ−̟ |e|
4τλ−̟

τ , and using (2), (34), and Lemma 3, we obtain

LW3 = ⌈e⌉
4τλ−̟−τ

τ

(

τ

r2
|ξ2|

τ
r2

−1(⌈u⌉p2 + f̄2) +
τ

2r2

(

τ

r2
− 1

)

⌈ξ2⌉
τ
r2

−2ḡT2 ḡ2

−LHξ1

(

⌈ξ2⌉
p1 − ⌈ξ̂2⌉

p1
)

)

+
4τλ−̟ − τ

2τ
|e|

4τλ−̟−τ
τ

−1

(

τ

r2
|ξ2|

τ
r2

−1

)2

ḡT2 ḡ2. (35)

The following propositions are used to estimate the right-hand side of (35), whose proofs are in Ap-
pendix A.

Proposition 1. It is easy to show that

− ⌈e⌉
4τλ−̟−τ

τ (⌈ξ2⌉
p1 − ⌈ξ̂2⌉

p1) 6 −
|e|4λ

2̟
. (36)

Proposition 2. There exist nonnegative smooth functions M11(ξ1), N11(ξ1), and ψ31(|z0|) such that

τ

r2
⌈e⌉

4τλ−̟−τ
τ |ξ2|

τ
r2

−1
(⌈u⌉p2 + f̄2)

6
1

4
|z1|

4λ +
1

16
|z2|

4λ +M11(ξ1)|e|
4λ +N11(ξ1)|e|

4τλ−̟−τ
τ |up2 |

τ+̟
r2+̟ + ψ31(|z0|)|z0|

4τλ. (37)

Proposition 3. There exist some nonnegative smooth functions M12(ξ1) and ψ32(|z0|) such that

⌈e⌉
4τλ−̟−τ

τ
τ

2r2

(

τ

r2
− 1

)

⌈ξ2⌉
τ
r2

−2
ḡT2 ḡ2

6
1

4
|z1|

4λ +
1

16
|z2|

4λ +M12(ξ1)|e|
4λ + ψ32(|z0|)|z0|

4τλ. (38)

Proposition 4. There exist some nonnegative smooth functions M13(ξ1) and ψ33(|z0|) such that

4τλ−̟ − τ

2τ
|e|

4τλ−̟−τ
τ

−1

(

τ

r2
|ξ2|

τ
r2

−1

)2

ḡT2 ḡ2
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6
1

4
|z1|

4λ +
1

16
|z2|

4λ +M13(ξ1)|e|
4λ + ψ33(|z0|)|z0|

4τλ. (39)

With the help of Propositions 1–4, Eq. (35) can be rewritten as

LW3 6
3

4
|z1|

4λ +
3

16
|z2|

4λ +

3
∑

i=1

M1i(ξ1)|e|
4λ + ψ3(|z0|)|z0|

4τλ

+N11(ξ1)|e|
4τλ−̟−τ

τ |up2 |
τ+̟
r2+̟ −ML(ξ1)|e|

4λ, (40)

where ψ3 =
∑3

i=1 ψ3i and M = 1
2̟K1

.
Because x2 = ξ2 is unmeasurable, the state feedback controller u in (31) is unavailable. By the

certainty equivalence principle, we obtain an implementable output feedback controller by replacing ξ2
with ξ̂2 generated from (33),

u(ξ1, ξ̂2) = −σ2(ξ1)
⌈

⌈ξ̂2⌉
τ
r2 − ⌈ξ∗2⌉

τ
r2

⌉

r3
τ

. (41)

From (41), Lemma 6, and the definition of e and z2, it follows that

|up2 |
τ+̟
r2+̟ =

∣

∣

∣

∣

σp22

⌈

⌈ξ̂2⌉
τ
r2 − ⌈ξ∗2⌉

τ
r2

⌉

r2+̟

τ

∣

∣

∣

∣

τ+̟
r2+̟

6 |σ2|
p2(τ+̟)

r2+̟

∣

∣

∣
⌈ξ̂2⌉

τ
r2 − ⌈ξ2⌉

τ
r2 + ⌈ξ2⌉

τ
r2 − ⌈ξ∗2⌉

τ
r2

∣

∣

∣

τ+̟
τ

6 2
τ+̟

τ
−1|σ2|

p2(τ+̟)
r2+̟

(

|e|
τ+̟

τ + |z2|
τ+̟

τ

)

. (42)

By (42) and Lemmas 1 and 2, we obtain

N11(ξ1)|e|
4τλ−̟−τ

τ |up2 |
τ+̟
r2+̟ 6 N̄11(ξ1)|e|

4τλ−̟−τ
τ

(

|e|
τ+̟

τ + |z2|
τ+̟

τ

)

6
1

16
|z2|

4λ +M14(ξ1)|e|
4λ, (43)

where N̄11 and M14 are some nonnegative smooth functions. Substituting (43) into (40) leads to

LW3 6
3

4
|z1|

4λ +
1

4
|z2|

4λ +

4
∑

i=1

M1i(ξ1)|e|
4λ + ψ3(|z0|)|z0|

4τλ −ML(ξ1)|e|
4λ. (44)

Under the new controller u(ξ1, ξ̂2) rather than u in (31), Eq. (32) is no longer valid. Instead,

LV2 6 −|z1|
4λ + ψ1(|z0|)|z0|

4τλ + ψ2(|z0|)|z0|
4τλ + a2(ξ1)|z2|

4λ

−ν1(ξ1)|z1|
4λ − α3(|z0|) + γ̃(|ξ1|) + |z2|

4τλ−̟−r2
τ ⌈u(ξ1, ξ̂2)⌉

p2

6 −|z1|
4λ − |z2|

4λ + |z2|
4λτ−̟−r2

τ σp22

∣

∣

∣
⌈z2⌉

r2+̟

τ − ⌈z2 − e⌉
r2+̟

τ

∣

∣

∣

+ψ1(|z0|)|z0|
4τλ + ψ2(|z0|)|z0|

4τλ − ν1(ξ1)|z1|
4λ − α3(|z0|) + γ̃(|ξ1|). (45)

Due to r2+̟
τ

> 1, by Lemma 4,

∣

∣

∣
⌈z2⌉

r2+̟

τ − ⌈z2 − e⌉
r2+̟

τ

∣

∣

∣
6
r2 +̟

τ

(

1 + 2
r2+̟

τ
−2

)

|e|
(

|e|
̟+r2

τ
−1 + |z2|

̟+r2
τ

−1
)

. (46)

Thus, it follows from (46) and Lemmas 1 and 2 that

|z2|
4λτ−̟−r2

τ σp22

∣

∣

∣
⌈z2⌉

r2+̟

τ − ⌈z2 − e⌉
r2+̟

τ

∣

∣

∣
6 |z2|

4λτ−̟−r2
τ N̄12(ξ1)|e|

(

|e|
̟+r2

τ
−1 + |z2|

̟+r2
τ

−1
)

6
1

2
|z2|

4λ +M15(ξ1)|e|
4λ, (47)
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where N̄12 and M15 are some nonnegative smooth function. Substituting (47) into (45) leads to

LV2 6 −|z1|
4λ −

1

2
|z2|

4λ +M15(ξ1)|e|
4λ + ψ1(|z0|)|z0|

4τλ

+ψ2(|z0|)|z0|
4τλ − ν1(ξ1)|z1|

4λ − α3(|z0|) + γ̃(|ξ1|). (48)

From (44) and (48), one obtains

L(V2 +W3) 6 −
1

4
|z1|

4λ −
1

4
|z2|

4λ +

( 5
∑

i=1

M1i(ξ1)−ML(ξ1)

)

|e|4λ

+ψ(|z0|)|z0|
4τλ − ν1(ξ1)|z1|

4λ − α3(|z0|) + γ̃(|ξ1|), (49)

where ψ =
∑3
i=1 ψi. Setting

V (Ξ) = V2(z0, ξ) +W3(e), (50)

where Ξ = (z0, ξ1, ξ2, e)
T, and choosing M1(ξ1) >

∑5
i=1M1i(ξ1), we get

S(ξ1) =

∫ ξ1

0

M1(s)

M
ds+

m̄

M
ξ1, (51)

where m̄ is a known positive constant. By the definition of the observer gain S(ξ1) with
∂S(ξ1)
∂ξ1

= L(ξ1) >

0, it is easy to deduce that L(ξ1) =
M1(ξ1)
M

+ m̄
M

>
∑5

i=1M1i(ξ1)

M
+ m̄

M
, and then

LV 6 −m̄|e|4λ −
1

4
|z1|

4λ −
1

4
|z2|

4λ + ψ(|z0|)|z0|
4τλ − ν1(ξ1)|z1|

4λ − α3(|z0|) + γ̃(|ξ1|). (52)

3.4 Stability and constraint analysis

Theorem 1. For the system (3), if Assumptions 1 and 2 hold with

lim sup
s→0+

ψ(s)s4τλ

α3(s)
<∞, lim sup

s→∞

ψ(s)s4τλ

α3(s)
<∞, lim sup

s→0+

γ̃(s)

s4τλ
<∞, (53)

then there exists an output feedback controller such that for any initial value y(0) ∈ Ωy:
(i) The closed-loop system consisting of (3), (4), (9), (33), and (41) has an almost surely unique solution

on [0,∞);
(ii) All the closed-loop system signals are bounded almost surely, and the symmetric output constraint

(4) is not violated almost surely;
(iii) The equilibrium point of the closed-loop system is stochastically asymptotically stable.

Proof. (i) The proof is divided into three parts.
Part I: From (53), there exists a positive constant κ such that

ψ(s)s4τλ 6 κα3(s), ∀s > 0. (54)

By setting the Lyapunov function Vz0(z0) = κV0(z0) and using (16) and (54),

LVz0 6 −κα3(|z0|) + κγ̃(|ξ1|) 6 −ψ(|z0|)z
4τλ
0 + κγ̃(|ξ1|). (55)

Setting V̄ (Ξ) = V (Ξ) + Vz0(z0) and considering (52) and (55), it is clear that

LV̄ 6 −m̄|e|4λ −
1

4
|z1|

4λ −
1

4
|z2|

4λ + ψ(z0)|z0|
4τλ + κγ̃(|ξ1|)

−ν1(ξ1)|z1|
4λ − α3(|z0|) + γ̃(|ξ1|)− ψ(z0)z

4τλ
0

= −α3(|z0|) + (κ+ 1)γ̃(|ξ1|)− ν1(ξ1)|ξ1|
4τλ − m̄|e|4λ −

1

4
|z1|

4λ −
1

4
|z2|

4λ. (56)

From (53), there exists a nonnegative smooth function ν1(ξ1) such that

(κ+ 1)γ̃(|ξ1|) 6 ν1(ξ1)ξ
4τλ
1 . (57)
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Substituting (57) into (56) yields

LV̄ 6 −α3(|z0|)− m̄|e|4λ −
1

4
|z1|

4λ −
1

4
|z2|

4λ. (58)

Part II: We prove that ⌈u⌉p2 in (41) satisfies the local Lipschitz condition. By (41) and Lemma 3,

∂⌈u(ξ1, ξ̂2)⌉
p2

∂ξ1
= −

∂σp22 (ξ1)

∂ξ1

⌈

⌈ξ̂2⌉
τ
r2 − ⌈ξ∗2⌉

τ
r2

⌉

r3p2
τ

−
r3p2
τ

σp22 (ξ1)
∣

∣

∣
⌈ξ̂2⌉

τ
r2 − ⌈ξ∗2⌉

τ
r2

∣

∣

∣

r3p2
τ

−1

·

(

L(ξ1) +
∂σ

τ
r2
1 (ξ1)

∂ξ1
⌈ξ1⌉

τ
r1 +

τ

r1
σ

τ
r2
1 (ξ1)|ξ1|

τ
r1

−1

)

,

∂⌈u(ξ1, ξ̂2)⌉
p2

∂ξ̂2
= −

r3p2
r2

σp22 (ξ1)
∣

∣

∣
⌈ξ̂2⌉

τ
r2 − ⌈ξ∗2⌉

τ
r2

∣

∣

∣

r3p2
τ

−1

|ξ̂2|
τ
r2

−1. (59)

From (7), (41), and the definition of τ and r3, it is obvious that r3p2
τ

− 1 > 0 and τ
ri

− 1 > 0, i = 1, 2.

Since σi(ξ1), i = 1, 2, and L(ξ1) are some smooth functions, by (59), ∂⌈u(ξ1,ξ̂2)⌉
p2

∂ξ1
and ∂⌈u(ξ1,ξ̂2)⌉

p2

∂ξ̂2
are

continuous, and then ⌈u(ξ1, ξ̂2)⌉
p2 is C1. Because f1, f2, and g2 are some locally Lipschitz functions, the

locally Lipschitz condition of the closed-loop system (3), (4), (9), (33), and (41) is verified.
Part III: Firstly, we show that for i = 1, 2,

ci1|ξi − ξ∗i |
4τλ−̟

ri 6Wi(ξ̄i) 6 ci2|zi|
4τλ−̟

τ , (60)

where ci1 and ci2 are some positive constants. By Lemmas 4 and 5, we deduce that

Wi(ξ̄i) 6 |zi|
4τλ−̟−ri

τ

∣

∣

∣

∣

⌈

⌈ξi⌉
τ
ri

⌉

ri
τ

−
⌈

⌈ξ∗i ⌉
τ
ri

⌉

ri
τ

∣

∣

∣

∣

6 ci2|zi|
4τλ−̟

τ , (61)

where ci2 = 21−
ri
τ . The left-hand side of (60) will be proven by considering two cases.

Case (I): When ξ∗i 6 ξi, i = 1, 2, there are three situations.
(a) If 0 6 ξ∗i 6 ξi, by using ||x| − |y||p 6 ||x|p − |y|p| for p > 1,

Wi(ξ̄i) =

∫ ξi

ξ∗
i

⌈

⌈s⌉
τ
ri − ⌈ξ∗i ⌉

τ
ri

⌉

4τλ−̟−ri
τ

ds

=

∫ ξi

ξ∗
i

(

s
τ
ri − ξ∗

τ
ri

i

)

4τλ−̟−ri
τ

ds

>

∫ ξi

ξ∗
i

(s− ξ∗i )
4τλ−̟−ri

ri ds

=
ri

4τλ−̟
(ξi − ξ∗i )

4τλ−̟
ri . (62)

(b) If ξ∗i 6 ξi 6 0, similar to (62), there holds

Wi(ξ̄i) =

∫ ξi

ξ∗
i

⌈

⌈s⌉
τ
ri − ⌈ξ∗i ⌉

τ
ri

⌉

4τλ−̟−ri
τ

ds

=

∫ ξi

ξ∗
i

(

−(−s)
τ
ri + (−ξ∗i )

τ
ri

)

4τλ−̟−ri
τ

ds

>

∫ ξi

ξ∗
i

(s− ξ∗i )
4τλ−̟−ri

ri ds

>
ri

4τλ−̟
(ξi − ξ∗i )

4τλ−̟
ri . (63)

(c) If ξ∗i 6 0 6 ξi, by Lemma 6, there holds

Wi(ξ̄i) =

∫ 0

ξ∗
i

⌈

⌈s⌉
τ
ri − ⌈ξ∗i ⌉

τ
ri

⌉

4τλ−̟−ri
τ

ds+

∫ ξi

0

⌈

⌈s⌉
τ
ri − ⌈ξ∗i ⌉

τ
ri

⌉

4τλ−̟−ri
τ

ds



Xie R M, et al. Sci China Inf Sci March 2024, Vol. 67, Iss. 3, 132205:11

=

∫ 0

ξ∗
i

(

−(−s)
τ
ri + (−ξ∗i )

τ
ri

)

4τλ−̟−ri
τ

ds+

∫ ξi

0

(

s
τ
ri + (−ξ∗i )

τ
ri

)

4τλ−̟−ri
τ

ds

>
2

4τλ−̟−ri
τ

2
4τλ−̟−ri

ri

∫ 0

ξ∗
i

(s− ξ∗i )
4τλ−̟−ri

ri ds+
2

4τλ−̟−ri
τ

2
4τλ−̟−ri

ri

∫ ξi

0

(s− ξ∗i )
4τλ−̟−ri

ri ds

>
ri

4τλ−̟
·
2

4τλ−̟−ri
τ

2
4τλ−̟−ri

ri

(ξi − ξ∗i )
4τλ−̟

ri . (64)

In conclusion, one has

Wi(ξ̄i) > ci1|ξi − ξ∗i |
4τλ−̟

ri , (65)

where ci1 = ri
4τλ−̟ · 2

4τλ−̟−ri
τ

2
4τλ−̟−ri

ri

.

Case (II): Similarly, when ξi 6 ξ∗i , i = 1, 2, there holds

Wi(ξ̄i) > ci1|ξi − ξ∗i |
4τλ−̟

ri . (66)

Combining (61) with (65) and (66), Eq. (60) holds.
From Assumption 2, the definitions of V0(z0) and Vz0(z0), it follows that

(κ+ 1)α1(|z0|) 6 V0(z0) + Vz0(z0) 6 (κ+ 1)α2(|z0|). (67)

By (60), (67), and the definitions of W3(e) and V̄ (Ξ), we know that V̄ (Ξ) is positive definite and radially
unbounded, and there exist some K∞ functions ᾱ1(Ξ) and ᾱ2(Ξ) such that

ᾱ1(|Ξ|) 6 V̄ (Ξ) 6 ᾱ2(|Ξ|). (68)

Clearly, V2(z0, ξ), W3(e), and Vz0(z0) are C
2, so is V̄ (Ξ). By Parts I–III and Lemma 7, the closed-loop

system (3), (4), (9), (33), and (41) has an almost surely unique solution on [0,∞).
(ii) Define the stopping time Tk = inf{t > 0 : |Ξ(t)| > k}. By (58) and Itô’s formula,

E{V̄ (Ξ(Tk ∧ t))} = V̄ (Ξ(0)) + E

∫ Tk∧t

0

LV̄ (Ξ(s))ds 6 V̄ (Ξ(0)). (69)

From (68) and (69), it follows that

V̄ (Ξ(0)) > E{V̄ (Ξ(Tk ∧ t))}

>

∫

{sup06s6t |Ξ(s)|>k}

V̄ (Ξ(Tk ∧ t))dP

=

∫

{sup06s6t |Ξ(s)|>k}

V̄ (Ξ(Tk))dP

> P

{

sup
06s6t

|Ξ(s)| > k

}

inf
|Ξ|>k

ᾱ1(|Ξ|), ∀t > 0. (70)

Thus, it is easy to show that for ∀t > 0,

P

{

sup
06s6t

|Ξ(s)| > k

}

6
V̄ (Ξ(0))

inf |Ξ|>k ᾱ1(|Ξ|)
, (71)

P

{

sup
06s6t

|Ξ(s)| < k

}

> 1−
V̄ (Ξ(0))

inf |Ξ|>k ᾱ1(|Ξ|)
. (72)

Setting k → ∞ first and then t → ∞, by the monotone convergence theorem and the radial unbound-
edness of ᾱ1(|Ξ|), one obtains P{supt>0 |Ξ(t)| < ∞} = 1. Therefore, z0(t), ξ1(t), ξ2(t), and e(t) are
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bounded almost surely, so are x1(t), x2(t), and ξ̂2(t). By the definition of ξ∗2 (t) and u(t), the almost sure
boundedness of ξ∗2(t) and u(t) can be ensured.

Since ξ1(x1) is bounded almost surely, by (11), the constraint (4) is not violated almost surely for any
y(0) ∈ Ωy.

(iii) From (58), (68), and Lemma 7, we can derive that P{limt→∞(|z0(t)|+ |ξ1(t)|+ |ξ2(t)|+ |e(t)|) =
0} = 1. By the equivalent coordinate transformation, the equilibrium point of the closed-loop system is
stochastically asymptotically stable.

Remark 3. The significance of Theorem 1 is that a systematic approach to continuous output feedback
control is successfully developed to achieve the pre-specified symmetric output constraint for stochastic
high-order planar nonlinear systems with SiISS inverse dynamics.

4 A simulation example

Consider a stochastic nonlinear system























dz0 = f0(z0, x1)dt+ gT0 (z0, x1)dω,

dx1 = (⌈x2⌉
p1 + f1(z0, x1))dt+ gT1 (z0, x1)dω,

dx2 = (⌈u⌉p2 + f2(z0, x))dt+ gT2 (z0, x)dω,

y = x1,

(73)

with output constraint y(t) ∈ Ωy = {y(t) ∈ R
n : −1.6 < y(t) < 1.6}, ∀t > 0, where p1 = 1, p2 =

15
4 , f0 = − 2z0

1+z40
+ 5

256z0x
4
1, g0 =

√

z20 +
1

128z
2
0x

4
1, f1 = 1

16 sin(x1)x1 + 1
12

z0
1+z40

, f2 = 0, g1 = 0, g2 =
1
9x1 cos(x2) +

z0
1+z40

. It is easy to verify that Assumption 1 holds by choosing r1 = 1, ̟ = 0, r2 = 1, and

r3 = 4
15 . By introducing

ξ1 = T (x1) = tan

(

x1
K1

)

, ξ2 = x2, (74)

where K1 = 3.2
π
, Eq. (73) can be rewritten as















dz0 = f̄0(z0, ξ1)dt+ ḡT0 (z0, ξ1)dω,

dξ1 =
(

Hξ1⌈ξ2⌉
p1 + f̄1(z0, ξ1)

)

dt+ ḡT1 (z0, ξ1)dω,

dξ2 =
(

⌈u⌉p2 + f̄2(z0, ξ)
)

dt+ ḡT2 (z0, ξ)dω,

(75)

where ξ = (ξ1, ξ2)
T, f̄0 = f0, ḡ0 = g0, Hξ1 =

1+ξ21
K1

, f̄1 = Hξ1f1, f̄2 = f2, ḡ1 = g1, ḡ2 = g2. For

z0-subsystem of system (73), by setting V0 = ln(1 + z40), one can verify that LV0 6 −
2z40
1+z40

+ 1
16K

4
1ξ

4
1 .

Assumption 2 is satisfied by choosing α3(s) =
s4

1+s4 and γ(s) = 1
16K

4
1s

4.
Following the same procedure as in Section 3, one obtains the output feedback controller

ż = −L(ξ1)(Hξ1(z + S(ξ1)) +Hξ1f1), (76)

ξ̂2 = z + S(ξ1), e = ξ2 − ξ̂2, (77)

u = −σ2(ξ1)
⌈

ξ̂2 − ξ∗2
⌉

4
15 , (78)

where σ
15
4
2 = a2 +1, a2 = 2048

5625π4 +
64

25π2 +
3
4 +3Hξ1 |

∂ξ∗2
∂ξ1

|+ 27
8 (Hξ1 |

∂ξ∗2
∂ξ1

|(σ1 +
1
5π ))

4
3 + 9

8H
4
3

ξ1
+ 27

4 H
4
ξ1
, σ1 =

3.2(a11(ξ1)+2+ 8192
625π4 )

π
, a11(ξ1) =

1
5πHξ1+

1
16H

4
3

ξ1
, L(ξ1) = 269705+13.647ξ21+65.2492ξ

8
3
1 +64.1972ξ

32
9
1 +6.2ξ41+

5.3ξ61 +32784ξ81+4.4425ξ
88
9
1 +5.9ξ

128
27
1 +17.112ξ

16
3
1 +68924ξ

32
3
1 +59.319ξ

128
9

1 +1509ξ161 +636ξ241 +5.832ξ
352
9

1 ,

S(ξ1) = 269705ξ1+4.549ξ31 +17.8ξ
11
3
1 +14.2ξ

41
9
1 +1.24ξ51 +0.76ξ71 +3643ξ91 +0.44ξ

97
9
1 +1.1ξ

155
27
1 +0.1ξ

19
3
1 +

5908ξ
35
3
1 + 3.9ξ

137
9

1 + 88.8ξ171 + 25.44ξ251 + 0.009ξ
361
9

1 .
By choosing the initial value (z0(0), x1(0), x2(0)) = (0.4,−0.9, 0.5), Figure 1 clearly shows the response

of the closed-loop system.
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Figure 1 (Color online) The phase curves of (a) z0(t), (b) x1(t), (c) x2(t), and (d) u(t).

5 Conclusion

In this paper, we study output feedback stabilization of stochastic systems with output constraint and Si-
ISS inverse dynamics. However, the existing work only discusses the planar case, and the implementation
of an output feedback controller for n-dimensional stochastic state/output-constrained systems needs to
be further explored.
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Appendix A

Proof of Proposition 1. By Lemma 4 and the definition of e,

− ⌈e⌉
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p1
)
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τ
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Proof of Proposition 2. From (5), (9), (10), (15), (18), and Lemmas 1, 2, and 6, it follows that
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where k21, k22, k23, k24, M11, N11, and ψ31 are some nonnegative smooth functions.

Proof of Proposition 3. By (6), (9), (10), (15), (18), and Lemmas 1, 2, and 6,
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where k31, k32, k33, M12, and ψ32 are some nonnegative smooth functions.

Proof of Proposition 4. From (6), (9), (10), (15), (18), and Lemmas 1, 2, and 6, it follows that
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where k41, k42, k43, M13, and ψ33 are some nonnegative smooth functions.
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