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Interdependent networks are more vulnerable than single,

non-interacting networks under cascading failure [1–3]. Per-

colation theory provides a quantifiable theoretical frame-

work to quantify and evaluate the robustness of networked

systems. Most existing models [1–3] on the robustness of

interdependent networks mainly focused on the giant con-

nected component (GCC) to explore the structural robust-

ness from the macro perspective, and only the nodes con-

nected to GCC are considered to be functional.

However, some small or finite components (non-GCC)

play a non-negligible role in the robustness and percola-

tion transition behaviors of interdependent networks from

a microscopic perspective, especially for large-scale network

systems. Considering this situation, Yuan et al. [4] first in-

troduced a certain fraction of reinforced nodes to prevent

abrupt collapses in interdependent networks and found that

the system becomes more robust as the fraction of reinforced

nodes increases. Han et al. [5] deployed a fraction of multi-

mode addressing nodes in interdependent networks, allowing

finite components where the multi-mode addressed nodes

are resided to re-establish a connection to the GCC through

another addressing mode to enhance the robustness of the

system. The above studies [4, 5] have mainly focused on

“strong” dependency links in interdependent networks; i.e.,

the failure of one node in a network will immediately cause

the complete failure of all connectivity links of its depen-

dent partner in another network. In practice, interdepen-

dent systems with a weak dependency mechanism are more

common [2, 3]. Most real interdependent systems have self-

sustainability and functional independence, which can result

in the failure of a node in one network destroying some con-

nectivity links of its dependent partner in another network.

Considering the aforementioned issues, the combining ef-

fects of reinforced finite components and weak dependency

links on the robustness of interdependent networks are miss-

ing and challenging existing theoretical methods. In this

study, a novel generalized percolation model of interdepen-

dent networks with weak dependency links and reinforced

nodes (WD-RN model) is investigated in theory and sim-

ulation. Considering the excessive cost of deploying rein-

forced nodes, this model can realize the trade-off between

high robustness and cost efficiency by tuning weak depen-

dency parameters. The main contributions of this study can

be summarized as follows: (1) In contrast to [3–5], in gen-

eral interdependent networks (Appendix B), by tuning weak

dependency parameter and reinforced fraction, we find the

existence of a hybrid percolation behavior in sub-network

A and propose a theoretical framework to calculate phase

transition thresholds and shift points of phase transition

types. (2) Interestingly, in symmetric interdependent net-

works (Appendix C), there is a minimal weak dependency

parameter α∗
c or minimum fraction of reinforced nodes ρ∗c ,

which can prevent the system from abrupt collapse and can

also be used as a critical threshold to distinguish between

discontinuous and continuous phase transitions in two inter-

dependent Erdős-Rényi (ER) and scale-free (SF) networks.

(3) Importantly, the upper bound α∗
max of α∗

c is found to be

related only to the average degree in ER-ER networks. In

particular, it is found that the upper bound ρ∗max of ρ∗c is a

constant 0.1756 regardless of the average degree in ER-ER

networks. (4) Our theory agrees well with the numerical

simulation results in two interdependent ER and SF net-

works. We further test our model in independent empiri-

cal networks consisting of the power grid and autonomous

systems of the Internet and found that increasing weak de-

pendency parameters and the fraction of reinforced nodes

can obviously enhance the robustness of the interdependent

networks (Appendix D).

WD-RN model. In Appendix A.1, our model is composed

of two fully interdependent sub-networks A and B with de-

gree distributions pA (k) and pB (k), respectively, containing

the same N nodes. A node in a sub-network A depends on

one and only one node in sub-network B by a weak depen-

dency link, and vice versa. Here, a weak dependency link

structurally means that when a node i (j) in sub-network A

(B) fails, each connectivity link of its dependency partner j

(i) in sub-network B (A) is disconnected from its neighbor

nodes with a probability 1−αB (1−αA), where the param-

eters αA and αB are applied to measure node-dependence

strength between networks. We randomly choose a fraction

ρA and ρB of nodes as reinforced nodes in each sub-network,

respectively. These reinforced nodes can maintain function

of the finite components in which they are located, even if

they are disconnected from the mutual giant (largest) con-
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nected component (MGCC). In interdependent networks,

these finite components containing at least one reinforced

node and the MGCC constitute the mutual generalized gi-

ant connected component (MGGCC). Algorithm A1 shows

a cascading failure process of our simulation.

Theoretical framework. The proposed model is solved by

a series of self-consistent equations based on generating func-

tions [1]. In each sub-network, the generating functions of

degree distribution and the associated branching processes

are G0 (x) =
∑

k p (k)xk and G1 (x) =
∑

k
p(k)k
〈k〉

xk−1,

where p (k) is degree distribution and 〈k〉 is the average de-

gree in each sub-network. At the stable state, let fA (fB) de-

note the probability that a randomly chosen link belongs to

the mutually generalized giant connected component (MG-

GCC) in sub-network A (B). Thus, fA and fB satisfy the

following self-consistent equations (Appendix B):

fA= p2
[

1−(1−ρA)GA
1 (1−fA)

][

1−(1−ρB)GB
0 (1−fB)

]

+ pαA

[

1−(1−ρA)GA
1(1−αAfA)

]{

1−p
[

1−(1−ρB)GB
0 (1−fB)

]}

,

(1)

fB = p2
[

1−(1−ρB)GB
1 (1−fB)

][

1−(1−ρA)GA
0 (1−fA)

]

+pαB

[

1−(1−ρB)GB
1 (1−αBfB)

]{

1−p
[

1−(1−ρA)GA
0 (1−fA)

]}

.

(2)

Accordingly, the size of the mutually generalized giant con-

nected components (MGGCC) can be expressed as

PA
∞= p2

[

1−(1−ρA)GA
0 (1−fA)

][

1−(1−ρB)GB
0 (1−fB)

]

+ p
[

1−(1−ρA)G
A
0 (1−αAfA)

]{

1−p
[

1−(1−ρB)GB
0 (1−fB)

]}

,

(3)

PB
∞= p2

[

1−(1−ρB)GB
0 (1−fB)

][

1−(1−ρA)GA
0 (1−fA)

]

+ p
[

1−(1−ρB)GB
0 (1−αBfB)

]{

1−p
[

1−(1−ρA)GA
0(1−fA)

]}

.

(4)

Similarly, let f̃A (f̃B) denote the probability that a ran-

domly chosen link reaches the MGCC in sub-network A (B),

which can be written out as

f̃A = p2
[

1−GA
1 (1−f̃A)

] [

1−(1−ρB)GB
0 (1−fB)

]

+ pαA

[

1−GA
1 (1−αA f̃A)

]{

1−p
[

1−(1−ρB)GB
0 (1−fB)

]}

,

(5)

and

f̃B = p2
[

1−GB
1 (1−f̃B)

] [

1−(1−ρA)GA
0 (1−fA)

]

+ pαB

[

1−GB
1 (1−αB f̃B)

]{

1−p
[

1− (1−ρA)GA
0 (1−fA)

]}

.

(6)

Consequently, the size of the MGCC in sub-network A

(B) can be computed as

UA
∞ = p2

[

1−GA
0 (1−f̃A)

] [

1−(1−ρB)GB
0 (1− fB)

]

+ p
[

1−GA
0 (1−αAf̃A)

]{

1−p
[

1− (1−ρB)GB
0 (1−fB)

]}

,

(7)

and

UB
∞ = p2

[

1−GB
0 (1−f̃B)

] [

1−(1−ρA)GA
0 (1− fA)

]

+ p
[

1−GB
0 (1−αB f̃B)

]{

1−p
[

1− (1−ρA)GA
0 (1−fA)

]}

.

(8)

Thus, Eqs. (1)–(8) are proposed as the general theoretical

framework of our model. For simplicity, Eqs. (1), (2), (5),

and (6) can be transformed into fA = F1 (p, fB), fB =

F2 (p, fA), f̃A = R1(p, f̃A, fB), and f̃B = R2(p, f̃B, fA).

Combining (1), (2), (5), and (6), we can obtain the numeri-

cal solutions of fA, fB , f̃A, and f̃B. Substituting the solu-

tions back into (3), (4), (7), and (8), the numerical solutions

of PA
∞, PB

∞, UA
∞, and UB

∞ can be obtained.

For the discontinuous (abrupt) phase transition, the size

of the MGGCC abruptly increases at p = pIc, and the func-

tion fA = F1 (p, fB) and fB = F2 (p, fA) at p = pIc
satisfy the condition (Appendix B)

∂F1(pIc , f
I
B
)

∂f I
B

·
∂F2(pIc , f

I
A
)

∂f I
A

= 1, (9)

where the curves fA = F1 (p, fB) and fB = F2 (p, fA) touch

each other tangentially at (f I
A, f I

B). Combining (1), (2), and

(9) together, the corresponding solutions of pIc, f
I
A
, and f I

B

can be achieved.

If sub-network A has continuous phase transition at

p = pIIc for UA
∞, pIIc |

UA
∞

satisfies the condition (Appendix B)

R
′

1

(

pIIc |
UA

∞

, 0, fB

)

= 1. (10)

Combining (1), (2), (6), and (10) together, pIIc |
UA

∞

can be

obtained numerically.

If sub-network B has continuous phase transition at

p = pIIc for UB
∞, pIIc |

UB
∞

satisfies the condition (Appendix B)

R
′

2

(

pIIc |
UB

∞

, 0, fA

)

= 1. (11)

Combining (1), (2), (5), and (11) together, pIIc |
UB

∞

can be

obtained numerically.

Simulation and discussion. The extensive simulation re-

sults (Appendixes B–D). show that the type of the phase

transitions of both sub-networks can be changed from dis-

continuous to continuous phase transition by tuning weak

dependency parameters and reinforced fractions. In Ap-

pendixes B.3 and C.2, the simulation results (symbols) are

in good agreement with the theoretical predictions (solid

lines), indicating the rationality and validity of the WD-RN

model.
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