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Abstract This paper is concerned with the amplitude boundedness problem of adaptive iterative learning

control (AILC) for robot manipulators operating with iteration-dependent periods. By introducing virtual

memory slots for storing historical data, a practical AILC method is proposed to achieve the segment-

wise learning. This method requires less memory storage for historical information of previous iterations,

especially in comparison with that of the conventional AILC methods using point-wise learning strategies.

It is shown that not only the energy boundedness but also the amplitude boundedness of estimates and

inputs of practical AILC can be guaranteed. Moreover, the practical AILC method can achieve the perfect

tracking objective regardless of iteration-dependent periods when the robot manipulators have a persistent

full learning property. In addition, a solution to the visual manipulator platform is provided and deployed

based on Coppeliasim and Matlab, which helps to show the amplitude boundedness of learning results and

the perfect tracking performances of the proposed practical AILC method for robot manipulators.

Keywords amplitude boundedness, iteration-dependent period, iterative learning control, robot manipu-

lator, segment-wise, virtual memory slot

1 Introduction

Iterative learning control (ILC) is generally considered one of the intelligence approaches for rigid robot
manipulators and other practical applications which repeatedly operate within a fixed and finite period [1–
5]. Compared with existing feedback control methods, such as PD control and sliding mode control [6,
7], ILC explicitly shows greater advantages in improving the transient performance and achieving the
perfect tracking for some desired outputs [8]. Specifically, ILC stores historical information from previous
iterations and utilizes it to refine the tracking performance of subsequent iterations [9]. In the field of ILC,
most efforts have been devoted to developing controllers under two main frameworks: contraction mapping
and composite energy function [10,11]. In contrast with contraction mapping-based ILC, composite energy
function-based ILC, also called adaptive ILC (AILC), can achieve the perfect tracking objective even
when iteration-dependent uncertainties exist. However, certain issues, such as the amplitude boundedness
problem and the large memory occupation of historical data, have been hindering the further applications
of AILC, especially when periods are iteration-dependent.

The iteration-independent period condition cannot always be guaranteed in many practical applications
due to unknown uncertainties or unpredictable factors [11,12]. For such problems, various AILC methods
have been reported in some studies, such as [11, 13]. Generally, a virtual error mechanism is designed to
compensate for the missed error information and update the estimations within the non-operation periods.
However, the continuity of the estimations along the time axis may be lost, which can be observed
according to (6) in [11] or (23) in [13]. This discontinuity further causes the amplitude boundedness
problem, which refers to the L2e-norm boundedness of estimates and inputs being guaranteed, but not
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their L∞e-norm boundedness. This is because the L∞e-norm boundedness of continuous functions can
be naturally deduced if they are L2e-norm bounded, but unfortunately, there is no such conclusion for
discontinuous functions. The introduction of two kinds of boundedness properties can be found at the
end of this section. Note that a similar issue is discussed in a comment and its reply [14–16]. Some
studies claim that the prior information can be used to provide the L∞e boundedness, but it conflicts
with the assumption of uncertainties with unknown bounds.

Another interesting issue is the large memory storage required for AILC of continuous systems. In most
studies of conventional AILC, a point-wise learning mechanism is generally applied [17–20]. This means
that the historical tracking information within the full period of the previous iteration or iterations should
be stored and used to learn the desired inputs. A natural thought coming to mind is whether many points
can share the same historical data. The feasibility of this idea is illustrated implicitly in [21,22]. However,
this method makes all estimates within the full period approach some identical value, which may lead
to excessive control inputs and even exacerbate the chattering phenomenon at some time instants. The
question is how to reduce the required historical data while ensuring perfect learning.

Motivated by the above observations, we develop a practical AILC for the tracking control of robot
manipulators operating within iteration-dependent periods. In contrast to existing studies, the main
contributions of this paper are summarized as follows.

(1) A novel L∞e-norm bounded AILC scheme is developed for the perfect tracking of robot manipu-
lators subjected to iteration-dependent periods and other uncertainties, including external disturbances
and unmodeled dynamics. A novel analytical method different from composite energy functions (CEF) is
also employed to rigorously verify the effectiveness of the proposed AILC. Compared with conventional
point-wise AILC [13, 18, 23], this work provides new insights into the real applications of AILC from the
perspective of boundedness.

(2) To address the amplitude boundedness problem of the conventional AILC (see [14]), a novel virtual
memory slots (VMSs) mechanism is developed to achieve the segment-wise learning. In addition, by
storing historical estimates of some specific moments rather than the whole period, the memory storage
pressure for the conventional AILC is relieved. Moreover, a trustworthy simulation platform based on
Coppeliasim Edu is constructed to verify the effectiveness of the proposed AILC.

The rest of the paper is organized as follows. In Section 2, some preliminary knowledge of robot
manipulators with the Euler-Lagrange equations is introduced. In Section 3, the problem is described,
and necessary assumptions are stated. In Section 4, the design and analysis of the L∞e-norm bounded
AILC are proposed. Simulations and conclusion are presented in Sections 5 and 6, respectively.

Notations. Let Z+ = {0, 1, 2, . . .} be the set of nonnegative integers, and Zm = {1, 2, . . . ,m} be the
set of integers from 1 to m > 1. For any A = [aij ] ∈ R

m×n, ‖A‖ denotes the spectral norm of A, ‖A‖1
denotes the maximum column sum matrix norm of A, and A(i,j) denotes the element in row i and column
j of A. For any positive definite matrix B = [bij ] ∈ R

m×m, λmin (B) denotes the minimal eigenvalue.
For any z = [zi] ∈ R

3, let sgn (z) = [sgn (zi)] ∈ R
3 denote the sign operator. For any x(t) ∈ R

n, the
Lpe-norm ‖x(t)‖pe is defined as

‖x(t)‖pe ,







(

∫ T

0 ‖x(t)‖p dt
)

1

p

, if p ∈ [1,∞),

sup06t6T ‖x(t)‖, if p = ∞,
(1)

where T ∈ R is some positive scalar. Further, if x(t) satisfies ‖x(t)‖pe <∞, then it is said to be Lpe-norm
bounded. Additionally, the L∞e-norm boundedness (respectively, the L2e-norm boundedness) of x(t) is
called the amplitude boundedness (respectively, the energy boundedness) of it.

2 Preliminaries

Based on [24], it is stated that n-degree-of-freedom (n-DOF) rigid robot manipulators with unmodeled
dynamics and external disturbances can be governed by

M(qk(t))q̈k(t) = −C(qk(t), q̇k(t))q̇k(t)−G(qk(t)) + uk(t) + dk(t), (2)

where k ∈ Z+ is the iteration index; t ∈ [0, Tk] is the operation period with iteration-dependent terminal
time Tk ∈ R; TL ∈ R and TH ∈ R are the finite least and greatest values of Tk, i.e., 0 < TL 6 Tk 6
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Figure 1 (Color online) Two-DOF rigid robot manipulator. Circles with dotted pattern fill: Joints; Rectangles with gray solid

fill: Links; Circles with black solid fill: Centers of mass of links.

TH < ∞, ∀k ∈ Z+; qk(t) ∈ R
n, q̇k(t) ∈ R

n, and q̈k(t) ∈ R
n are the vectors of joint angle, joint angular

velocity, and joint angular acceleration, respectively; M(qk(t)) ∈ R
n×n is the positive definite inertia

matrix; C (qk(t), q̇k(t)) ∈ R
n×n and G (qk(t)) ∈ R

n originate from Coriolis, centrifugal, and gravitational
torque; uk(t) ∈ R

n and dk(t) ∈ R
n are the control input and random external disturbance, respectively.

Note that M(qk(t)), C(qk(t), q̇k(t)), G(qk(t)), and dk(t) are unknown, which means that they cannot
appear in the controller design. Furthermore, as introduced in [18, 25], the following inequalities hold:

‖M(qk(t))‖ 6 βM (t), ‖C(qk(t), q̇k(t))‖ 6 βC(t)‖q̇k(t)‖, ‖G(qk(t))‖ 6 βG(t), ‖dk(t)‖ 6 βD(t), (3)

where βM (t) ∈ R, βC(t) ∈ R, βG(t) ∈ R, and βD(t) ∈ R are some finite but unknown bounds. Note that
this fact does not require the assumption of the boundedness of qk(t) because qk(t) appears in M(qk(t)),
C(qk(t), q̇k(t)), and G(qk(t)) as the trigonometric functions actually. Another well-known property is
that Ṁ (qk(t))− 2C (qk(t), q̇k(t)) is skew symmetric such that

xT
(

1

2
Ṁ (qk(t))− C (qk(t), q̇k(t))

)

x = 0, ∀x ∈ R
n. (4)

To facilitate understanding of the reasonableness of the concepts or properties mentioned above, such
as (3) and (4), we provide a practical example of a two-DOF rigid robot manipulator, which will also be
considered in simulations of Section 5.

Example 1. A planar elbow manipulator with two revolute joints is illustrated in Figure 1. According
to Subsection 6.4 of [26], notations can be fixed as follows: for i = 1, 2, li denotes the length of links i, lci

denotes the distance from the previous joint to the center of mass of link i, q
(i)
k (t) denotes the angle of

joint i, mi denotes the mass of link i, g denotes the acceleration due to gravity, Ii denotes the moment
of inertia of link i about an axis coming out of the page, passing through the center of mass of link i.
Here, the matrix M(qk(t)) can be presented as

M (1,1)(qk(t)) = m2

(

l21 + l2c2 + 2l1lc2 cos(q
(2)
k (t))

)

+m1l
2
c1 + I1 + I2,

M (1,2)(qk(t)) = m2

(

l2c2 + l1lc2 cos(q
(2)
k (t))

)

+ I2,

M (2,1)(qk(t)) = m2

(

l2c2 + l1lc2 cos(q
(2)
k (t))

)

+ I2,

M (2,2)(qk(t)) = m2l
2
c2 + I2,

the vector G (qk(t)) is given by

G(1) (qk(t)) = (m1lc1 +m2l1) g cos(q
(1)
k (t)) +m2lc2g cos(q

(1)
k (t) + q

(2)
k (t)),

G(2) (qk(t)) = m2lc2g cos(q
(1)
k (t) + q

(2)
k (t)),

and matrix C (qk(t), q̇k(t)) is given by

C (qk(t), q̇k(t)) = m2l1lc2 sin(q
(2)
k (t))

[

−q̇
(2)
k (t) −q̇

(1)
k (t)− q̇

(2)
k (t)

q̇
(1)
k (t) 0

]

.
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3 Problem formulation

Before presenting the detailed objective, we need to restate the amplitude boundedness problem in the
conventional point-wise AILC for applications operating within iteration-dependent periods, e.g., [11,13].
Specifically, the fact that a discontinuous function is L2e-norm bounded does not show that the function is
L∞e-norm bounded, which shows that the boundedness of estimates and inputs may not be guaranteed
in the existing studies of conventional AILC. This work is dedicated to solving this problem, so the
following objectives are given.

Problem formulation. Given an n-DOF robot manipulator operating within iteration-dependent
periods and the desired trajectory described by qd(t) ∈ R

n, q̇d(t) ∈ R
n, and q̈d(t) ∈ R

n, the objectives
are as follows:

(a) The perfect tracking performance can be achieved in the presence of iteration-dependent periods
and iteration-time-dependent uncertainties consisting of disturbances and unmodeled dynamics, i.e.,

lim
k→∞

T−1
k

∫ Tk

0

|q̃
(i)
k (t)|dτ = lim

k→∞
T−1
k

∫ Tk

0

| ˙̃q
(i)
k (t)|dτ = 0, ∀t ∈ [0, Tk], (5)

where q̃k(t) , qd(t)− qk(t) and ˙̃qk(t) = q̇d(t)− q̇k(t).
(b) The uniform boundedness of system states, inputs, and estimates is guaranteed in the sense of the

L∞e-norm, not just the L2e-norm.
It is worth highlighting that when iteration-dependent periods occur, maybe only the L2e-norm of

estimates and inputs are achieved if the conventional AILC is applied, which implies that inputs may
approach infinity at some time instant when the iteration tends to infinity. One of the main reasons why
we cannot obtain the L∞e-norm boundedness of estimates and inputs in the framework of the conventional
AILC is the non-continuity of estimates caused by iteration-dependent periods, for example, in [11].

Remark 1. According to the definition of the Lpe-norm in Section 1, the L2e-norm boundedness can
be obtained naturally from the L∞e-norm boundedness, but not vice versa.

To achieve the objectives (a) and (b), some assumptions are necessary.

Assumption 1. The identical initial condition is satisfied, i.e., ‖q̃k(0)‖ = ‖ ˙̃qk(0)‖ = 0, ∀k ∈ Z+.

Remark 2. It is noted that Assumption 1 is presented in [17] and is necessary for the perfect tracking
objective (5), because the initial states for all iterations do not respond to the controllers operating within
t ∈ [0, Tk]. Moreover, if Assumption 1 is not satisfied, the rectification methods of initial states proposed
in [13, 23] can be applied.

Assumption 2. There exists some σ ∈ Z+ such that

{k : Tk = TH} ∩ [k′, k′ + σ] 6= ∅, ∀k′ ∈ Z+. (6)

Assumption 2 is presented in [27]. If Assumption 2 is satisfied, we have a persistent full-learning
property: 0 6 ψ(k) − k 6 σ for all k ∈ Z+, where ψ(k) , min{k′ ∈ Z+ : k′ > k and Tk′ = TH}.
This means that the iteration interval between any two sequential iterations with a full-length period is
uniformly bounded. As a special case, if σ = 0, then Tk = TH , ∀k ∈ Z+, which indicates the iteration-
independent full-length periods.

4 Main results of VMSs-based AILC

Before proceeding to the detailed design of AILC, the full-length period TH is equally divided into
m ∈ Z+ \ {0} segments. Segment i shares the historical information stored in one VMS, which will help
implement the segment-wise learning in subsequent controller design. The length of a unit segment can
be defined by TU = TH

m
, and segment i is denoted by [(i − 1)TU , iTU ]. With this definition, we can try

to make each segment share the same virtual slot containing the historical information and relieve the
memory storage pressure of the conventional point-wise AILC, which will be explained in subsequent
Remark 3 in detail.

To achieve the objective mentioned in Section 3, the following adaptive learning controller is proposed
for a rigid robot manipulator (2) that operates within t ∈ [0, Tk]:

uk(t) = f(q̈d(t), q̇k(t), q̇d(t))β̂k(t) sgn( ˙̃qk(t)) + kcq̃k(t) + kd ˙̃qk(t), (7)
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where kc, kd ∈ R are two positive parameters to be determined, f(q̈d(t), q̇k(t), q̇d(t)) is defined as

f(q̈d(t), q̇k(t), q̇d(t)) , ‖q̈d(t)‖ + ‖q̇k(t)‖‖q̇d(t)‖ + 2, (8)

β̂k(t) ∈ R is defined as

β̂k(t) =

{

β̂k,1(t), if t ∈ [0, TU ],

β̂k,i(t), if t ∈ ((i− 1)TU , iTU ], ∀i ∈ Zm \ {1},
(9)

and β̂k,i(t), i ∈ Zm, t ∈ [(i− 1)TU , iTU ] denotes the estimate of βi. Here, βi represents the upper bound
of uncertainties over segment i, i.e.,

βi , supt∈[(i−1)TU ,iTU ] max{βM (t), βC(t), βG(t), βD(t)}. (10)

It is obtained that the relationship between i and t is

t

TU
6 i 6

t

TU
+ 1

according to (9) and (10). Specifically, we have two different estimates (i.e., β̂k,i(t) and β̂k,i+1(t)) if
t = iTU with i ∈ Zm \ {m} because of the segment division for the segment-wise learning. This design
makes the estimation process of two successive segments independent of each other. Moreover, note that
β̂k,i(t), ∀i ∈ Zm are stored in m virtual memory slots, which are called VMSs in this work. Instead of
requiring all historical information within [0, TH ] for the conventional point-wise AILC, VMSs only need
a set of m floating numbers.

For iteration k, the index of the segment where the operation ends is defined as sk ∈ Zm such that

(sk − 1)TU < Tk 6 skTU . (11)

It is obvious that sk is iteration-dependent due to the change of Tk. The initial values stored in VMSs
can be given by β̂0,i(t) = 0, ∀i ∈ Zm, ∀t ∈ [0, T ]. The segment-wise learning law can be designed as, for
t ∈ [(i − 1)TU , iTU ] and k ∈ Z+ \ {0},

β̂k,i(t) =



















β̂k−1,i(iTU ), if i > sk and t ∈ [(i − 1)TU , iTU ],

β̂k,i(Tk), if i = sk and t ∈ (Tk, iTU ],

β̂k−1,i(iTU ) + γ
∫ t

(i−1)TU
f(q̈d(τ), q̇k(τ), q̇d(τ))‖ ˙̃qk(τ)‖1dτ,

if i 6 sk and t ∈ [(i− 1)TU ,min{iTU , Tk}],

(12)

where γ ∈ R is a positive learning parameter. Based on (12), it is clear that VMSs-based learning
operates on a segment-wise level rather than a point-wise level. Moreover, Figure 2 illustrates a diagram
demonstrating the functionality of the proposed AILC equipped with VMSs.

Remark 3. According to (12), the number of the required historical data of the segment-wise learning
strategy is m regardless of the control step size. Compared with conventional point-wise AILC requiring
estimates for all t ∈ [0, TH ], the VMSs-based segment-wise learning method requires less memory volume,
which reduces the data storage pressure.

The following theorem shows that the proposed practical AILC equipped with VMSs can achieve two
objectives mentioned in Section 3.

Theorem 1. For a rigid robot manipulator (2) under Assumptions 1 and 2, let the proposed AILC
consisting of (7), (9), and (12) be applied. Then, the perfect tracking objective (5) is achieved. Moreover,
not only the L2e-norm boundedness, but also the L∞e-norm boundedness of all system signals can be
guaranteed.

Proof. To establish this theorem, we adopt an energy function and define a candidate in the form of

Ek,i(t) , γVk(t) +
1

2
β̃2
k,i(t), ∀t ∈ [(i− 1)TU , iTU ], i ∈ Zm, (13)

where β̃k,i(t) is defined as

β̃k,i(t) , βi − β̂k,i(t), (14)
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Figure 2 (Color online) Diagram of the proposed VMSs-based AILC.

and Vk(t) is defined as

Vk(t) =











1

2
˙̃qTk (t)M(qk(t)) ˙̃qk +

1

2
kcq̃

T
k (t)q̃k(t), if t 6 Tk,

Vk(Tk), if Tk < t 6 TH .

Note that the learning stops at t = Tk, and the inclusion of the time interval Tk < t 6 TH in the analysis
is merely for the sake of convenience, as it allows for a more comprehensive understanding of the system’s
behavior during a specific time frame.

Obviously, Vk(t) is continuous along the time axis, but it may not be differentiable at Tk. To obtain
the derivative of Vk(t), we can separate the analysis into two cases: t < Tk and t > Tk. Now, let us first
investigate V̇k(t), ∀t < Tk. It follows that

V̇k(t) = ˙̃qTk (t)

(

M(qk(t))¨̃qk +
1

2
Ṁ(qk(t)) ˙̃qk

)

+ kc ˙̃q
T
k (t)q̃k(t), (15)

where the symmetric property of M(qk(t)) is considered. Eq. (15) can be further rewritten as

V̇k(t) = ˙̃qTk (t)M(qk(t)) (q̈d(t)− q̈k(t)) + ˙̃qTk (t)
(1

2
Ṁ(qk(t)) ˙̃qk(t)− C(qk(t), q̇k(t)) ˙̃qk(t)

+ C(qk(t), q̇k(t)) ˙̃qk(t) + kcq̃k(t)
)

,

where ¨̃qk(t) = q̈d(t)− q̈k(t) is applied. According to (2) and (4), we further have

V̇k(t) = ˙̃qTk (t)
(

M(qk(t))q̈d(t) + C(qk(t), q̇k(t))q̇d(t) +G(qk(t)) + kcq̃k(t)− uk(t)− dk(t)
)

.

Considering the definitions of βM (t), βC(t), βG(t), and βD(t), we have

V̇k(t) 6 ‖ ˙̃qk(t)‖1 (βM (t)‖q̈d(t)‖ + βC(t)‖q̇k(t)‖‖q̇d(t)‖) + ‖ ˙̃qk(t)‖1 (βG(t) + βD(t))

+ kc ˙̃q
T
k (t)q̃k(t)− ˙̃qTk (t)uk(t), (16)

where ‖ ˙̃qTk (t)‖ = ‖ ˙̃qk(t)‖ 6 ‖ ˙̃qk(t)‖1 is applied. If Eqs. (8) and (10) are considered, then Eq. (16) can be
written in the form of

V̇k(t) 6 ‖ ˙̃qk(t)‖1f(q̈d(t), q̇k(t), q̇d(t))βi + kc ˙̃q
T
k (t)q̃k(t)− ˙̃qTk (t)uk(t), (17)

where t ∈ ((i− 1)TU ,min{iTU , Tk}] with 1 6 i 6 sk.
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Substituting (7) into (17), we have

V̇k(t) 6 ‖ ˙̃qk(t)‖1f(q̈d(t), q̇k(t), q̇d(t))β̃k,i(t), ∀t ∈ ((i− 1)TU ,min{iTU , Tk}], 1 6 i 6 sk. (18)

Obviously, it is obtained that

V̇k(t) = 0, ∀t > Tk. (19)

By resorting to the energy function candidate (13), we separate the subsequent analysis into the
following four steps.

Step 1. Study (13) at t = iTU . For t = iTU , we have

Ek,i(iTU ) = γVk(iTU ) +
1

2
β̃2
k,i(iTU ). (20)

It is obtained that the difference between two consecutive iterations is defined as, for all i ∈ Zm,

∆Ek,i(iTU ) = Ek,i(iTU )− Ek−1,i(iTU )

= Ek,i((i − 1)TU ) +

∫ iTU

(i−1)TU

Ėk,i(t)dt − Ek−1,i(iTU ) (21)

according to (20). Note that Ėk,i(t) may not exist when (i − 1)TU < Tk < iTU . Fortunately, this fact
does not affect the integral because Ek,i(t) is continuous within [(i− 1)TU , iTU ] according to (13).

From (12), it is derived that

1

2
β̃2
k−1,i(iTU ) =

1

2
β̃2
k,i((i− 1)TU ), (22)

which implies

Ek,i((i − 1)TU )− Ek−1,i(iTU ) = γVk((i − 1)TU)− γVk−1(iTU ). (23)

Substituting (23) into (21), we have

∆Ek,i(iTU ) =

∫ iTU

(i−1)TU

(

β̃k,i(t)
˙̃βk,i(t) + γV̇k(t)

)

dt+ γVk((i− 1)TU )− γVk−1(iTU ) (24)

based on (13). Considering (12) again, we obtain

β̃k,i(t)
˙̃
βk,i(t) = −γβ̃k,i(t)f(q̈d(t), q̇k(t), q̇d(t))‖ ˙̃qk(t)‖1, (25)

if i 6 sk and t ∈ [(i − 1)TU ,min{iTU , Tk}], otherwise β̃k,i(t)
˙̃βk,i(t) = 0. This fact, together with (18),

(19), and (24), leads to

∆Ek,i(iTU ) 6 γVk((i − 1)TU )− γVk−1(iTU ). (26)

Additionally, according to the above analysis, it can be verified easily that E0,i(t) is L∞e-norm bounded
for any i ∈ Zm and t ∈ [(i− 1)TU , iTU ], which is omitted here.

Step 2. The convergence of Vk(iTU ) with i = 1. According to Assumption 1, Vk(0) = 0 holds for
all k ∈ Z+. Therefore, Eq. (26) can be rewritten as

∆Ek,1(TU ) 6 −γVk−1(TU ) 6 0, (27)

which implies that Ek,1(TU ) is non-increasing along the iteration axis and thus Ek,1(TU ) < ∞. Con-
sidering the positiveness of Ek,i(t) defined in (13), we consequently have limk→∞Vk−1(TU ) = 0 and
∑∞

k=1 Vk−1(TU ) <∞ according to (27).
Step 3. The convergence of Vk(iTU ) with i > 1. Now, let us try to accumulate (26) from k = 1

to k = ∞. Although Ek,i(iTU ) may not be non-increasing along the iteration axis, it is obtained that,
for any i ∈ Zm \ {1}, limk→∞Vk−1(iTU ) = 0 holds if

∑∞
k=1 Vk((i − 1)TU) < ∞. This fact can be easily
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verified by using the famous mathematical induction with the results of Step 2. The analysis can be
omitted due to the similarity with Step 2. As a result, we have

lim
k→∞

Vk−1(iTU ) = 0, ∀i ∈ Zm ∪ {0} (28)

and

Ek,i(iTU ) <∞, ∀i ∈ Zm ∪ {0}, (29)

where Assumption 1 is considered.
Step 4. Study (13) for t ∈ ((i−1)TU , iTU), i ∈ Zm and i ∈ Zm. Based on the results of Steps 2 and

3, we know that perfect tracking is achieved for t = iTU and all i ∈ Zm∪{0} when k tends to the infinity.
Now, let us check the boundedness of Ek,i(t) and the tracking performance within ((i − 1)TU , iTU) with
i ∈ Zm.

According to (23) and (28), it is obtained that

lim
k→∞

(Ek−1,i(iTU )− Ek,i((i− 1)TU )) = 0, ∀i ∈ Zm. (30)

In addition, based on (21) and (26), we have

lim
k→∞

(Ek,i(iTU )− Ek−1,i(iTU )) = 0, ∀i ∈ Zm. (31)

Adding (30) and (31), we obtain

lim
k→∞

(Ek,i(iTU )− Ek,i((i − 1)TU )) = 0, ∀i ∈ Zm, (32)

which, together with (20) and (28), leads to

lim
k→∞

(

β̃k,i(iTU )− β̃k,i((i − 1)TU )
)

= 0 (33)

or/and

lim
k→∞

(

β̃k,i(iTU ) + β̃k,i((i− 1)TU )
)

= 0. (34)

Actually, Eq. (33) holds, but Eq. (34) does not always hold. This can be proven by using the reduction
to absurdity. Specifically, on the one hand, suppose that only Eq. (34) holds, then

limk→∞(β̂k,i(iTU ) + β̂k,i((i − 1)TU )) = 2βi,

limk→∞(β̂k+1,i(iTU ) + β̂k+1,i((i − 1)TU )) = 2βi. (35)

Additionally, according to (12), we have β̂k,i((i − 1)TU ) 6 β̂k,i(iTU ) = β̂k+1,i((i − 1)TU ) 6 β̂k+1,i(iTU ).

This leads to a contradiction with (35) unless β̃k,i(iTU ) = β̃k,i((i − 1)TU ) = 0. On the other hand,
suppose that both Eqs. (33) and (34) hold, the same contradiction occurs again. Therefore, Eq. (33)
always holds.

Considering the continuity of ˙̃qk(t), we can obtain

lim
k→∞

‖ ˙̃qk(t)‖ = 0, ∀t ∈ [0, Tk] (36)

based on (12), (28), and (33). Further, Eqs. (12) and (36) lead to, for all i ∈ Zm,

lim
k→∞

(

β̃k,i(t)− β̃k,i((i − 1)TU )
)

= 0, ∀t ∈ [(i − 1)TU , TU ],

which, together with (13), (18), and (25), implies

lim
k→∞

‖q̃k(t)‖ = 0, ∀t ∈ [0, Tk]. (37)
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Figure 3 (Color online) Illustration of a visual simulation platform consisting of Matlab 2020a and Coppeliasim Edu 4.3.0.

According to (36) and (37), it is not hard to verify that Eq. (5) is achieved.
According to Assumption 2, when k tends to infinity, the number of Tk = TH also tends to infinity.

From (28), (36), and (37), the perfect attitude tracking objective (5) is achieved. Moreover, a natural
result from (29) is Vk(iTU ) <∞ and β̃2

k,i(iTU ) <∞ hold for all i ∈ Zm ∪ {0} and k ∈ Z+, which implies

β̃2
k+1,i((i− 1)TU ) <∞, ∀i ∈ Zm, ∀k ∈ Z+ ∪{−1} (hold naturally for k = −1) according to (12) and thus

Ek,i((i− 1)TU ) <∞, ∀i ∈ Zm, ∀k ∈ Z+. (38)

Based on the continuity of Ek,i(t) within [(i − 1)TU , iTU ], Eqs. (29) and (38) lead to Ek,i(t) < ∞, ∀i ∈
Zm ∪ {0}, ∀t ∈ [(i − 1)TU , iTU ], which implies

Vk(t) <∞, ∀t ∈ [0, TH ], ∀k ∈ Z+,

β̂k,i(t) <∞, ∀i ∈ Zm, ∀k ∈ Z+, ∀t ∈ [(i− 1)TU , iTU ].

Therefore, all signals, including states, estimates, and inputs, are L∞e-norm bounded. The L2e-norm
boundedness of them can be naturally guaranteed according to the relationship between these two norms
in (1). The proof of Theorem 1 is complete.

Remark 4. As stated in [14], although the L2e-norm boundedness can be achieved in the literature
of the conventional AILC, the L∞e-norm boundedness is also necessary for the actual applications.
Although some mechanisms based on the prior information of uncertainties are designed for restricting
the estimates and/or inputs, e.g., the projection mechanisms, actually they are implicitly contrary to the
assumption of uncertainties with known bounds [13]. In comparison, the proposed method can guarantee
the L∞e-norm boundedness of systems without requiring extra prior information on uncertainties.

Remark 5. This work considers that the states of robot manipulators can be accessed directly. This is
reasonable in many cases, as many sensors can be used to measure the states of robot manipulators [18].
However, there are some cases where the states of robot manipulators cannot be accessed directly. For
example, if a robot is operating in a harsh environment, the sensors may be damaged. In these cases, it
is necessary to develop other approaches to estimate the states of the robot.

5 A solution to the visual simulation

A visual manipulator simulation platform consisting of two trustworthy software (i.e., Coppeliasim Edu
4.3.0 and Matlab 2020a) is constructed, and the communication between both software is completed
with the ZeroMQ remote application program interface (API), which can let Matlab interact with Cop-
peliaSim in a stepped way (i.e., synchronized with each simulation step). The platform is illustrated
in Figure 3. Specifically, Coppeliasim provides an integrated development environment including open
dynamics engine (ODE) and modeled proximity sensors, which offer us the trusted planar elbow manip-
ulator equipped with angle/angular velocity sensors and the gravitational field. In Matlab, we can utilize
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Figure 4 (Color online) Tracking performance for k = 0 shown in Coppeliasim. Red dot: the starting point of the actual

trajectory. Purple line: the actual trajectory of link 2’s end. Black circle: the reference trajectory of link 2’s end.

Figure 5 (Color online) Tracking performance for k = 8 shown in Coppeliasim. Red dot: the starting point of the actual

trajectory. Purple line: the actual trajectory of link 2’s end. Black circle: the reference trajectory of link 2’s end.

the reference trajectory and the output/state measurements from Coppeliasim to calculate the torque
commands, and transfer them to Coppeliasim to drive the joints in high-level control (HLC).

Now we consider the two-DOF robot manipulator illustrated in Figure 1. The values of the parameters
are listed as follows. m1 = m2 = 1kg, l1 = l2 = 0.5m, lc1 = lc2 = 0.25m, I1 = I2 = 0.1 kg · m2,
g = 9.81m/s2. The external disturbances are set as d1 = d2 = rand(k) sin(t), where 0 6 rand(k) 6 1 can
be random and iteration-dependent. The desired trajectory is described by qd(t) = [ 23π cos(12πt),

π

2 ]
T,

q̇d(t) and q̈d(t) can be derived from the evolution of qd(t) along the time axis. For iteration-dependent
periods, we assign TH = 2 s, TL = 1.5 s, and σ = 1, which means that Tk = TH and Tk = TL are alternate.
The communication step is set as 0.0001 s.

The controller parameters in (7) are kc = 60 and kd = 20, the learning parameter in (12) is γ = 10,
and the number of slots is 20. It is important to note that the values of kc, kd, and γ are closely
related to the sampling time. They can be roughly estimated using the method described in [28]. The
corresponding simulation results are illustrated in Figures 4–9. The visual results for k = 0 and k = 8
are illustrated in Figures 4 and 5, respectively, which intuitively show that the tracking of the reference
trajectory of a robot manipulator for k = 8 is better than that for k = 0. Let us further investigate the
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Figure 6 (Color online) Tracking errors of angles versus the

number of iterations for links 1 and 2.

Figure 7 (Color online) Tracking errors of angular velocities

versus the number of iterations for links 1 and 2.
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Figure 8 (Color online) Illustration of iteration-dependent

periods.

Figure 9 (Color online) Estimates for iteration k = 8 stored

in VMSs.

tracking performance from k = 0 to k = 8. The tracking performance of angles and angular velocities
are illustrated in Figures 6 and 7, respectively. It is obvious that the tracking performance can be refined
gradually via the proposed AILC method from iteration to iteration. All tracking errors are small enough
when k = 8, which is consistent with the statement in Theorem 1. This shows the good performance of
the proposed AILC. Additionally, the results show that the proposed AILC works well when iteration-
dependent periods occur, which can be found in Figure 8. Additionally, the boundedness of estimates can
be observed in Figure 9, which cannot be obtained in the framework of conventional point-wise AILC.

Finally, one thing to be reminded of is that the definition of joint angles in the default settings of
Coppeliasim is different from that in the classical Euler-Lagrange equation of the current work. Therefore,
in the construction of the visual platform consisting of Coppeliasim and Matlab, both definitions in two
software should be standardized.

6 Conclusion

In this paper, a novel and practical AILC equipped with VMSs has been developed for robot manipula-
tors. To address the L∞e-norm boundedness problem encountered in point-wise AILC, the segment-wise
learning method has been developed with the help of VMSs. Except for achieving the perfect tracking
objective, this method is able to simultaneously guarantee the L∞e-norm and L2e-norm boundedness
of all signals of the plant. Compared with conventional point-wise AILC, the proposed method requires
less memory storage for historical tracking information. Moreover, it has been demonstrated that the
proposed method is applicable to robot manipulators regardless of iteration-dependent periods. The ef-
fectiveness of the proposed AILC has been verified through a visual simulation platform conducted on a
platform combining Coppeliasim and Matlab, showcasing its exceptional tracking and learning capabil-
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ities. Furthermore, two intriguing research directions are the determination of an appropriate segment
number and the complete elimination of the impact of the previous segment’s tracking on the subsequent
segment.
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