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Synchronization is one of the most important dynamics

in neural networks. Several scholars have studied the

quasi-synchronization of heterogeneous neural networks [1],

wherein external controllers play a significant role. Impul-

sive control, a kind of energy-saving control, is activated

instantaneously only at specific discrete moments. To over-

come the drawbacks of time-driven impulsive control, such

as high cost and low efficiency, both centralized [2] and dis-

tributed event-triggered controls [3] are proposed. A re-

view of the literature reveals that there are few studies on

event-triggered impulsive control of heterogeneous neural

networks, especially distributed event-triggered impulsive

control. We aim to solve the quasi-synchronization prob-

lem of heterogeneous neural networks by applying event-

triggered impulsive controls.

Notations. For a real symmetric matrix A, let λmin(A)

and λmax(A) denote the minimum and maximum eigenval-

ues, respectively, and A ≻ 0 indicates that A is positive defi-

nite. For an asymmetric matrix, we define As =(AT+A)/2.

The terms En and 1n represent an identity matrix with or-

der n and a column vector with all n entries 1, respectively.

Model description. The sets of nodes and directed edges

of a digraph G are recorded as V = {1, 2, . . . , N} and

E = {(j, i) : i, j ∈ V and j 6= i}, respectively. Further,

(j, i) ∈ E indicates an edge from the jth node to the ith

node. A = [aij ]N×N is the adjacency matrix, where the

entry aij = 1 iff (j, i) ∈ E. Now, suppose that the graph

G contains a directed spanning tree with the first node

as the root and does not contain self-loops. The Lapla-

cian matrix of the subgraph from the 2nd node to the

Nth node is defined as L = [lij ](N−1)×(N−1) . We define

L̃ = L+ diag{a21, a31, . . . , aN1}.

Consider heterogeneous neural networks,

v̇i(t) = Divi(t) + Bifi(vi(t)) + cpi(t) + Ii + ui(t), (1)

i = 1, 2, . . . , N , where vi(t) = (vi1(t), vi2(t), . . . , vin(t))T ∈

R
n denotes the state vector of the ith neural network, the

matrixDi = diag{di1, di2, . . . , din} ∈ R
n×n is diagonal with

the negative diagonal entries dij < 0, the activation func-

tion fi(vi(t)) = [fi1(vi(t)), fi2(vi(t)), . . . , fin(vi(t))]
T is a

continuous function with fi(0) = 0, Bi is the constant co-

efficient matrix of the activation function, and the coeffi-

cient c represents the coupling strength for the neural net-

works. In addition, let Ii = [Ii1, Ii2, . . . , Iin]
T denote the

external input vector, pi(t) with p1(t) = 0 denote the cou-

pling, and ui(t) with u1(t) = 0, i = 1, 2, . . . , N denote

the control input. Further, let Î = [IT2 , I
T
3 , . . . , I

T
N ]T and

F (v(t)) = [fT2 (v2(t)), fT3 (v3(t)), . . . , fTN (vN (t))]T.

In this study, the leader of the neural network systems is

defined as v1(t) and is assumed to be bounded.

Assumption 1. For the activation function fi(vi(t)),

[fi(x)− fi(y)]
T[fi(x)− fi(y)] 6 ξi(x− y)T(x− y),

holds for any x, y ∈ R
n, where ξi > 0, i = 1, 2, . . . , N . Let

Ξ = diag{ξ2, ξ3, . . . , ξN}.

The measurement error is defined as

ei(t) = vi(tr) − vi(t), i = 2, 3, . . . , N, (2)

for t ∈ [tr , tr+1) and the synchronization error is defined as

ǫi(t) = vi(t) − v1(t), i = 2, 3, . . . , N. (3)

Quasi-synchronization under centralized event-triggered

impulsive control. κ = {t0, t1, t2, . . .} is defined as the im-

pulsive sequence satisfying limr→∞ tr = ∞ and 0 = t0 <

t1 < t2 < · · · . In addition, the coupling pi(t) is defined as

pi(t) =
N∑

j=1

aijΓ(vj(tr)− vi(tr)), t ∈ [tr , tr+1), (4)

i = 2, 3, . . . , N , where Γ = diag{γ1, γ2, . . . , γn} is the inner

coupling matrix with γk > 0, k = 1, 2, . . . , n.

*Corresponding author (email: jianggp@njupt.edu.cn, jdcao@seu.edu.cn)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-022-3839-y&domain=pdf&date_stamp=2024-1-5
https://doi.org/10.1007/s11432-022-3839-y
info.scichina.com
link.springer.com


Wang Z X, et al. Sci China Inf Sci February 2024, Vol. 67, Iss. 2, 129202:2

A centralized event-triggered impulsive control (CETIC)

is proposed as follows:

CETIC :

{
ui = −c̄ai1(vi(t) − v1(t))

∑
∞

r=1 δ(t − tr),

tr+1 = min {t : ψ(t) > ̺} , t0 = 0,
(5)

where ψ(t) will be designed later, c̄ ∈ (0, 1), ai1 > 0 de-

notes the pinning strength between node i and the leader,

δ(·) is the Dirac function, and ̺ is a positive constant. In

addition, N0(t, s) is defined as the impulsive number dur-

ing time interval [s, t). In this study, vi(t) is assumed to be

right-continuous at each impulsive instant t = tr .

Combining (1) and (3),

ǫ̇i(t) = Diǫi(t) + Bihi(ǫi(t)) − c
N∑

j=1

lijΓǫj(tr)

+Ii − I1 + ui(t) +Gi(v1(t)),

(6)

where hi(ǫi(t)) = fi(vi(t))−fi(v1(t)), Gi(v1(t)) = Div1(t)−

D1v1(t) + Bifi(v1(t)) −B1f1(v1(t)), i = 2, 3, . . . , N .

Let ǫ(t) = [ǫT2 (t), ǫ
T
3 (t), . . . , ǫ

T
N (t)]T. Thus, the error sys-

tem can be further expressed in a vector form:
{
ǫ̇(t)=Dǫ(t)+BH(ǫ(t))−c(L̃⊗Γ)ǫ(tr)+I+G(v1(t)), t 6= tr ,

ǫ(tr) =
(
(EN−1 − c̄D̂)⊗ En

)
ǫ(t−r ),

(7)

where D = diag{D2,D3, . . . , DN}, D̂ = diag{a21, a31, . . . ,

aN1}, B = diag{B2, B3, . . . , BN}, H(ǫ(t)) = [hT2 (ǫ2(t)),

hT3 (ǫ3(t)), . . . , h
T
N (ǫN (t))]T, I = [(I2 − I1)T, (I3 − I1)T,

. . . , (IN − I1)T]T, and G(v1(t)) = [GT
2 (v1(t)), G

T
3 (v1(t)),

. . . , GT
N
(v1(t))]T.

The event-triggered function is designed as

ψ(t) = eT(t)e(t) − v(tr)
TQv(tr), (8)

where Q = [a1(ΘL̃⊗Γ)s−a21(ΘL̃⊗Γ)T(ΘL̃⊗Γ)], a1 ∈ (0, 1),

e(t) = [eT2 (t), e
T
3 (t), . . . , e

T
N
(t)]T, and Θ = diag{µ2, µ3, . . . ,

µN} is a positive diagonal matrix.

Theorem 1. Zeno behavior can be ruled out under the

CETIC (5) and the event-triggered function (8), that is,

there is a constant Tmin > 0 such that the interval time

tr+1 − tr > Tmin > 0, if

(ΘL̃⊗ Γ)s − a1(ΘL̃⊗ Γ)T(ΘL̃⊗ Γ) ≻ 0. (9)

Theorem 2. Supposing that the conditions of Theo-

rem 1 and Assumption 1 hold, the heterogeneous neu-

ral networks (1) can achieve global exponential quasi-

synchronization if σ1 + ln ρ1
Tmin

< 0, where σ1 = λmax{D̃ +
1
2
(Θ ⊗ En)BBT(Θ ⊗ En)T+ ( 1

2
Ξ + EN−1) ⊗ En} with

D̃ = diag{µ2D2, µ3D3, . . . , µNDN}, ρ1 = λmax{(EN−1 −

c̄D̂)TΘ(EN−1 − c̄D̂)}/λmin{Θ}, and Tmin is the length of

the minimal impulsive interval.

Quasi-synchronization under distributed event-triggered

impulsive control. κi = {ti0, t
i
1, t

i
2, . . .}, i = 2, 3, . . . is de-

fined as the impulsive sequence of the ith neural network

with 0 = ti0 < ti1 < ti2 < · · · and limr→∞ tir = ∞. The

internal coupling is then designed as

pi(t) =

N∑

j=2

aijΓ(vj (t
i
r) − vi(t

i
r)), t ∈ [tir , t

i
r+1), (10)

i = 2, 3, . . . , N .

Further, a distributed event-triggered impulsive control

(DETIC) is designed as

DETIC :

{
ui = −c̄ai1(vi(t) − v1(t))

∑
∞

k=1 δ(t − tir),

tir+1 = min
{
t : ψi(t) > ̺i2

}
, ti0 = 0,

(11)

where the event-triggered function ψi(t) = eTi (t)ei(t) +

(
ai

2

2
+ (ai2)

2)(
∑N

j=2 lijΓvj(t
i
r))

T
∑N

j=2 lijΓvj(t
i
r) +

ai

2
χ2

2
−

ai2v
T
i (tir)

∑N
j=2 lijΓvj(t

i
r) with ai2 ∈ (0, 1), ̺i2 > 0, and

c̄ ∈ (0, 1). In addition, N i
0(t, s) is defined as the impul-

sive number of the ith neural network during time interval

[s, t).

Different from (2), the measurement error of the ith neu-

ral network for t ∈ [tir , t
i
r+1) should be

ei(t) = vi(t
i
r)− vi(t), i = 2, . . . , N. (12)

The synchronization error system for the ith neural network

can be further expressed as






ǫ̇i(t) = Diǫi(t) + Bihi(ǫi(t)) − c
∑N

j=2 lijΓǫj(t
i
r)

+ Ii − I1 +Gi(v1(t)), t 6= tir ,

ǫi(tir) = (1 − c̄ai1)ǫi(tir
−

),

(13)

where hi(ǫi(t)) = fi(vi(t)) − fi(v1(t)), and Gi(v1(t)) =

Div1(t) −D1v1(t) + Bifi(v1(t)) − B1f1(v1(t)).

Theorem 3. Under the distributed event-triggered im-

pulsive scheme (11), Zeno behavior can be ruled out, that

is, there is a constant T i
min > 0 such that the interval time

tir+1 − tir > T i
min > 0, i = 2, 3, . . . , N .

Theorem 4. Suppose that the condition of Theorem 3

and Assumption 1 hold. The error system (13) is glob-

ally exponentially stable, if σi2 +
2 ln (1−c̄ai1)

T i

min

< 0, where

σi2 = µiλmax{Di +
1
2
BiB

T
i + ξi+2

2
En} and T i

min denotes

the length of the minimal impulsive interval of the ith neu-

ral network i = 2, 3, . . . , N.

Conclusion. Both centralized and distributed event-

triggered impulsive strategies were first designed, and

Zeno behaviors were further ruled out. Thereafter, quasi-

synchronization of neural networks under the two control

strategies was discussed, and several sufficient criteria were

derived by utilizing the comparison principle and stabil-

ity theory. In addition, the upper bounds of the quasi-

synchronization errors were presented by sets. Finally, two

types of controllers were applied to numerical examples to

illustrate the theoretical results (in supplementary).
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