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Abstract Privacy leakage is one of the most critical issues in machine learning and has attracted growing

interest for tasks such as demonstrating potential threats in model attacks and creating model defenses.

In recent years, numerous studies have revealed various privacy leakage risks (e.g., data reconstruction at-

tack, membership inference attack, backdoor attack, and adversarial attack) and several targeted defense

approaches (e.g., data denoising, differential privacy, and data encryption). However, existing solutions gen-

erally focus on model parameter levels to disclose (or repair) privacy threats during the model training and/or

model interference process, which are rarely applied at the model architecture level. Thus, in this paper, we

aim to exploit the potential privacy leakage at the model architecture level through a pioneer study on neural

architecture search (NAS) paradigms which serves as a powerful tool to automate a neural network design.

By investigating the NAS procedure, we discover two attack threats in the model architecture level called

the architectural dataset reconstruction attack and the architectural membership inference attack. Our the-

oretical analysis and experimental evaluation reveal that an attacker may leverage the output architecture

of an ongoing NAS paradigm to reconstruct its original training set, or accurately infer the memberships of

its training set simply from the model architecture. In this work, we also propose several defense approaches

related to these model architecture attacks. We hope our work can highlight the need for greater attention

to privacy protection in model architecture levels (e.g., NAS paradigms).

Keywords neural architecture search, data reconstruction attack, membership inference attack

1 Introduction

Machine learning (ML) models based on deep neural networks (DNNs) have been proven to have supe-
rior performances in various tasks, ranging from image and speech recognition to generating realistic-
looking data. Experts have designed many sophisticated network architectures to promote the accuracy of
DNNs [1]. However, the process of designing advanced network architectures for a given task remains a
trial-and-error process that requires extensive personal experiences and human efforts. To mitigate this
issue, researchers in recent years have proposed a novel ML paradigm called neural architecture search
(NAS), which could automate the neural network architecture design.

The process of both NAS and network parameter training is data-dependent. Usually, the training of
a well-behaved neural network is supported by a massive amount of training data harvested from a wide
variety of application scenarios. These data are highly sensitive in many cases, such as user speeches,
facial images, and medical or financial records. Thus, ML models generated from these data raise many
privacy concerns. The existing literature has shown that an adversary may infer the properties of training
data if given access to the target model or the inferring/training process.

For example, by constructing a shadow model to imitate the target model, one study [2] succeed in
inferring the membership of training sets. Attacks proposed in [3] intercepted model updates to infer the
presence of exact data points under the scenario of collaborative learning. Similarly, Ref. [4] leveraged
generative adversarial networks (GANs) to reconstruct private datasets. Authors in [5] also presented
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a comprehensive analysis of privacy challenges in deep learning networks, including threat models in
different settings and defense methods.

However, to the best of our knowledge, privacy threats in NAS methods remain unexplored. NAS
paradigms aim at obtaining a well-performed network architecture for a specific task, which differs from
model-parameter-oriented training procedures. In particular, NAS paradigms have achieved remarkable
results in promoting the automatic neural networks design and gained increasing interest because of the
need to carefully reevaluate privacy threats in this area. However, existing solutions only cover privacy
issues at model parameter levels and rarely at model architecture levels (e.g., NAS).

To this end, we will formulate, evaluate and disclose privacy threats in NAS paradigms in this paper.
The critical question we ask is: is an adversary able to infer any property of its training sets in a NAS
paradigm, if given different levels of access permissions to its training procedure? In this case, what the
adversary can do (or obtain) may also be various, e.g., modifying the training sets by injecting carefully
crafted adversarial samples, or only observing the final output of the training algorithm. In this study,
we aim to provide a pioneering answer to this question, starting with formulating the research problem
of inferring the properties of training sets in NAS paradigms. We will also construct two major attack
models for different application scenarios.

In particular, our first attack model is the architectural dataset reconstruction attack (ADRA), in
which the attacker only obtains the final output of the target model during the training process, and tries
to reconstruct its original training sets. Notably, the output of a NAS paradigm is a specific searched
neural network architecture, instead of a perdition vector in traditional classification neural networks.
Our second attack model is the architectural membership inference attack (AMIA). In this attack, the
attacker has black-box visibility of a pre-trained target model and tries to determine whether a known
sample belongs to the training sets of this model architecture. Briefly, a black-box typically refers to the
ability to query the target model, without visibility of its decision-making process. Generally, our two
attack models aim to infer training set information stored only in model architectures to illustrate the
privacy leakage issues in NAS paradigms.

Our model analysis and performance evaluation indicate that the model architecture in NAS paradigms
would indeed bring in critical privacy leakages. For ADRA, the attacker could precisely reconstruct
training samples only from the model architecture exchange procedure. In comparison, for AMIA, the
attacker reaches up to 87% inference accuracy in identifying whether a sample belongs to the original
training sets used in the model architecture training procedure.

To better understand and counter these two attacks, we will also discuss and evaluate several defense
methods that do not rely on any cryptographic techniques [6–9]. In particular, perturbations on gradients
or training samples perform best in privacy leakage protections against our NAS attacks. Differential
privacy (DP) based defense schemes can reduce the attack accuracy by half, whereas maintaining high
classification accuracy for the target model.

Our contributions in this paper can be summarized as follows. First, to the best of our knowledge,
we are the first to identify and formulate potential privacy threats in NAS paradigms. In particular,
we provide a systematic study of two privacy threats in this area, namely ADRA and AMIA. Second,
the attack performances of these threat models are evaluated in different aspects, which illustrate the
significant information leakages in the training sets. Finally, we investigate several non-cryptographic
defense methods against these two attacks.

To the best of our knowledge, this work is the first to identify and formulate potential privacy threats
in NAS paradigms. Our contributions are summarized as follows.

• We provide a systematic study of two privacy threats in NAS paradigms, termed ADRA and AMIA,
which reveal potential privacy threats in NAS paradigms.

• We demonstrate and compare attack performances of attacks under these threat models in different
settings. Our empirical evaluation shows that an attacker may precisely reconstruct a training image, or
infer memberships in training sets.

• To further enhance the understanding of the mechanism behind our attack, we investigate several
non-cryptographic defense methods.
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2 Preliminaries & attack models

In this section, we introduce the preliminaries and the background of our attacks. We first present the
basic idea of gradient-based architecture search paradigms at a high level. Then, we introduce our two
attack models, which correspond to two existing major categories of privacy attacks, i.e., the dataset
reconstruction attack and the membership inference attack.

2.1 Gradient-based NAS

NAS paradigms aim at finding an optimal network architecture for given tasks, which can be used in
object classification, image generation, or an optimization target. Generally, a NAS paradigm can be
formalized as

F(D;S; T ) = FA,θ(·). (1)

Here, F(·) denotes the NAS paradigm and D, S, T denote the training set, search space, and optimization
target (loss function), respectively. FA,θ(·) is the output of a NAS paradigm, i.e., a specific network with
architecture A and weights θ. In this paper, the training set D is the inference target of an adversary
attacker.

A neural network FA,θ(·) can typically be viewed as a direct acyclic graph (DAG) with computational
cells as nodes and their connection patterns as edges. Each computational cell consists of several opera-
tions to its input, such as convolution, and pooling. In a neural network with P computational cells, the
output of p-th computational cell can be represented as

f p = θp ⊙p

∨

j∈Jp

f j , (2)

where θp are the parameters of p-th cell, ⊙p is the operation in this cell, and
∨

j∈Jp
f j is the collection of

previous outputs connected to p-th cell. The process of a NAS paradigm is to find an optimal operation
⊙ for each cell and optimal connection patterns from the given search space S.

Gradient-based NAS paradigms [10, 11] provide an effective solution to this optimization problem via
relaxing the categorical candidate operations between these nodes to a continuous space. Specifically, in
each cell a weight α⊙i is assigned to i-th candidate operation in S. In this way, a discrete architecture
can be obtained by picking out the most likely operation: ⊙ = argmaxα⊙∈S α⊙i ⊙i . Similarly, a weight
αij is assigned to the connection between i-th and j-th cell, which defines whether these two cells should
be connected or not. If αij reaches a certain threshold, a connection should be invoked and vice versa.

In this way, the architecture inside a neural network can be parameterized as a continuous and differen-
tiable parameter: α = {α⊙, αIJ}. Thus, gradient-based optimization methods such as stochastic gradient
descent (SGD) or adaptive moment estimation (ADAM) can be used to solve the loss function Lα(·). In
practice, some approximation schemes can be adopted to reduce the computation cost. The optimization
of NAS can be formulated as a bilevel optimization problem, with α as the upper-level variable and θ as
the lower-level variable:

min
α

Lα(θ
∗(α), α) s.t. θ∗(α) = argmin

w
Lθ(θ, α). (3)

Notably, the loss function for model architecture α may be varied along with the model parameter θ.
The training set for α and θ can also be independent.

2.2 Attack models

An adversary attempts to obtain the original information of D as much as possible, while defenders will
endeavor to maintain its confidentiality. In this paper, we formulate and investigate privacy leakages in
two typical attack models.

Attack model I: ADRA. In this attack, we assume that the attacker can obtain the final output A
of an ongoing NAS paradigm (e.g., a specific model architecture). Note that this output does not include
any internal weights or hyper-parameters. The attacker aims to reconstruct the training samples from
this model architecture only. Figure 1 (top, right) shows the pipeline of this attack.

Attack model II: AMIA. In this attack, we assume that the attacker has black-box visibility to the
pre-trained target model. The attacker may query the target model with its local samples D′ multiple
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II. Membership inference attack
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Figure 1 (Color online) Pipeline and comparison between the model-parameter-oriented attack (left) and the NAS attack (right).

times and tries to tell which part of D′ belongs to the training set D used in the target model. Notably,
in NAS paradigms, as mentioned in Subsection 2.1, the training set for model architecture is different
from that for model parameters. Therefore, intuitively, sensitive information in the training sets for
architecture will be only kept in the output model architecture. We aim to infer membership information
of this part of the training sets, which implies that the model architecture will remember information
from the training sets, as well as model weights. Figure 1 (bottom, right) shows the pipeline of this
attack.

In this paper, we consider two typical application scenarios for our attack models. The first one is a
NAS in a federated manner, wherein multiple data holders jointly train a shared model without reviewing
their local private datasets. If an attacker manages to intercept the communication between clients and
servers, it may leverage this information to reconstruct a certain client’s dataset. The second one is ML
as a service (MLaaS), where many large companies offer their computing resources as services to data
holders (e.g., hospitals or banks), allowing data holders to perform predictions over their new data. Data
holders only, they only upload data and receive prediction results from the server. In this scenario, if an
attacker invades the access permission to query the offered prediction application programming interface
(API), he may leverage this information to infer properties of the original dataset used to train this online
prediction model.

3 Attack model I: ADRA

In this section, we present the attack model of AMIA and empirically show that an adversary is able to
reconstruct the training sample if given model architecture gradient α.

3.1 Information leakage from gradients

Prior studies [3] have demonstrated that an adversary is able to reconstruct training samples if given
update gradients during training.

The attacker first randomly creates a “dummy” sample D′ with random noises, and then tries to
optimize this dummy sample to make it close to the real training data as much as possible. This dummy
sample however becomes the optimization target, with the optimization goal to minimize the difference
(e.g., Euclidean distance) with the real sample. When the optimization process finishes, the private real
training data will be disclosed. In each epoch, the attacker reconstructs training samples from the update
architecture gradient α only.

Definition 1 (ADRA). For a given architecture gradient ∆α, batch size B, and randomly initialized
dummy sample D′, ADRA computes

argmin
D′

D

(

∆α,
1

B

∑

b∈B

α′
b

)

, (4)
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where D(·) is a distance measurement function and α′ is the dummy gradient produced by D′.
Denote the output architecture of the target model by αt1 and αt2. Thus, the updated architecture

gradient ∆α can simply be obtained by ∆α = αt2 − αt1. If D(·) is implemented as a L2 distance, the
dummy sample D′ can be literally optimized by

D′ = argmin
D′

||∆α− α′||2

= argmin
D′

∥

∥

∥

∥

∆α−
∂Lα(F (X ′|α′, θr),Y ′)

∂α′

∥

∥

∥

∥

2

. (5)

where θr denotes model weights in the shadow model, and Y ′ is the dummy label that corresponds to the
dummy sample, which is also an optimization target. Intuitively, the success of the dataset reconstruction

depends on the solvability of (5), i.e., whether the second derivative ∂2Lα(·)
∂X∂α

can be determined. In
gradient-based NAS paradigms, architecture gradient α′ can be rewritten as

α′ =
∂Lα(f P , y)

∂f P

·
∂f P

∂α
. (6)

In (6), ∂Lα(·)/∂f P can be easily determined by (∂Lα(·)/∂f 0)
∏P−1

p=0 (∂f p/∂f p+1) according to a chain
rule, where f 0 is the input X itself. The second term, ∂f P /∂α can be simplified by expanding f P as

f P =
∑

m∈M

· · ·
∑

n∈N

αmfm
θ (· · ·αnfn

θ (X)), (7)

where fn
θ (·) denotes the operation to its input with parameter θ, m and n are the index of certain types

of operation in the M -th and the N -th cell, respectively. In convolution cells, fn
θ (·) = σ(θx + b), where

σ(·) is an activation function, and b is the bias. The decision process of a neural network can then be
viewed as a weighted summation characterized by α. For a specific architecture parameter αM , we have

∂f P

∂αM
= fM

θ

(

∑

m∈M

αmfm
θ (Xm)

)

, (8)

where m is the index of prior cells connected to the M -th cell.
Consider a simple case in most neural networks with an identity activation function, e.g., f(x) = θx+b.

The derivative of (8) of the input X can be obtained by

∂2f P

∂αM∂X
=
∑

m∈M

(

∏

i∈I

αiθi

)

, (9)

where αi and θi denote the prior architecture parameter and weights that have a connection to the M -th
cell, respectively.

The above analysis implies that this reconstruction attack, or in other words the solvability of (5),
mainly depends on the following aspects.

• Sufficient architecture parameters. Generally, in a neural network with P layers, we have
α ∈ R

1
2×P×P . In practice, P is often chosen between 32 and 256, as the time complexity for optimizing α

reaches O(n2). In CNNs, weights θ ∈ R
q×q×c×nq , where q, c, and nq denote the spatial extent of filters,

input channels, and the number of filters, respectively. However, the input data has a significantly large
size than α, i.e., X ∈ R

h×w×c, where h, w, and c denote the height, weight, and channel of an image,
respectively. During the attacks, it may potentially result in multiple local minimums in solving equation
(5), which associates the success of the dataset reconstruction with the initialization noises of the dummy
samples. Such dependence can be relaxed by increasing architecture parameters α.

• Continuous activation functions. Optimizing X to guide the architecture search paradigm
produces certain αM requires a continuous function f(·) over X to make the optimization objective
differentiable. Thus, non-continuous activation functions such as ReLU will decrease the reconstruction
accuracy to a certain degree. Besides, to ensure the existence of each slight change of X causes non-
negligible impact to α, an increasing activation function σ(·) is preferred, i.e., ∂σ

∂x
> 0 for any x, to

maximize the attack efficiency.
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(a)

(b) (c)

Figure 2 Illustration of (a) the reconstruction process, (b) denoising function, and (c) reconstruction of different used activation

functions.

3.2 ADRA

We show an adversary may reconstruct original training samples from architecture gradients, starting
from a simple case: there is only one sample in a training batch B. Batch size is also a key factor
in this reconstruction attack. If B > 1, the acquired architecture gradient is a mixture of several data
points, thus identifying a component of the mixture requires extra effort. In particular, there exists O(B!)
permutations, which greatly obstruct gradient selection and slow the optimization process.

We use MNIST hand written-digits, a collection of 70000 grayscale images with the size of 28 × 28,
to implement the architectural reconstruction attack. Our implementation is based on the open-sourced
code from DARTS1), and their settings, with Python 3.7 and 4 NVIDIA Tesla V100 GPUs. Detailed
settings of this attack are given in Appendix A.

In addition, a denoising function is adopted to make the reconstruction results more understandable
in each iteration, as the size mismatch between X and α brings in some “uncontrollable pixels” that stay
firmly around the maximum value. Specifically, we turn all pixels exceeding a certain threshold κ to 0.
In our experiment, we set κ = 245. Figure 2(b) shows this denoising process.

Results. Figure 2(a) reports the reconstruction results. Although the reconstructed images are not
exactly identical to the real training samples, the digits in the reconstructed images are still recognizable
and the “outline” is consistent with the ground truth in general. It means that model architectures
contain significant private information.

We also investigate the reconstruction attacks under different possible activation functions, such as elu,
tanh, sigmoid, and ReLU. The reconstruction results are shown in Figure 2(c). It can be seen that the
reconstructed quality significantly depends on the activation function, where elu and tanh could produce
preferable reconstruction results.

After several iterations, the reconstructed image may also have background noises without clear noise
patterns. It means that the optimization in equation (5) cannot reach a local optimum. In fact, the success
rate (SR) (i.e., the reconstructed image converges to a recognizable one) is around 30% in our attack.
Since our analysis implies that the reconstruction SR is associated with network sizes and activation
functions, we report the SR and the mean square error (MSE) under different network sizes (P ) and
different activation functions, which are listed in Table 1. From Table 1 we can infer that, in most
cases, a larger P (except ReLU) improves the reconstruction accuracy. Also, an activation function
with a simple derivation form is beneficial to the reconstruction. Notably, in our results for ReLU, the
attack effectiveness decreases with the increase of P . We speculate that the reason behind this is that,
overlaying noncontinuous activation functions (in this case ReLU) would significantly make the perdition

1) https://github.com/quark0/darts.

https://github.com/quark0/darts
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Table 1 Attack SR and MSE under different network sizes (P ) and different activation functions

P = 32 P = 64 P = 96 P = 128 P = 256

elu
SR (%) 31.4 36.0 39.8 42.1 42.8

MSE 2.98 2.87 2.44 2.07 1.87

tanh
SR (%) 27.6 32.9 36.4 38.0 38.5

MSE 2.84 2.79 2.71 2.65 2.49

Sigmoid
SR (%) 26.1 32.1 37.6 35.3 36.2

MSE 3.21 3.08 2.90 2.91 2.88

ReLU
SR (%) 23.4 22.5 22.9 22.2 21.7

MSE 3.18 3.32 3.24 3.17 3.20

Table 2 Attack SR and MSE under different network sizes (P ) and different batch sizes

P = 32 P = 64 P = 96 P = 128 P = 256

B = 1
SR (%) 31.4 36.0 39.8 42.1 42.8

MSE 2.98 2.87 2.44 2.07 1.87

B = 2
SR (%) 21.2 23.9 23.8 24.0 24.5

MSE 3.20 3.24 3.12 3.05 2.92

B = 4
SR (%) 14.4 14.0 14.1 14.2 14.5

MSE 5.03 4.91 4.83 4.88 4.82

B = 8
SR (%) 0 0 0 0 0

MSE – – – – –

into a nonlinear process. This confirms our analysis in Subsection 3.1: a continuous activation function
would be helpful for the reconstruction attack.

Finally, we continue our attack on a large-batch training. We investigate the attack performance when
B = 1, 2, 4, and 8 with elu, which are listed in Table 2. From Table 2 we can find that, in multi-samples
reconstruction, architecture gradient fails to help the reconstruction. For example, when B = 8, the
reconstruction does not converge.

4 Attack model II: AMIA

In this section, we present the attack model of AMIA and empirically show that an adversary is able to
determine whether a data point belongs a particular training set used in the model architecture training.

4.1 Information leakage from architectures

Membership privacy was firstly formalized in [12], where adversaries may determine if a data sample D′

belongs to the training set D of a black box target model FA,θ(·). This is achieved by training multiple
shadow models F s

A,θ(·) to mimic the behavior of a target model FA,θ(·), and leveraging these shadow
models’ output pattern V to train an attack model V (·). These shadow models are initialized with a
fixed architecture [13]. The attack model V (·) then identifies whether a data sample belongs to a model’s
training set by the model output prediction vector (i.e., posterior probability). MIA has proved that
model weights will remember the information of the training set, which brings in information leakage.
We argue that, however, information on the training set will be not only kept in model weights but also
in model architectures.

The “inference ability” of an adversary is described by a parameter ǫ. Denote a sample and its label by
x and y, if ǫ = 0, the adversary has (x, y) sampled uniformly from the training set D to generate a neural
network FA,θ(·). Otherwise, if ǫ = 1, the adversary has (x, y) from the general population. During AMIA,
the adversary exploits his additional knowledge (e.g., prediction vector in our attack model) to predict
the correct value of ǫ. Notably, ǫ can also be considered as an indicator of the distance between (x, y)
and the real training set D. The Bayesian optimal membership inference rate in a model architecture is
given in Theorem 1.
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(a) (b)

(c) (d)

Figure 3 (Color online) Performances of the attack model and the target model for (a) MNIST, (b) CIFAR10, (c) CIFAR100,

and (d) the f1-score.

Theorem 1. Given θ and α, the optimal membership inference for a sample Di is

P(ǫDi
= 1|α, θ) = EDr

[

(

1 +

(

1− λ

λ

)

P(α|ǫDi
= 1, θ,Dr)

P(α|ǫDi
= 0, θ,Dr)

)−1
]

, (10)

where λ = P(ǫDi
= 1) and Dr = D −Di. The proof is given in Appendix B.

We consider the attack accuracy as the probability that his prediction equals ǫ. If the attack model
V (·) is randomly initialized without proper training, it should maintain 50% accuracy. Thus, we formalize
the attack accuracy of V (·) as

attack acc.(V ) = 2P[V (·) = ǫ]− 1. (11)

We also consider f1-score as our major evaluation matrix. It describes the general performance of the
attack model:

f1-score(V ) =
2P[ǫ = 1|V (·)] · P[|V (·)|ǫ = 1]

P[ǫ = 1|V (·)] + P[|V (·)|ǫ = 1]
, (12)

where P[ǫ = 1|V (·)] and P[V (·)|ǫ = 1] are precision and recall, respectively.

4.2 AMIA

In this subsection, We evaluate the effectiveness of AMIA with attack accuracy and f1-score in several
datasets such as MNIST, CAFAR-10, and CAFAR-100. Each dataset is independently identically dis-
tributed (IID) and divided into four sub-datasets: Dθ, Dα, Ds

Train, and Ds
Test. In particular, Dθ and Dα

are used to optimize the model parameter and architecture, respectively. The network consists P = 64
computation cells. Detailed settings of this attack are presented in Appendix C.

Results. Figures 3(a)–(c) report the training performance of the attack model and the target model
for MNIST, CIFAR10, and CIFAR100, respectively. T train and T test denote the training accuracy and
test accuracy of the target model. Figure 3(d) reports the f1-score of the shadow model. From Figure 3,
we can infer the following solutions.

(1) The attack accuracy increases in each training epoch, and reaches 0.56, 0.67, and 0.86 for MNIST,
CIFAR10, and CIFAR100, respectively. It proves that private information in the training set for model
architecture is not safe, and can be directly leaked through AMIA.
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Table 3 Attack results on different network scales

P = 32 P = 64 P = 128 P = 256

MNIST
Attack acc. 0.56 0.56 0.57 0.57

f1-score 0.62 0.64 0.65 0.65

CIFAR10
Attack acc. 0.63 0.67 0.69 0.70

f1-score 0.74 0.78 0.79 0.79

CIFAR100
Attack acc. 0.83 0.86 0.89 0.91

f1-score 0.87 0.92 0.94 0.96

Table 4 Attack results on different NAS paradigms

DARTS ENAS PDARTS SMASH

MNIST
Attack acc. 0.56 0.51 0.53 0.53

f1-score 0.64 0.64 0.65 0.61

CIFAR10
Attack acc. 0.62 0.60 0.64 0.60

f1-score 0.75 0.72 0.75 0.74

CIFAR100
Attack acc. 0.86 0.79 0.87 0.81

f1-score 0.92 0.82 0.90 0.89

Table 5 Attack results of different distribution of attack dataset (P = 64)

η = 1.00 η = 0.75 η = 0.50 η = 0.25

MNIST
Attack acc. 0.56 0.55 0.55 0.54

f1-score 0.64 0.62 0.61 0.61

CIFAR10
Attack acc. 0.62 0.61 0.58 0.56

f1-score 0.75 0.72 0.70 0.69

CIFAR100
Attack acc. 0.86 0.83 0.81 0.75

f1-score 0.92 0.84 0.82 0.76

(2) Dataset with complex patterns (e.g., CIFAR100) is much more vulnerable than the one with a
relatively simple pattern (e.g., CIFAR10) when facing AMIA. This is consistent with prior experience [13].
In addition, different levels of overfitting can be observed in the target model. This implies that model
generalization prevents privacy leakages to a certain degree, in both MIA and AMIA.

The AMIA is also evaluated in more practical scenarios. Table 3 further reports the attack performances
with different network scales of the target model. We can find that the architecture of a deeper network
tends to absorb information in training sets with complex patterns. In addition, we also implement
AMIA on different NAS paradigms, as shown in Table 4. It can be seen that reinforcement-learning
based (ENAS [14]) and one-shot (SMASH [15]) NAS paradigms have a better generalization ability
against AMIA.

We also report the attack results (P = 64) in Table 5 when the attacker does not process an attack
dataset that is completely independent and identically distributed to the target training set. Specifically,
we use a parameter η to illustrate how much proportion of the attack dataset is overlaps the distribution
of the target training set. If η < 1, (1−η)% of the attack dataset is chosen from another dataset irrelevant
to the target training set. From Table 5 we can observe that, a dataset with a simple pattern would be
more robust against AMIA. Besides, the distribution attack dataset also contributes to the attack result.

4.3 Improved AMIA

The above attack results highlighted privacy leakage in the model architecture of pretrained neural
networks. Specifically, one key factor to deploy the MIA is the linearly separable degree between the
member samples and the non-member samples, which requires the shadow model F s

A,θ(·) to overfit in its
training sets. However, the shadow model in AMIA is initialized with a fixed architecture, which might
limit its ability in imitating the target model.

We thus improve AMIA by making the architecture of shadow models searchable. As the attacker does
not know the NAS paradigm of the target model, it will adopt a random one (e.g., DARTS). Figure 4
illustrates the decision boundaries and distributions of member/non-member samples for different shadow
models with fixed/unfixed architecture. Compared with the fixed architecture in Figure 4(a), it can be
seen that member/non-member samples are more separable in architecture-searchable shadow models as
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(a) (b)

Figure 4 (Color online) Decision boundaries and distributions of member/non-member samples for different shadow models.

(a) Fixed architecture; (b) unfixed architecture.

Table 6 Defense results in various scenarios

DP SGD LR DP MD

B = 1, P = 32B = 1, P = 256B = 4, P = 256 P = 64P = 256P = 64P = 256P = 64P = 256

elu
SR (%) −18.2 −13.8 −11.2

MNIST
Attack acc. −0.10 −0.11 −0.31 −0.35 −0.14 −0.16

MSE +1.44 +1.45 +6.89 f1-score −0.11 −0.13 −0.34 −0.36 −0.18 −0.20

tanh
SR (%) −17.2 −13.1 −12.0

CIFAR10
Attack acc. −0.14 −0.17 −0.39 −0.40 −0.21 −0.22

MSE +1.64 +1.81 +10.29 f1-score −0.15 −0.17 −0.43 −0.44 −0.25 −0.25

Sigmoid
SR (%) −20.2 −18.2 −18.0

CIFAR100
Attack acc. −0.23 −0.26 −0.55 −0.54 −0.30 −0.31

MSE +2.04 +3.25 +12.50 f1-score −0.27 −0.31 −0.52 −0.53 −0.35 −0.34

shown in Figure 4(b). Our evaluation shows that, under the setting of P = 32 and DARTS as the target
NAS paradigm, the attack accuracy and f1-score for three datasets increase by 0.13 and 0.17 on average,
respectively.

5 Defense schemes

In this section, we evaluate several potential defense schemes against our two attacks. For ADRA, we
adopt DP SGD [16], where the updated architecture gradients are added with a random noise under
Gaussian Distribution N (0, 0.01). For AMIA, L2-norm regularization (LR), DP, and model distillation
(MD) are evaluated. Particularly, in LR, the sum of the squared model architecture Σα2 is added into
the loss function as a penalty term to be minimized during its training. In DP, a random noise under
N (0, 0.01) is added to each sample in the training set. In MD, it transfers the knowledge in the searched
model to a concise student model. Detailed defense settings are given in Appendix D.

These defense results are reported in Table 6, where each result indicates the increment (or decrement)
value caused by current defense settings, in comparison with a standard attack without any defense.
Please note that the comparison between different defense schemes should consider multiple factors,
especially the trade-off between its effectiveness and computing cost. In this paper, we mainly consider
the upper limit of the defense performance, regardless of other evaluation metrics.

For ADRA, we can see that added noises in the architecture gradient will reduce the SR and obstruct the
data reconstruction. With the increment of model complexities and training batches, meaningful features
in training samples can be recovered easily. Generally, DP SGD generates an acceptable accuracy loss
(around 7%), which can be seen as a preliminary defense method against ADRA.

For AMIA, DP-based dense schemes also outperform LR and MD in general. Averaged accuracy losses
for LR, DP, and MD are 3%, 7%, and 4%, respectively, which can also be considered acceptable. In addi-
tion, DP reduces the inference accuracy by half, while LR and MD reduce by 20% and 30%, respectively.
Therefore, perturbations on gradients or training samples achieve the best defensive performances.
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6 Related work

Privacy attacks on ML models have attracted growing interest [17–19] in recent years. Various attack
methods have also been proposed to determine sensitive information within their training sets. However,
gradient sharing in collaborative learning has been proven unsafe against the reconstruction attacks
[3, 20]. While the above solutions formalize the reconstruction attack as an optimization problem, Ref.
[21] leverages a multi-task GAN to generate samples by refining the recovered class representatives.
More related solutions are also illustrated in [22], which explores different distance measurements in
the reconstruction, and in [23] which improves the reconstruction accuracy with large training batches.
Various gradient-based information leakage methods have also been studied in [5, 24].

DNNs have also been proven to be vulnerable against MIA [12]. A number of studies [5, 14] have
studied MIA in different application scenarios with significant inference accuracies. One paper [25]
studied membership inference against GANs, while MIA in a white-box setting has been studied in [26].
After that, recent attempts to reveal the underlying mechanisms [27, 28] have also promoted defenses
against MIA [29]. Many experiences of MIA are summarized in [30].

Apart from privacy attacks, DNNs also suffer from adversarial attacks, where an imperceptible per-
turbation is added to mislead an ML-based classifier [31, 32]. Effective attacks include fast gradient
sign method (FGSM) [33], momentum iterative FGSM (MI-FSGM) [34], and project gradient descent
(PGD) [35]. A number of recent studies have focused on broadening the application of attacks in vari-
ous scenarios [36–38] and in the physical world [39, 40]. Subsequently, some defense schemes have been
proposed, including preprocessing techniques [41], feature denoising [42], regularization [32], and model
ensambles [43]. Given that privacy attacks and adversarial attacks are built upon similar underlying
mechanisms to a certain degree, studies on adversarial attacks may contribute to understanding privacy
issues in neural networks. Particularly, both privacy and adversarial attacks depend on the complexity of
the model decision boundary. Well-generalized neural networks often employ a smooth decision boundary,
which is helpful in resisting various kinds of attacks.

NAS paradigms [44]. The current work is thus motivated to investigate existing privacy attacks [45–50]
solutions that can be extended to NAS paradigms, which motivates this work.

7 Conclusion and future work

In this work, we studied privacy threats in NAS paradigms. ADRA and AMIA were also proposed in
NAS paradigms. The results prove that model architecture might also cause potential privacy leakage in
neural networks. Our empirical study shows that DP-based defense schemes might prevent such privacy
leakage to some extent. This work can be considered a pioneering study on privacy leakages in terms
of NAS. Future works may consider finding ways to exploit more potential threats in NAS with better
attack accuracy and more practical adversarial defense schemes under more practical scenarios.
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Appendix A Attack settings in ADRA

The searchable operations are 3 × 3 and 5 × 5 separable convolutions, 3 × 3 and 5 × 5 dilated separable convolutions, 3 × 3 max

pooling, 3 × 3 average pooling, identity, and zero. Internal model weight θ is not available to the adversary. Thus, in ADRA, θ is

randomly initialized from a uniform distribution U(−0.25, 0.25). We use elu (σ(x) = max{ex − 1, x}) as the activation function.

The architecture search paradigm for both ADRA and AMIA blow is based on DARTS2).

Appendix B Proof of Theorem 1

Considering the law of total expectation and Bayes’ theorem, we have
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Appendix C Attack settings in AMIA

The attack is implemented with Python 3.7 and 4 NVIDIA Tesla V100 GPUs. We adopt a publicized image classification model,

Resnet-50, as the shadow model F s
A,θ(·), since the attacker is assumed to have black-box access only. Notably, only one shadow

model is employed, as the number of shadow models does not contribute to the attack accuracy. The attack model V (·) is generated

on a 3-layer feedforward neural network, trained with SGD.

Appendix D Defense settings

For Model Distillation, our implantation is based on DMP3). In particular, a private training dataset and an unlabeled reference

dataset are required. Then, an unprotected teacher model is trained and leveraged to label data instances in the unlabeled reference

dataset. DMP selects data instances in the labeled reference dataset that have low prediction entropy to train the target model. In

this way, the protected classifier’s direct access to the private training dataset is restricted, thus reducing the membership privacy

leakage.

2) https://github.com/quark0/darts.
3) https://github.com/vrt1shjwlkr/AAAI21-MIA-Defense.

https://github.com/quark0/darts
https://github.com/vrt1shjwlkr/AAAI21-MIA-Defense
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