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Appendix A Definition and lemmas

Definition 1. The neural networks are said to achieve globally exponentially quasi-synchronization, if there exist n > 0,7 >
0,0 > 0 and 6y > 0 such that for any initial values and ¢t > T

llei(t)]] < 0e " + 60, i=2,3,...,N.
Lemma 1 ( [1]). If the directed network G contains a directed spanning tree, then one can select a positive diagonal matrix
© = diag{p2, t3,...,un} > 0 such that OL + LT® = 0, where o= [pa, 13, ... ,;LN]T = (LT)fllN,l.
Lemma 2 ( [2]). Let PC(l) = {¢ : [-7,00) — R!, o(t) is continuous everywhere except for the finite points ¢, at which

e(th) = ¢(t) and p(t;) exist}, and 0 < 7(t) < 7. For u(t),v(t) € PC(l), if there exist positive constants 9, ¥, @ > 0 such that

{ DY u(t) < u(t) + Ju(t — 7(t)), t# tr,
u(t,) < wu(t, ), r €N,
and ~
{ DV u(t) > dv(t) + Jv(t — 7(t)), t# ty,
v(tr) =wo(t,), r €N,

then u(t) < v(t) for —7 < ¢ < 0 implies u(t) < v(t) for t > 0.

Appendix B Proof of Theorem 1

Proof. Tt follows from (9) that the derivative of event-trigger function satisfies

d [eT(t)e(t) - v(t,,,)TQv(t,,,)}
dt
=27 (t)e(t) = —2e7 ()0 (t)

)

=—2eT(t) [Du(t) + BF(v(t)) — ¢(L ® T)v(t,) + f]
)
)

P(t) =

<4e” (t)e(t) + 0T () DT Do(t) + FT (v(£)) BT BF (v(t)) + 2" (t.) (L@ T) (L @ D)w(t,.) + 171
<4eT (Me(t) + arv” (W)v(t) + azv” (tr)v(ty) + 11T
<@+ 2a1)eT (V)e(t) + (2a1 + az)v” (t)v(ty) + 111

ar + a2 + (44 201) dmax{Q} 1

<@+ 2000000 + 171+ 2 e or o (t)Qu(tr),

where 1 = Amax [DTD +2(E® E,)TBTBE® En)] and s = ¢ Amax [(Z oD)T(L® F)].
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Due to ¥(t,) = —v(t,.)T Qu(t,), when t € [tr,t, ], the following inequality can be obtained

t
B(t) <e@r2ont—tr) / [2041 +az + (4 + 2&1))\maX{Q}vT(tr)Qv(tr) T fo] o (AF2a0) (s—tr) g0 _ o(t)T Qu(tr)

tr Amin{Q}
a1t 1)Amax iT 7
o s O L GO R

_ (A+20) =) _ 1y _ ot T Ov(t.).
T (e )= v(t) T Qu(tr)

) iT §
Take o = 2C¥1+¢12)\';'n(‘£‘é2QC31I))\fnax{Q}' Combining the design of CETIC and w(t:_H) > p, the following relation of time interval

can be deduced

try1 — tr

(4+2a1) (et (tr) T Qu(tr))

In
2a1+<>¢2+}§4+2@1))\max{Q} oT (£2)Qu(tp)+IT T

N min
44+ 20
(4+201) Ay {QYT T
= n ( (& + 200) Amin {Q) b1y G200 T e TGN A max QY )
44201 \2a1 4 az + (44 201) Amax{Q} 2oq topt 3 Anax 9} o T (¢,) Quitr) + 171
1 4+ 2a1) Amin
- in ( (4 F 200 Amin {Q} +1) 2 Tain.
44 20 201 + a2 + (4 4+ 201) Amax{Q}
Therefore, the Zeno behavior is eliminated.
Appendix C Proof of Theorem 2
Proof. A Lyapunov function candidate is chosen as
17
V(t) = 3¢ (t)(© ® Ey)e(t). (C1)

When t # t,, calculating the derivative of V(t) along the trajectories of error system (7) derives

V(t)

T (1)(© ® En)é(t)

" (£)(© ® En)[De(t) + BH(e(t)) — ¢(L @ D)e(ty) + I + G(v1(1))]

€T (1)(© ® En)De(t) + €7 (£)(0 ® En)BH(e(t) — ce” (£)(© ® En)(L @ D)e(ty) + € (£)(© ® Ep)I
+ 7 (5)(0 ® En)G(u1 (1))

< T(t)Dse(t) + %J(t)(e ® E»)BBT(© ® E,,)"e(t) + %HT(e(t))H(e(t)) —ceT(t)(OL ®@ M)e(t,)
+ T (t)e(t) + %GT(vl(t))(G)T@ ® En)G(v1(t)) + %IT(GT@ ® En)I. (C2)

According to Assumption 1, one can get the following inequality,

N N

HE (e(®)H(e(t)) = D h (e:s()hi(ei(t) < D &i€f (B)es(t) = T ()(E @ En)e(t). (C3)
=2

i=2 i
It follows from the synchronization error (3) that
e(t) =v(ty) —1n-1 ® v1 — e(t). (C4)
By utilizing Lemma 1 and the definition of e(t), the following equation is available
—ce” (1)(OL @ T)e(t,)
=—ce’ ()(OL @) (v(t,) — In—1 ® vi—el(t,))
= —ce" (t)(OL @ Dv(t,). (C5)
According to the Lemma 1 and the CETIC, when ¢ is event-triggered moment, substituting (C4) into (C5) yields
— " (t)(OL @ Mv(t,)
=—c((ty) —1In_1 Q@ v1 — e(t))T(OL ® T)v(t,)
= —cv(t)T(OL ® D)v(t,) + ce” (1)(OL ® Dv(t,) + c(Ix—1 ® v1)T (OL @ T)u(t,)
gaileT(t)e(t) +arco(t)T(OL @ T)T(OL @ D)v(t,) — cv(t)T(OL @ T)sv (k)

ggv (C6)
ay

By combining (C2), (C3) and (C6), one obtains

. ~ 1 1 1
V(t) < e5(t) | Dy + 5(@ ® En)BBT(© @ E,)T + (55 +EN_1)® E} e(t) + 5IT(eT@ ® En)I
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+ % + %GT(m(t))(@T@ ® En)G(v1(t))
< O'1V(t)+gl7 (07)

where g1 = sup || GT (v1(£))(©TO ® E,)G(v1(t)) + 3IT(©TO ® En)I + {‘L—i’H
When t = t,, one has

V(t,) = %ET(tr)(@ ® En)e(tr)

< %ET(t;)((EN,l -eD)® E,)T(©® En) ((En—1 — D) ® En)e(t))

Amax{(En_1 —eD)"©(En_1 — D)}

<
= Amin{©}

V(t, ) =p1V(t,.). (C8)

For arbitrary € > 0, define the following impulsive comparison system,
w(t) = o1w(t) + g1+, t#tr,
w(tr) = prw(t,),

1
w(0) = 5" (0)(© ® En)e(0),
its unique solution w(t) can be represented as
t
w(t) =Y (t,0)w(0) +/ Y (¢, 8)(g1 + €)ds, (C9)
0

where

Y(t, ) _eal(t—s) H p1 < eol(t—ﬁ) NU(f s) <e al(t—s) Tmin _
s<tp <t

el +T oL ye=s) (C10)

By defining vy = o1 + = "0 and combining (C9) and (C10), one has

Tmin

t
w(t) < e”1'w(0) +/ 17 (g1 + e)ds

= etw(0) + L€ +1 (1 - e"1t)

_ (w(O)-i— pEE) ety DL
v

—u
According to Lemma 2, one has V(¢) < w(t). When € — 0,
min

2<i<N

Hi ) 15
He@I” < 5e ()@@ En)e(t) < V() < w(®) < ( 0)+——

Furthermore, the synchronization error can satisfy

2w(0) 2(91+¢) My 2(g1 +¢)
eI < + e2 ' | —F————
) = min i v1 min i —vyp min pl
2<i< N 2<i< N 2<i< N

Therefore, the synchronization errors are bounded eventually and global exponential quasi-synchronization is reached for the
heterogeneous neural networks.

Remark 1. According to Theorem 2, the synchronization errors eventually converge to the bounded set

2(g1 +¢)
e(t) | 1le(t) P —
—v1 min gy
2<i<N
where p = {p2, ps, ..., MN}T can be obtained from Lemma 1. Therefore, regulating the value of 2£ni<1'1N i can reduce the upper
S

bound of quasi-synchronization errors. One can also increase the value of ¢ to obtain a smaller 1 and a lower upper bound of the
synchronization errors.

Corollary 1. When Assumption 1 holds and G is undirected, global exponential quasi-synchronization of the heterogeneous
neural networks (1) can be achieved and the Zeno behavior can also be eliminated for the event-triggered scheme CETIC, if

(OL®T)s —a1(OL@T)T(OL ®T) - 0,

and
P1

In
o1 +

min

<0,

where 01 = Amax {D +3(©@E)BBTO®E.)T + (AE+En_1)® E} P1 = Amax{(En—1—ED)TO (En_1—ED)}/Amin{O},

and D and Tiin are the same as the definition of Theorem 2.
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Corollary 2. Assume that graph G is undirected and the neural networks are homogeneous, i.e., D; = D1, B; = By and f;(t) =
fi(t), i = 2,3,--- ,N. Under Assumption 1 and selection &, = &, global exponential quasi-synchronization of the heterogeneous
neural networks (1) can be achieved and the Zeno behavior can further be eliminated via the event-triggered scheme CETIC, if

(OL®T), —a(0L®T)T(OL®T) » 0,

and
i 2In(1—¢) <0
ot Tmin ’
where 01 = Amax {@ ® Dy + %@2 ® (B1 BT)} + % and Tmin is length of the minimal impulsive interval.

Remark 2. When the neural networks (1) are homogeneous, g1 in the upper bound of quasi-synchronization errors becomes 0.
The neural networks reach synchronization rather than quasi-synchronization. It also shows that the conclusion of Theorem 2 is
applicable to undirected graphs and homogeneous neural networks.

Appendix D Proof of Theorem 3

Proof.  To simplify the calculation, we define

N
3i(th) =v] (th )levaJ(t )* = - %Jraé) S lToitn) | > LTy (ty).
j=2

Jj=2

TqT )
Furthermore, let 9;(t) = [vf(t), (Z;VZQ joi ligTvj (t)) ] . Then, 3;(t,) can be rewritten as

N 2
. i . v . X
3i(th) =v] () Tvs(th) +v] (t1) S Li;Tw,(th) — 5
i=2.37i
T
= (5 +a) LisTvi (t2) + Z LiTw; (t) LaToi(8) + D LiT,(t)
J=2,j#i J=2,j7#1

7
10— (% +a2)l2 r2 1e, — (3 4+ %2)u,r

2 2
: , ou(ty) — 5 207 (E)Quani(t)) - 5.
E, —(§+ %)ln‘r —(% +ay)E,

Taking the derivative of the event-triggering function );(t) derives

N
Pi(t) = —2¢] | Dywi(t) + Bifi(vi(t)) — e > LiyTw, () + I
j=2

N T

N
<del (B)es(t) + Amax{ D] Di + 267 Bl Biyv] (W)vi(t) + ¢ | D 1i;Tvs(th) | D liyDoy(¢L) + 1] L.
j=2 =2

Define ot = Amax{DF D; + 2¢2BT' B;}. One obtains

T
N N
Pi(t) <4+ 20))e] (t)ei(t) + 25 0] (th)vs (1) + ¢ [ D L Tw, (1) Z LiyTw () + I I

i=2
<@+ 2aD)%i(8) + (2 = ah)ai — 2a5)0] (E)vi(t)) + (& - 4+2a1><a2+<a;>2))
N T/ N P2 i
X Zli]‘F’L}j(t:‘) Zlijl‘v]‘(tl) - w +I7TI7,
j=2 j=2
. . 11, 12_ . s
=+ 200)9i(0) + 0 (1) | T Pl (4) + B
2,0 2,4

£(4+200)%i(1) + 0] (4,)Q2,i0] (£,) + 6",
where Q3% = (2 — ab)ai — 2a3)En + (¢® — (4 + 2a1)(ah + (a3)?)) B5,T%, Q3% = (¢* — (4 + 2a1)(aj + (a5)?)) LT,
. ) ) L i 2 i
3% = (¢ — (4 +2a))(a} + (a3)?)) En, ' = _apUdzed) Ty
A lower bound of time T} ; can also be found by combining the method of Theorem 1 and will not repeat it here. Select
i AminiQ1,i38°
Q2 = Amax{Q2,i}

. Therefore,
(a+2ad) (b +oF (#2)Qy ;07 (¢1))

In
b s [ o (11)Qa 0] (11)+47
k+1 k 4+ 2at

+ 1]

. nun{Ql 1}5
[ 20D i (@1.4) S UG R wes (orws o)
Amax1Q2,i} ol (t1)Qq ;0] (tL)+B7

4+ 20}

+1]

>

(4+201) A miniQ1,4}
ln[ Amax{QQ,i} + l] A i
= 4 + 204i = Tmin'
1
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Thus, Zeno behavior is eliminated.
Appendix E Proof of Theorem 4

Proof. A Lyapunov function candidate is chosen as

Hi T

Vi(t) = —ei (De (D). (E1)
When t # t,, taking the derivative of V;(t) gives
Vi(t) = pie; (£)éi(t)
N .
= uie?(t) Diei(t) + Blhl(ﬁl(t)) —c Z l;;Te; (t:,) + I, — I + Gi('ul(t))
j=2
< pie] (t) | Di + %BiBiT + %E] ei(t) + %((h - 1)" (I - Ir)
N .
+GT (01(1)Gi(v1 (1)) — cpsef (8) Y LizTe;(t). (B2)
j=2

Furthermore, one gets

N
— cpie (8) Y lizTe;(th)

Jj=2

N
— cpilvi(th) — va(t) — es ()] D LD (v (£h) — va (L))

j=2
. N ) . N ) 1 . N N
< =i o] (8) D0 LigTws(t) — o () D Ly Tws(t)) — —res(t)e] (¢) —ag > Ligligvy (6,)07 Tog(t))
=2 =2 @2 j=2k=2
. N ) 1 g 2 1 i N ) T N
< —epi | v (41 D L Top(t)) — —ei Mei(t) = 5 = (5 +az) S hiTui) | D Tt
=2 2 j=2 j=2
cpi b
< 7‘;@2. (E3)
2
Under Assumption 1, substituting (E3) into (E2) yields
Vi(t) < o3Vi(t) + g3, (B4)
; ) cns ol
where gb = max || % (i = )" (I; = 1) + GT (11)Gi(vn) ) + 22222,
2
When t = t’, one gets
Vi(th) < (1= Gair)?Vi(t) ). (E5)
For arbitrary constant E; > 0, define the following impulsive comparison system
Wy(t) = oqwy(t) + g3 +e3, tF# b,
wy(t) = (1= cain)’w(ty ),
w;(0) = *H 5(0)[%.
In addition, let w; (t) be the unique solution of the above system. Similar to Theorem 2, defining V;' = 0';’ + 2In(1=cajp) yields

T
min

2wl (0 2(g +¢ 2(g +¢
wmms% 50) | 29 ted) e [20h+ed)
Hi U'LVQ _u’lV2

Therefore, the synchronization error of the ith neural network can be globally exponentially stable when ¢ tends to infinity for
i = 2,3,...,N. Therefore, the heterogeneous neural networks can reach globally exponentially quasi-synchronization under the
DETIC.

Remark 3. From Theorem 4, one can find that each error system (13) eventually converges into the bounded set

%%+%?

—pivy

{ei(t) [ Hle: (@Il <

i=2,3,---,N. Therefore, regulating the value of u; and ¢ can reduce the upper bound of quasi-synchronization errors.

Remark 4. Under the distributed impulsive strategy, since different neural networks have different impulsive sequences, different
event-triggered functions should be designed separately for different neural networks. Meanwhile, according to the derived impulsive
sequences, the sampling couplings (4) and (10) adopt synchronous sampling information and asynchronous sampling information,
respectively.

Remark 5. When ¢ # ti, P;(t) <0, 7r=0,1,2,---. When t = ti, 1; (t) is negative again. Therefore, similar to v (t), when the
event-triggered function ;(¢) > 0 for any particular moment, the impulsive control will be triggered immediately. Then, 1,(t) < 0
will continue to be satisfied. Therefore, CEITC and DEITC are instantaneous and discrete.
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Appendix F Numerical simulations
Six isolated neural networks are considered and five follower neural networks are defined as
0(t) = Dv(t) + Bf(v(t)) + (L @ T)v(t,) + I,

where v(t) = [v2(t), v3(t),va(t), vs(t),v6(t)] T, vi(t) € R, T = 1.5, ¢ = 1, f(v(t)) = [tanh(va(t)), arctan(vs(t)),0.7 tanh(va(t)),
0.6 arctan(vs (t)), 1.2 tanh(ve (¢))]T, I = [0.1,0.1,0.09, 0.08,0.1]T,

—0.1 0 0 0 0
0 —0.15 0 0 0
D = 0 0 —0.13 0 01,
0 0 0 —0.05 0
0 0 0 0 —-0.1

and

1.30 00 O

0 1500 O
B=]0 0 30 O

0 0 0070

0 0 00 23

The leader neural network is defined as
01(t) = D1vi(t) + Bifi(vi(t)) + I,

where v1(t) € R, D1 = —2, By =5, f(v1(t)) = tanh(v1(t)) and I; = 0.
The topology is sketched for five followers in the Fig. F1 with the Laplacian matrix

2 0-1 0-1
-1 2 0 0 -1

L=|(-1 0 2 0 0f,
0-1 0 1 O
-1 0-1-1 3

: g 50 71 377 172 112
with © = diag{3, {5, 75" 75+ 15 }-

Figure F1 The topology of neural networks.

Example 1. Select v1(0) = 0.35 and v(0) = [1.7,0.88,0.5,2.1,1.57]7 as the initial values of the leader and five followers,
respectively. For the CETIC, take ¢ = 0.6, a; = 0.06, a41 = 1, as1 = a31 = as1 = a1 = 0, and o = 1. It follows from Fig. F2
that quasi-synchronization can be reached under the CETIC. From Fig. F3, quasi-synchronization errors can eventually converge
to a bounded set for each impulsive interval. Fig. F4 shows the value of the event-triggered function at each moment. As shown in
Fig. F4 that once the value exceeds 0, it immediately returns below 0, which is exactly consistent with the description of Remark
1 of the letter.

Example 2. Suppose that the initial values of the followers and the leader are the same as those in Example 1. In the DETIC,
set ¢ = 0.6, ab = 0.06, and o5 = 1,i = 2,3,---,6. Besides, as; = 1, and az1 = az1 = as1 = ag1 = 0. It follows from Fig.
F5 that quasi-synchronization of the heterogeneous neural networks can be reached faster under the DETIC. In addition, Fig. F6
shows that quasi-synchronization errors can be kept within a bounded range. Compared with CETIC, DETIC has a better control
efficiency. In fact, the maximal absolute value of synchronization errors under DETIC is less than the maximal absolute value of
synchronization errors under CETIC by Figs. F3 and F6. Fig. F7 shows the value of the event-triggered function of each neural
network at each moment, which also validates the description in Remark 1 of the letter.

Remark 6. In the simulations, the description of the state of the neural networks are recursive in discrete time, therefore the
value of the event-triggered function will be greater than 0. To avoid this situation, we can reduce the criterion threshold of the
event-triggered function to a negative number.
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Figure F2

2,3,4,5,6.

i
T

The state trajectories of neural networks without control and with CETIC.

Figure F3 The

absolute value

Time ¢

of quasi-synchronization errors under CETIC.
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Figure F4 The value of event-triggered function under CETIC.

Time ¢

Figure F5 The state trajectories of neural networks under DETIC.
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le(®)], i=2,3.4,5,6

I
f 15 25
Time t

synchronization errors of neural networks under DETIC.
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Figure F7 The value of event-triggered function under DETIC.
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