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Appendix A WD-RN model

Appendix A.1 Topology of the model

Without loss of generality, in Figure A1, our model composes of two fully interdependent sub-networks A and B with degree

distributions pA (k) and pB (k), respectively, containing the same N nodes. Each node i (i = 1, 2, ...N) has k connectivity links. A

node in a sub-network A depends on one and only one node in sub-network B by a weak dependency link, and vice versa, with the

no-feedback condition [1]. Here, a weak dependency link structurally means that when a node i (j) in sub-network A (B) fails, each

connectivity link of its dependency partner j (i) in sub-network B (A) is disconnected from its neighbor nodes with a probability

1 − αB (1 − αA), where the parameters αA and αB are applied to measure node-dependence strength between networks. When

the parameters αA → 0 and αB → 0 signifies the maximal strength of the interdependence between sub-networks, and our model

is simplified to the original model proposed in [1]. Conversely, When αA → 1 and αB → 1, the failures cannot propagate though

a weak dependency link between networks, and then our model is reduced to the previous ordinary percolation of the single-layer

network with reinforced nodes in [1]. We randomly choose a fraction ρA and ρB of nodes as reinforced nodes in each sub-network,

respectively. These reinforced nodes can maintain function of the finite components in which they are located, even if they are

disconnected from the mutual giant (largest) connected component (MGCC). In interdependent networks, these finite components

containing at least one reinforced node and the MGCC constitute the mutual generalized giant connected component(MGGCC).

Thus, the size of the MGGCC is usually significantly larger than the size of the MGCC, as shown in Figure A2.

Appendix A.2 Failure Mechanism of the model

In Figure A1, a cascading failure process is illustrated in interdependent networks with weak dependency links and reinforced nodes

(WD-RN). In our model, the initial random removal of nodes from sub-networks will trigger a series of iterations of connection

and dependency failures, named cascading failure. With the failure propagation between sub-networks A and B, the sub-network

is fragmented into several components. Divided into several components, those finite components without reinforcement nodes are

removed. This process is repeated until an equilibrium state is achieved. Here, Algorithm A1 shows the detailed process of our

simulation.

Appendix B Solving general interdependent networks

Appendix B.1 Probabilistic formalization

The proposed model is solved by a series of self-consistent equations based on generating functions [1, 8]. In each sub-network,

the generating functions of degree distribution and the associated branching processes are G0 (x) =
∑
k p (k) xk and G1 (x) =∑

k
p(k)k
〈k〉 x

k−1 , where p (k) is degree distribution and 〈k〉 is the average degree in each sub-network.

Then, we denote f as the probability that a randomly chosen link belongs to the mutually generalized giant connected component

(MGGCC) in each sub-network. Similarly, we define f̃ as the probability that a randomly selected link reaches the mutually giant

connected component (MGCC) in each sub-network. The randomly selected node i in sub-network A belong to the MGGCC, if

one of the following conditions is satisfied: (E1) both node i and its dependency partner j in sub-network B reach the MGGCC,

(E2) its dependency partner j in sub-network B fails, causing the connectivity link of node i to disconnect from its neighbor nodes

with probability 1− αA , but node i still leads to the MGGCC. The probabilities corresponding to E1 and E2 can be written out

as

p (E1) = p
2
[
1− (1− ρA)G

A
1 (1− fA)

] [
1− (1− ρB)G

B
0 (1− fB)

]
, (B1)

p (E2) = pαA
[
1− (1− ρA)G

A
1 (1− αAfA)

]{
1− p

[
1− (1− ρB)G

B
0 (1− fB)

]}
. (B2)

Where p

{
ρA + (1− ρA)

∑ pA(kA)kA
〈kA〉

[
1− (1− fA)kA−1

]}
= p

[
1− (1− ρA)GA1 (1− fA)

]
is the probability that one of the

other kA − 1 links of node i (the link that we first randomly chose is excluded) reaches the MGGCC of sub-network A. Here, p

indicates that node i is not initially attacked. ρA is the probability that node i is reinforced in sub-network A. The probability
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Figure A1 Illustration of dynamic process of cascading failures in interdependent networks with weak dependency links and

reinforced nodes (WD-RN). (a) An example model with weak dependency links and reinforced nodes. Purple nodes are reinforced

nodes. Here the black dotted lines and black solid lines represent the weak dependency links and connectivity links, respectively.

(b) Node 6 of network A is initially attacked and fails. All connectivity links of node 6 are removed, triggering a cascading failure

of the entire system. (c) Node 6 of the network B is impacted, and its connectivity links are deleted with a probability of 1− αB
due to weak interdependence between networks A and B. Immediately, node 8 fails due to separation from the giant connected

component of network B. (d) Node 8 of the network A is affected, and its connectivity links are removed with a probability of

1 − αA due to weak interdependence. Consequently, small component(red dashed circle) containing nodes 11 and 12 fails by not

containing reinforced nodes and disconnecting from the giant connected component(blue dashed circle) of network A. (e) Node 11

of the network B is impacted, and its connectivity links are dropped with a probability of 1 − αB due to weak interdependence.

However, small finite functional component(purple dashed circle) containing nodes 10 , 11, and 12 survives by containing reinforced

node 12, even though disconnected from the giant connected component(blue dashed circle) of the network B. After this, there is

no further failure and the process ends. (f) Finally, the system achieves a stable state. The blue circles constitute the MGCC. The

MGGCC in the shaded gray areas consists of the MGCC and finite components supported by reinforced nodes.

Figure A2 A schematic of a larger generalized giant connected component (GGCC) than the giant connected component (GCC)

in a single-layer network. All the nodes of blue dashed circle constitute the GCC. The GCC is the largest connected component

in a network. Finite components are the non-GCC in a network. Purple nodes are reinforced nodes. Reinforced finite components

are defined as the finite components containing at least one reinforced node. The GGCC in grey shaded area is composed of the

GCC and reinforced finite component.
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Algorithm A1 Simulation of the cascading failures against random attack

Input: interdependent networks A and B with weak dependency links and reinforced nodes
Output: P∞ and U∞ in each network, respectively

1: for each node i in each network do
2: for i = 1 to 1000000 do
3: A fraction 1− p of nodes are initially randomly attacked in network A and B, respectively;
4: Remove the attacked nodes in networkA and B, respectively;
5: int step;
6: while The nodes in network A or B is still changing do
7: step++;
8: if step % = 2 then
9: The nodes that do not belong to the MGGCC in network A will fail, and each connectivity

link of its dependency partner in network B will be simultaneously removed with the failure
probability 1− αB ;

10: Remove the nodes that do not belong to the MGGCC in network A;
11: else
12: The nodes that do not belong to the MGGCC in network B will fail, and each connectivity

link of its dependency partner in network A will be simultaneously removed with the failure
probability 1− αA;

13: Remove the nodes that do not belong to the MGGCC in network B ;
14: end if
15: end while
16: end for
17: Save the size of surviving nodes in the MGGCC (P∞) and MGCC (U∞) for each network, respec-

tively;
18: end for

that node i belongs to the MGGCC is determined by either (i) being a reinforced node (ii) not being a reinforced node, but

one of the other kA − 1 links of node i (the link that we first randomly chose is excluded) leads to the MGGCC. Analogously,

p
[
1− (1− ρB)GB0 (1− fB)

]
is the probability that one of the kB links of node j reaches the MGGCC of sub-network B. Owing

to E1 and E2 being exclusive events, we obtain

fA = P (E1) + P (E2) . (B3)

Appendix B.2 Theoretical framework for general interdependent networks

Based on the probabilistic description in Appendix B.1, we can derive the following self-consistent equations about fA and fB
according to the generating function:

fA=p
2
[
1−(1−ρA)G

A
1 (1−fA)

][
1−(1−ρB)G

B
0 (1−fB)

]
+ pαA

[
1−(1−ρA)G

A
1 (1−αAfA)

]{
1−p

[
1− (1−ρB)G

B
0 (1−fB)

]}
, (B4)

fB=p
2
[
1−(1−ρB)G

B
1 (1−fB)

][
1−(1−ρA)G

A
0 (1−fA)

]
+pαB

[
1−(1−ρB)G

B
1 (1−αBfB)

]{
1−p

[
1−(1−ρA)G

A
0 (1−fA)

]}
. (B5)

Accordingly, the size of the MGGCC in sub-network A(B) can be calculated as

P
A
∞=p

2
[
1−(1−ρA)G

A
0 (1−fA)

][
1−(1−ρB)G

B
0 (1−fB)

]
+ p

[
1−(1−ρA)G

A
0 (1−αAfA)

]{
1− p

[
1−(1−ρB)G

B
0 (1−fB)

]}
, (B6)

P
B
∞=p

2
[
1−(1−ρB)G

B
0 (1−fB)

][
1−(1−ρA)G

A
0 (1−fA)

]
+ p

[
1−(1−ρB)G

B
0 (1−αBfB)

]{
1−p

[
1−(1−ρA)G

A
0 (1−fA)

]}
. (B7)

Similarly, we denote f̃A (f̃B) as the probability that a randomly chosen link reaches the MGCC in sub-network A(B), which

can be written out as

f̃A = p
2
[
1−GA1

(
1−f̃A

)] [
1−(1− ρB)G

B
0 (1−fB)

]
+ pαA

[
1−GA1

(
1−αAf̃A

)]{
1− p

[
1− (1−ρB)G

B
0 (1−fB)

]}
, (B8)

f̃B = p
2
[
1−GB1

(
1−f̃B

)] [
1−(1− ρA)G

A
0 (1−fA)

]
+ pαB

[
1−GB1

(
1−αB f̃B

)]{
1− p

[
1− (1−ρA)G

A
0 (1−fA)

]}
. (B9)

Where 1 − GA1
(

1− f̃A
)

is the probability that one of the other kA − 1 links of node i (the link that we first randomly chose is

excluded) reaches the MGCC of sub-network A, and vice versa.
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Consequently, the size of the MGCC in sub-network A(B) can be computed as

U
A
∞ = p

2
[
1−GA0

(
1−f̃A

)] [
1−(1−ρB)G

B
0 (1− fB)

]
+ p

[
1−GA0

(
1−αAf̃A

)]{
1− p

[
1− (1−ρB)G

B
0 (1−fB)

]}
, (B10)

U
B
∞ = p

2
[
1−GB0

(
1−f̃B

)] [
1−(1−ρA)G

A
0 (1− fA)

]
+ p

[
1−GB0

(
1−αB f̃B

)]{
1− p

[
1− (1−ρA)G

A
0 (1−fA)

]}
. (B11)

As a result, these Eqs. (B4)- (B11) are proposed as general theoretical framework in our model. Note that, in Figure B1,

Figure B2, and Figure B3, simulation results agree well with theoretical predictions, which indicates the validity of the general

theoretical framework.

For simplicity, these (B1), (B2), (B5), and (B6) can be transformed into fA = F1 (p, fB), fB = F2 (p, fA), f̃A = R1

(
p, f̃A, fB

)
,

and f̃B = R2

(
p, f̃B , fA

)
. Combining (B1), (B2), (B5), and (B6) together, we can obtain the numerical solutions of fA, fB , f̃A,

and f̃B . Substituting the solutions back into (B3), (B4), (B7), and (B8), the theoretical numerical solutions of PA∞, PB∞, UA∞, and

UB∞ can be obtained.
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Figure B1 Demonstration of discontinuous phase transition in general ER-ER and SF-SF networks. (a) When αA = 0.1,

αB = 0.2, and ρA = ρB = 0.05, PA∞, PA∞, PB∞, UA∞, UB∞, and NOI as a function of the probability p of preserving nodes in general

ER-ER networks. Note that, PA∞, PB∞, UA∞, and UB∞ undergo a discontinuous phase transition at the same pIc . (b) When ρA = 0.02,

ρB = 0.03, and αA = αB = 0.1, PA∞, PB∞, UA∞, UB∞, and NOI as a function of the probability p of preserving nodes in general SF-SF

networks. Note that, PA∞, PB∞, UA∞, and UB∞ undergo a discontinuous phase transition at the same pIc . Numbers of cascade failure

iterations (NOI) versus p in the simulation. Note that, NOI curves peak just right occur at discontinuous phase transition points pIc
which is a method to identify the phase transition points pIc . (c) For general ER-ER networks illustrated in (a) with pIc = 0.750646,

the curves of fA = F1 (p, fB) and fB = F2 (p, fA) touch each other tangentially at fIA = 0.259749 and fIB = 0.272237, satisfying

(B12). (d) For general SF-SF networks illustrated in (b) with pIc = 0.805876, the curves of fA = F1 (p, fB) and fB = F2 (p, fA)

touch each other tangentially at fIA = 0.209455 and fIB = 0.209363, satisfying (B12). Symbols represent simulation results and

solid lines are the corresponding theoretical predictions. These simulation results are averaged 100 independent realizations. Other

parameters are set to be N = 106, 〈kA〉 = 〈kB〉 = 4, λA = λB = 2.6, k ∈ [2, 1000].

For the discontinuous (abrupt) phase transition, as depicted in Figure B1, the size of the MGGCC abruptly increases at p = pIc ,

and the function fA = F1 (p, fB) and fB = F2 (p, fA) at p = pIc satisfy the condition

∂F1(pIc , f
I
B)

∂fIB
·
∂F2(pIc , f

I
A)

∂fIA
= 1, (B12)

where the curves fA = F1 (p, fB) and fB = F2 (p, fA) touch each other tangentially at (fIA, f
I
B). Combining fIA = F1

(
p, fIB

)
,

fIB = F2

(
p, fIA

)
, and (B12) together, the corresponding solutions of pIc , fIA, and fIB can be achieved. Note that PA∞, PB∞, UA∞,

andUB∞ have same discontinuous phase transition point at pIc .

Figure B2 and Figure B3 show that there is a critical shift point αAc (αIAc or αIIAc ) of weak dependency parameter αA for a

given αB . Above the critical threshold αIAc (αIIAc ) , sub-network A (sub-network B) disintegrates in the form of a continuous phase

transition. Conversely, sub-network A (sub-network B) suffers from a discontinuous phase transition. One interesting finding in

ER-ER networks is that Figure B2(b) shows a phenomenon of hybrid phase transition. Due to an iterative process of cascading

failures, the MGCC (UA∞) of the sub-network A discontinuously decreases to a relatively small value at pIc and then continuously

decreases to zero at pIIc |UA∞
. Another unexpected finding in Figure B2(b), Figure B2(c), Figure B3(b), and Figure B3(c) is that

with increasing αA, the continuous phase transition in sub-network A is earlier than that in sub-network B. Based on the above

analysis, when 0 < αA 6 αIAc , the entire system presents a discontinuous phase transition. When αIAc 6 αA 6 αIIAc , it exhibits

mixed phase transition characteristics, i.e., a hybrid phase transition for sub-network A and a discontinuous phase transition for

sub-network B. When αA > αIIAc , the whole system presents a continuous phase transition.
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Figure B2 Demonstration of discontinuous, hybrid, continuous phase transition, and shift point of phase transition types in

general ER-ER networks. (a)-(c): For different αA = 0.3, αA = 0.64, and αA = 0.8, PA∞, PB∞, UA∞, and UB∞ as a function of the

probability p of preserving nodes in general ER-ER networks. (a) PA∞, PB∞, UA∞, and UB∞ undergo a discontinuous phase transition

at the same pIc . (b) UA∞ undergoes a hybrid phase transition, while PA∞, PB∞, and UB∞ undergo a discontinuous phase transition at

the same pIc . (c) UA∞ and UB∞ undergo a continuous phase transition at pIIc |UA∞
and pIIc |UB∞

, while PA∞ and PB∞ are continuous and

free of phase transition. (d) In sub-network A, color represents the theoretical results of PA∞

(
αA < αIAc

)
and UA∞

(
αA > αIAc

)
in plane (αA, p). (e) In sub-network B, color represents the theoretical results of PB∞

(
αA < αIIAc

)
and UB∞

(
αA > αIIAc

)
in plane

(αA, p). The red solid lines in both (d) and (e) are the discontinuous percolation transition thresholds pIc , which are obtained

by solving (B12). The red dashed line in (d) are the continuous percolation transition threshold pIIc |UA∞
, which are obtained

by solving (B15). The black dashed line in (d) and the red dashed line in (e) are the continuous percolation transition threshold

pIIc |UB∞
, which are obtained by solving (B16). Symbols represent simulation results and solid lines behind the symbols are the

corresponding theoretical predictions. These simulation results are averaged 100 independent realizations. Other parameters are

set to be N = 106, αB = 0.1, ρA = ρB = 0.02, and 〈kA〉 = 〈kB〉 = 4.

For the continuous phase transition, as shown in Figure B2(b), Figure B2(c), Figure B3(b), and Figure B3(c), one unanticipated

finding is that the size of the MGCC UA∞(UB∞) increases continuously at the transition point pIIc |UA∞
(pIIc |UB∞

), yet the MGGCC

PA∞ (PB∞) is free of phase transition. Above the threshold pIIc , with the increase of p, the size of the MGCC continuously increases

from 0. Conversely, below the threshold pIIc , the MGCC is absent. Thus, when p → pIIc |UA∞
, we can analytically derive f̃A → 0.

We further have a Taylor expansion of (B8) at f̃A → 0:

f̃A = R
′
1

(
p
II
c , 0, fB

)
f̃A +

1

2!
R
′′
1

(
p
II
c , 0, fB

)
f̃
2
A + o

(
f̃
3
A

)
. (B13)

After the simplification, we have

R
′
1

(
p
II
c , 0, fB

)
+

1

2!
R
′′
1

(
p
II
c , 0, fB

)
f̃A + o

(
f̃
2
A

)
= 1, (B14)

and the nontrivial solution of (B8) appears when R
′
1

(
pIIc , 0, fB

)
= 1.

If sub-network A has continuous phase transition at p = pIIc for UA∞, pIIc |UA∞
satisfies the condition

R
′
1

(
p
II
c |UA∞ , 0, fB

)
= 1, αA > α

I
Ac
. (B15)

Combining (B4), (B5), (B9), and (B15) together, pIIc |UA∞
can be obtained numerically.

If sub-network B has continuous phase transition at p = pIIc for UB∞, pIIc |UB∞
satisfies the condition

R
′
2

(
p
II
c |UB∞ , 0, fA

)
= 1, αA > α

II
Ac
. (B16)

Combining (B4), (B5), (B8), and (B16) together, pIIc |UB∞
can be obtained numerically.

As shown in Figure B2(d), Figure B2(e), Figure B3(d), and Figure B3(e), By letting pIc = pIIc |UA∞
= p∗Ac , we can obtain the

shift point αIAc , at which there is a change from a discontinuous phase transition to a continuous phase transition of sub-network

A. Furthermore, αIAc is also the boundary between the discontinuous phase transition and the hybrid phase transition of the
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Figure B3 Demonstration of discontinuous, continuous phase transition, and shift point of phase transition types in general

SF-SF networks. (a)-(c): For different αA = 0.2, αA = 0.4, and αA = 0.8, PA∞, PB∞, UA∞, and UB∞ as a function of the probability p

of preserving nodes in general SF-SF networks. (a) PA∞, PB∞, UA∞, and UB∞ undergo a discontinuous phase transition at the same pIc .

In (b) and (c), UA∞ and UB∞ undergo a continuous phase transition at pIIc |UA∞
and pIIc |UB∞

, while PA∞ and PB∞ are continuous and

free of phase transition. (d) In sub-network A, color represents the theoretical results of PA∞

(
αA < αIAc

)
and UA∞

(
αA > αIAc

)
in plane (αA, p). (e) In sub-network B, color represents the theoretical results of PB∞

(
αA < αIIAc

)
and UB∞

(
αA > αIIAc

)
in plane

(αA, p). The red solid lines in both (d) and (e) are the discontinuous percolation transition thresholds pIc , which are obtained

by solving (B12). The red dashed line in (d) are the continuous percolation transition threshold pIIc |UA∞
, which are obtained

by solving (B15). The black dashed line in (d) and the red dashed line in (e) are the continuous percolation transition threshold

pIIc |UB∞
, which are obtained by solving (B16). Symbols represent simulation results and solid lines behind the symbols are the

corresponding theoretical predictions. These simulation results are averaged 100 independent realizations. Other parameters are

set to be N = 106, αB = 0.1, ρA = ρB = 0.02, and 〈kA〉 = 〈kB〉 = 4, λA = λB = 2.6, k ∈ [2, 1000].

whole system. Using the same method, we can get the shift point αIIAc by letting pIc = pIIc |UB∞
= p∗Bc , at which there is a change

from a discontinuous phase transition to a continuous phase transition of sub-network B. Furthermore, αIIAc is also the boundary

between the hybrid phase transition and the continuous phase transition of the whole system. Note that, when p∗Ac 6= p∗Bc (i.e.,

αIAc 6= αIIAc ), the system will exhibit a hybrid phase transition behavior, as shown in Figure B2(b). Conversely, when p∗Ac = p∗Bc
(i.e., αIAc = αIIAc ), the system has no hybrid phase transition behavior, as illustrated in Figure B3.

Appendix B.3 Results and discussion for general interdependent networks

Numerical simulations are constructed in Erdős-Rényi (ER) and scale-free (SF) networks, which are general methods used to predict

the robustness of real-life networks. For ER-ER networks, the degree distribution satisfies p (k) =
〈k〉ke−〈k〉

k! , where 〈k〉 denotes

the average degree. For SF-SF networks, the degree distribution satisfies p (k) ∼ k−λ, where 〈k〉 denotes the average degree,

k ∈ [2, 1000], and λ denotes the degree exponent. These simulation results are averaged over 100 independent realizations, where

node size of each sub-network is N = 106. The simulation results (symbols) agree well with theoretical predictions (solid lines) in

Figure B1, Figure B2, and Figure B3.

In Figure B1(a), when αA < αB , there are PA∞ < PB∞ < and UA∞ < UB∞. In Figure B2 and Figure B3, when αA > αB , there

are PA∞ > PB∞ and UA∞ > UB∞ , and thus the robustness of sub-network with large weak dependency parameter is higher than that

of sub-network with small weak dependency parameter. For sub-network A(sub-network B), when the fraction of reinforced nodes

ρA > 0 (ρB > 0), there is PA∞ > UA∞ (PB∞ > UB∞), indicating that equipping reinforced nodes can enhance the robustness of the

system.

As shown in Figure B2(a), Figure B2(b), and Figure B2(c), for a given weak dependency parameter αB = 0.1, with the increasing

of αA, the system exhibits different type of phase transitions. For αA = 0.3, both sub-network A and sub-network B percolate

discontinuously at the same point pIc . For αA = 0.64, sub-network A exhibits a rich phase transition behavior: PA∞ undergoes a

discontinuous phase transition at pIc , and UA∞ discontinuously decreases to a relatively small value at pIc and then continuously

decreases to zero at pIIc |UA∞
, while sub-network B exhibits a discontinuous phase transition at pIc . For αA = 0.8, both sub-network

A and sub-network B percolate continuously at different phase transition point: UA∞ and UB∞ undergo a continuous phase transition

at pIIc |UA∞
and pIIc |UB∞

, respectively, while PA∞ and PB∞ are continuous and free of phase transition. Surprisingly, in Figure B2(c),

for αA = 0.8 > αB = 0.1, we find pIIc |UA∞
< pIIc |UB∞

.

Next, in general ER-ER networks, for sub-network A, the sizes of PA∞

(
αA < αIAc

)
and UA∞

(
αA > αIAc

)
in plane (αA, p) is

studied systematically in Figure B2(d). For sub-network B, the sizes of PB∞

(
αA < αIIAc

)
and UB∞

(
αA > αIIAc

)
in plane (αA, p) in
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Figure B2(e). PA∞

(
αA < αIAc

)
and PB∞

(
αA < αIIAc

)
increase as αA increases in plane (αA, p), and increase as p increases in plane

(αA, p). U
A
∞

(
αA > αIAc

)
and UB∞

(
αA > αIIAc

)
increase as αA increases in plane (αA, p), and increase as p increases in plane

(αA, p). In Figure B2(e), the plane are divided into functional (PB∞ > 0, UB∞ > 0) and non-functional region(PB∞ = 0, UB∞ = 0)

region by the red line. Here the white dashed line is the discontinuous phase transition threshold when there are strong dependency

links (αA = 0), which is also the baseline of the phase transition compared to the weak dependency links (αA > 0). Further,

the functional region is divided into non-collapse and recovery regions by the white dashed line. This division is to reflect the

difference between strong dependency links and weak dependency links, i.e., as the value of the weak dependency parameter αA
increases from zero, the middle region changes from the original non-functional region (PB∞ = 0, UB∞ = 0) to the functional

region(PB∞ > 0, UB∞ > 0), which is equivalent to the recovery region according to the network state. As a result, the plane is clearly

divided into non-collapse, recovery, and collapse regions by the red line and the white dashed line.

In sub-network A (Figure B2(d)), with the decrease of p, for αA 6 αIAc , PA∞ is greater than zero when p > pIc , and decreases

discontinuously to zero at p = pIc ; for αA > αIAc , UA∞ is greater than zero when p > pIIc |UA∞
, and decreases continuously to zero at

p = pIIc |UA∞
; for αIAc 6 αA 6 αIIAc , UA∞ is larger than zero when p > pIIc |UA∞

, and first discontinuously decreases to a relatively

small value at pIc and then continuously decreases to zero at pIIc |UA∞
. In sub-network B (Figure B2(e)), with the decrease of p, for

αA 6 αIIAc , PB∞ is greater than zero when p > pIc , and decreases discontinuously to zero at p = pIc ; for αA > αIIAc , UB∞ is greater

than zero when p > pIIc |UB∞
, and decreases continuously to zero at p = pIIc |UB∞

.

As shown in Figure B3, similar theoretical and simulation results are discussed in the general SF-SF networks. Different from

the results shown in Figure B2, UA∞ of the general SF-SF networks has no hybrid phase transition behavior (i.e., αIAc = αIIAc ). Note

that, compared with the general ER-ER networks, the size of UA∞(or UB∞) in the general SF-SF networks changes more smoothly

and gently at the continuous phase transition point p = pIIc |UA∞
(or p = pIIc |UB∞

) , which makes the plane (αA, p) not so clearly

divided by the red dotted line boundary.

Appendix C Solving interdependent networks with symmetry

Appendix C.1 Theoretical framework for interdependent networks with symmetry

To better capture the percolation phase transition properties of the proposed model, here we introduce simple symmetric inter-

dependent networks with pA (kA) = pB (kB) = p (k), 〈kA〉 = 〈kB〉 = 〈k〉, ρA = ρB = ρ, and αA = αB = α. Thus, we have

fA = fB ≡ f , PA∞ = PB∞ ≡ P∞, f̃A = f̃B ≡ f̃ , and UA∞ = UB∞ ≡ U∞. These (B4) - (B11) can be simplified as

f = u (f) p
2

+ v (f) p ≡ F (p, f) , (C1)

P∞ = p
2

[1−(1−ρ)G0 (1−f)] [1−(1−ρ)G0 (1−f)] + p [1−(1−ρ)G0 (1−αf)] {1−p [1−(1−ρ)G0 (1−f)]} , (C2)

f̃ = p
2
[
1−G1

(
1−f̃

)]
[1−(1−ρ)G0 (1−f)] + pα

[
1−G1

(
1−αf̃

)]
{1−p [1−(1− ρ)G0 (1−f)]} ≡ R

(
p, f̃ , f

)
, (C3)

U∞ = p
2
[
1−G0

(
1−f̃

)]
[1−(1−ρ)G0 (1−f)] + p

[
1−G0

(
1−αf̃

)]
{1− p [1−(1−ρ)G0 (1−f)]} , (C4)

where u (f) = {[1− (1− ρ)G1 (1−f)]−α [1−(1−ρ)G1 (1−αf)]} [1− (1− ρ)G0 (1− f)], v (f) = α [1−(1−ρ)G1 (1− αf)], and

H(f) = F (p, f)− f .

As a result, these (C1)-(C4) are proposed as the theoretical framework for interdependent networks with symmetry. Note that,

in Figure C1 and Figure C2, simulation results agree well with theoretical predictions, which further indicates the validity of the

theoretical framework.

Figure C1 illustrates that there is a triple point (ρ∗c , p
∗
c) or (α∗c , p

∗
c). At the triple point, the system satisfies the discontinuous and

continuous phase transition, simultaneously. Below the critical threshold ρ < ρ∗c(or α < α∗c), the system undergoes a discontinuous

phase transition. Above the threshold ρ > ρ∗c(or α > α∗c), the system suffers a continuous phase transition. Figure C2 further

shows that the MGGCC (P∞) and MGCC (U∞) have the same phase transition points for different ρ (ρ 6 ρ∗c) in each sub-network.

If the system has a discontinuous phase transition at p = pIc when ρ < ρ∗c , (B12) is simplified to
∂F

(
pIc,f

I
)

∂fI
= 1, namely

u
′ (
f
I
)(

p
I
c

)2
+ v
′ (
f
I
)
p
I
c − 1 = 0. (C5)

One unanticipated finding in Figure C3 is that, when p = pIc , the curve H(f) is just tangent to the f-axis, i.e.,
∂F

(
pIc,f

I
)

∂fI
− 1 = 0,

which further verifies the correctness of our theoretical analysis. Thus, we can obtain the discontinuous transition point

p
I
c

(
f
I
)

=
−v
′ (
fI
)

+
√
∆

2u′ (fI)
, ∆ =

[
v
′ (
f
I
)]2

+ 4u
′ (
f
I
)
> 0, ρ < ρ

∗
c , (C6)

where fI can be numerically solved by (C1) and (C5).

If the system has a continuous phase transition for U∞ at phase transition point pIIc |U∞ when ρ > ρ∗c , we have f̃ = 0. Thus,

(B15) and (B16) are equivalent, reduced to

R
′ (
p
II
c |U∞ , 0, f

)
= 1, ρ > ρ

∗
c . (C7)

Combining (C1) and (C7) together, pIIc |UA∞
can be obtained numerically. In particular, when ρ = 0, there is no reinforced nodes

in the system, for ER-ER interdependent networks, this yields

p
II
c |U∞=

1

α2 〈k〉
, ρ = 0, α > α

∗
max, (C8)
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Figure C1 The sizes of P∞ and U∞ as a function of the probability p of preserving nodes in ER-ER and SF-SF networks. In

(a) and (d), fixing α = 0.1, comparison of simulation and theoretical results for different ρ in ER-ER networks; In (b) and (e),

fixing α = 0.1, comparison of simulation and theoretical results for different ρ in SF-SF networks; In (c) and (f), fixing ρ = 0.05,

comparison of simulation and theoretical results of different α in ER-ER and SF-SF networks. Symbols represent simulation results

and solid lines are the corresponding theoretical predictions. Other parameters are set to be N = 106, 〈k〉 = 4, λ = 2.6, and

k ∈ [2, 1000].
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Figure C2 The sizes of P∞ and U∞ as a function of the probability p of preserving nodes for different ρ in ER-ER and SF-SF

networks. In (a) and (d), when ρ <= ρ∗c , both P∞ and U∞ undergo a discontinuous phase transition at the same pIc ; In (b) and (e),

when ρ = ρ∗c , the system has both continuous and discontinuous phase transition properties at the same p∗c ; In (c) and (f), when

ρ >= ρ∗c , U∞ undergoes a continuous phase transition at pIIc |U∞ , and P∞ is continuous and free of phase transition. Symbols

represent simulation results and solid lines are the corresponding theoretical predictions. Other parameters are set to be N = 106,

α = 0.1, 〈k〉 = 4, λ = 2.6, and k ∈ [2, 1000].
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Figure C3 Graphical solutions of (C1) for different p in ER-ER and SF-SF interdependent networks, where H(f) = F (p, f)− f .

In (a) and (b), with the increase of p, for ρ < ρ∗c , the curve H (f) is firstly tangent to the f-axis at the point pIc . In (c) and (f),

with the increase of p, for ρ = ρ∗c , the curve H (f) is firstly tangent to the f-axis at the point p∗c . For a discontinuous percolation

transition threshold pIc( i.e., ρ < ρ∗c), there are 2 extreme points and the maximum extreme point is tangent to f-axis, and for a

continuous percolation transition threshold p∗c (i.e.,ρ = ρ∗c), the two extreme points just right coincide and are tangent to the f-axis.

One interesting finding is that ρ∗ccan be used as the boundary value to distinguish between discontinuous percolation transition and

continuous percolation transition. Note that, when ρ > ρ∗c , there is no solution of (C1). Other parameters are set to be α = 0.1,

〈k〉 = 4, λ = 2.6, and k ∈ [2, 1000].
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Figure C4 Graphical solutions of (C6) and (C9) for different ρ in and SF-SF interdependent networks. (a) ER-ER networks:

α = 0.1 and 〈k〉 = 4; (b) SF-SF networks: α = 0.1, 〈k〉 = 4, λ = 2.6, and k ∈ [2, 1000].
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where 〈k〉 is the average degree in each network.

Further, plugging pIc back into (C1), we obtain

f
I

= u
(
f
I
)(

p
I
c

)2
+ v

(
f
I
)
p
I
c ≡ F

(
p
I
c , f

I
)
. (C9)

One interesting finding in Figure C4 is that when ρ < ρ∗c , the curve u
(
fI
)(

pIc

)2
+ v

(
fI
)
pIc is separated from the dashed

line; when ρ = ρ∗c , the curve is tangent to the dashed line; when ρ > ρ∗c , the curve is intersected by the dashed line. Obviously, the

critical threshold ρ = ρ∗c satisfies the following condition that the derivative of both ends of (C9) with respect to fI , namely

u
′ (
f
I
)(

p
I
c

)2
+ v
′ (
f
I
)
p
I
c +

[
2u
(
f
I
)

+ v
(
f
I
)] dpIc

dfI
= 1. (C10)

Plugging (C5) back into (C10), this yields

dpIc
dfI
|
ρ=ρ∗c (orα=α∗c ),p

I
c=p

II
c =p∗c

= 0. (C11)

Combining (C1), (C6), and (C11), fixing the parameter α, we can obtain numerically the triple point (ρ∗c , p
∗
c). More interestingly,

fixing the parameter ρ, we will derive an equivalent triple point (α∗c , p
∗
c). Note that, ρ∗c (α∗c) is the critical threshold for discontinuous

and continuous phase transitions in each sub-network, so ρ∗c is also the minimum fraction of reinforced nodes needed to prevent

a abrupt and catastrophic collapse of the interdependent system. Accordingly, fixed the parameter ρ, α∗c is set to the minimum

fraction of weak interdependent strength to prevent catastrophic collapse of the system.

Appendix C.2 Results and discussion for interdependent networks with symmetry
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Figure C5 Phase diagrams in plane (ρ, p). (a) ER-ER networks with symmetry: 〈kA〉 = 〈kB〉 = 6, αA = αB = 0.2 ; (b)

SF-SF networks with symmetry: 〈kA〉 = 〈kB〉 = 3, αA = αB = 0.2, λA = λB = 2.6, k ∈ [2, 1000]. Color in both (a) and (b)

represents the theoretical values of P∞ (ρ < ρ∗c) and U∞ (ρ > ρ∗c) in plane (ρ, p). The red solid lines in both (a) and (b) are

the discontinuous percolation transition thresholds pIc , which are obtained by solving (C6). The red dashed lines in both (a) and

(b) are the continuous percolation transition threshold pIIc |UA∞
, which are obtained by solving (C7). (c) ER-ER networks with

symmetry: pIc and pIIc |U∞ as a function of ρ for different 〈k〉 and α; (d) SF-SF networks with symmetry: pIc and pIIc |U∞ as a

function of ρ for different 〈k〉 and α.

Numerical simulations are constructed in Erdős-Rényi (ER) and scale-free (SF) networks, which are general methods used to

predict the robustness of real-life networks. For ER-ER networks, the degree distribution satisfies p (k) =
〈k〉ke−〈k〉

k! , where 〈k〉
denotes the average degree. For SF-SF networks, the degree distribution satisfies p (k) ∼ k−λ, where 〈k〉 denotes the average

degree, k ∈ [2, 1000], and λ denotes the degree exponent. These simulation results are averaged over 100 independent realizations,

where node size of each sub-network is N = 106. The simulation results (symbols) agree well with theoretical predictions (solid

lines) in Figure C1 and Figure C2.
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As shown in Figure C1(a), Figure C1(b), Figure C1(d), and Figure C1(e), for a given weak dependency parameter α = 0.1, the

sizes of mutually generalized giant connected component (MGGCC) and mutually giant connected component (MGCC) increase

with the increase of the fraction p of preserved nodes. When p is fixed, P∞ and U∞ increase as the increase of ρ and the system

shows different type of phase transitions in ER-ER networks and SF-SF networks. What’s more, in Figure C2(a) and Figure C2(d),

when ρ <= ρ∗c , both P∞ and U∞ undergo a discontinuous phase transition at the same pIc ; in Figure C2(b) and (e), when ρ = ρ∗c ,

the system has both continuous and discontinuous phase transition properties at the same p∗c ; in Figure C2(c) and Figure C2(f),

when ρ >= ρ∗c , U∞ undergoes a continuous phase transition at pIIc |U∞ , and P∞ is continuous and free of phase transition.

Importantly, the percolation transition threshold (i.e., pIc and pIIc |U∞ ) decreases with the increase of ρ. In other words, increasing

the fraction ρ of reinforced nodes can significantly enhance the robustness of interdependent networks. Note that , for a given

ρ > 0, there is P∞ >= U∞ in Figure C2, which further proves from theory and simulation that the reinforced nodes can support

the function of small finite component where it is located, even if the small finite component is disconnected from the MGCC,

indicating that equipped reinforced nodes can improve the system robustness.

As depicted in Figure C1(c) and Figure C1(f), for a given fraction ρ = 0.05 of reinforced nodes, when p is fixed, P∞ increases as

the increase of α and the system shows different type of phase transitions in ER-ER networks and SF-SF networks. Analogously,

the percolation transition threshold (i.e., pIc and pIIc |U∞ ) decreases with the increase of α. Here, α∗c can be used as the boundary

value to distinguish between discontinuous percolation transition and continuous percolation transition. In other words, increasing

the weak dependency parameter α can significantly enhance the robustness of interdependent networks.

Next, phase diagrams in plane (ρ, p) is studied systematically in Figure C5. As shown in Figure C5(a) and Figure C5(b), P∞
(ρ < ρ∗c) and U∞ (ρ > ρ∗c) increase as ρ increases in plane (ρ, p), and increase as p increases in plane (ρ, p). The planes are divided

into functional (P∞ > 0, U∞ > 0) and non-functional region(P∞ = 0, U∞ = 0) by the red line. Here the white dashed line is the

discontinuous phase transition threshold pIc = 0.7741 when there is no reinforced node (ρ = 0), which is also the baseline of the

phase transition compared to the equipped reinforced nodes (ρ > 0). Further, the functional region is divided into non-collapse

and recovery regions by the white dashed line. This division is to reflect the difference between not having reinforced nodes and

having reinforced nodes, i.e., as the fraction of reinforced nodes increases from zero, the middle region changes from the original

non-functional region (P∞ = 0, U∞ = 0) to the functional region(P∞ > 0, U∞ > 0), which is equivalent to the recovery region

according to the network state. As a result, the plane is clearly divided into non-collapse, recovery, and collapse regions by the red

line and the white dashed line.

As depicted in Figure C5(a) and Figure C5(b), with the decrease of p, for ρ < ρ∗c , P∞ is greater than zero when p > pIc , and

drops discontinuously to zero at p > pIc ; for ρ > ρ∗c , P∞ is greater than zero when p > pIIc |U∞ , and drops continuously to zero

at p = pIIc |U∞ . In Figure C5(a) and Figure C5(b), with the increase of ρ, pIc and pIIc |U∞ gradually decrease, and the area of

the collapse region becomes smaller. Note that when pIc = pIIc |U∞ , we get the minimum reinforced fraction ρ∗c that can keep the

system from a catastrophic breakdown. After obtaining ρ∗c , in order to further improve the reinforcement efficiency, the methods

in these references [2–4] are adopted, which can better locate important nodes and reinforce them, and better enhance the system

robustness.

Another important finding is that the area of the collapse region becomes smaller with increasing 〈k〉. Similarly, the area of the

collapse region decreases with increasing α. These implicate that the system becomes more robust as the fraction ρ of reinforced

nodes, the average degree 〈k〉, and the weak dependency parameter α increase. In addition, in Figure C5(c) and Figure C5(d),

compared with the model with strong dependency links and reinforced nodes (SD-RN model) of reference [1], our model with weak

dependency links and reinforce nodes(WD-RN model) is more robust and closer to the realistic scenario.

As shown in Figure C5, ρ∗c is the minimum fraction of reinforced nodes to prevent the system from catastrophic breakdown. In

Figure C6, the critical point ρ∗c and the corresponding phase transition threshold p∗c gradually decreases with the increase of α. The

fraction ρ = ρ∗c of reinforced nodes represents the number of reinforcement devices arranged in each sub-network. The increase of

the fraction of reinforced nodes implies that it is more expensive to arrange reinforcement devices in a real scenario, and therefore

ρ∗c represents the cost of reinforced devices. Although increasing the reinforcement devices can improve the system robustness and

prevent system collapse, it comes at the expense of cost. In Figure C6, with the increase of weak dependence parameter α, the

phase transition threshold p∗c is smaller, and the system robustness is stronger. As the weak dependence parameter α increases, the

minimum reinforced fraction ρ∗c decreases, and the cost of equipping the reinforcement devices is reduced. Inspired by reference [5],

considering the excessive cost of deploying reinforced nodes, this proposed model can realize the trade-off between high robustness

and cost efficiency by tuning weak dependency parameter.

As shown in Figure C6(a) and Figure C6(b), the red line ρ∗c divides the area into continuous phase transition region and

discontinuous phase transition region. In Figure C6(c) and Figure C6(d), the discontinuous phase transition region gradually

decreases with increasing 〈k〉. In particular, combining (C1), (C6), and (C11) together, for ρ = 0, we can get the maximum value

α∗max of α∗c . For ER-ER networks, when ρ = 0, combining Eqs. (C1), (C6), (C11), and (C8) together, we have

〈k〉
(
α
∗
max

)5
+ 2

(
α
∗
max

)2 − 2 = 0, (C12)

where α∗max is only related to the average degree 〈k〉 and the value of α∗max decreases with increasing 〈k〉 in Figure C6(c) and

Figure C6(d).

In the same way, for ER-ER networks, ρ∗c reaches a maximum value ρ∗max at α = 0, which leads to

ρ
∗
max = 1−

√
e

2
≈ 0.1756, (C13)

where ρ∗max is a constant 0.1756 regardless of the average degree 〈k〉 in ER-ER networks. In SF-SF networks, one unanticipated

finding was that the value of ρ∗max decreases with increasing 〈k〉. As discussed above, a deeper insight is that when the parameter α

(or ρ) is unknown, ρ∗max ( or α∗max) is the upper bound of the minimum reinforced fraction ρ∗c ( or the minimum weak dependency

parameterα∗max ) to prevent a catastrophic collapse of the system.

Appendix D Test on empirical networks
We testify our model in smart power grid of the Western States of the US, with the introduction of weak dependency links and a

small density of reinforced nodes. A smart power grid consists of two networks: the power grid (PG) and autonomous systems of

the Internet (AS), which are interdependent. Here, the US power grid consists of 4941 nodes, where the nodes can be a generator,

transformer or substation, and the edges represents a power supply line [6]. The Internet autonomous system consists of 6474
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Figure C6 The critical threshold p∗c and ρ∗c as a function of weak dependency parameter α. In (a) and (b), the red line ρ∗c divides

the area into continuous phase transition region (light brown area) and discontinuous phase transition region (dark brown area).

(a) ER-ER networks: 〈k〉 = 4, (b) SF-SF networks: 〈k〉 = 4, λA = λB = 2.6, k ∈ [2, 1000]. (c) In ER-ER networks, p∗c and ρ∗c as

a function of α for different the average degree 〈k〉. (d) In SF-SF networks, p∗c and ρ∗c as a function of α for different the average

degree 〈k〉. These lines are the theoretical results obtained by solving (C1), (C6), and (C11).
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Figure D1 Percolation transition in the power grid of the western states of the US. (a) and (c): Simulation results of the P∞ and

U∞ in PG-AS system as a function of p for different ρ with α = 0.1. (b) and (d): Simulation results of the P∞ and U∞ in PG-AS

system as a function of p for different α with ρ = 0.05. All simulation results are averaged over 100 realizations on networks.
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nodes, where the nodes represent autonomous systems and the edges denote communication [7]. In each sub-network, a fraction ρ

of nodes is randomly chosen as reinforced nodes, such as backup generators in the PG and Local Area Network in the AS. Due to the

lack of data, the interdependent relationships between the PW and AS networks could not be captured directly. However, to gain

qualitative insight into the issue, we take reasonable assumptions to construct interdependent networks, which can be considered

as an approximation to many real-world networks. Here, there are more nodes in AS network than nodes in PG network, but it

does not affect the failure mechanism of the whole network and can be ignored. We randomly choose 4941 nodes from the AS as

counterparts of the nodes in the PG and establish a one-to-one interconnection (i.e., weak dependency link) between them, which

represents the interaction of power and communication services between them. According to the assumptions of our model, when

a node in the PG fails, each connectivity link of its dependency partner in the AS is disconnected from its neighbor nodes with a

probability 1− α, and vice versa.

Figure D1 shows P∞ and U∞ as a function of p for different ρ and α in PG-AS networks. In Figure D1(a) and Figure D1(c),

fixed α = 0.1, we find that rich phase transition behavior by tuning the fraction ρ of reinforced nodes. As described in Figure C1,

forρ less than a certain critical value ρ∗c , the system undergoes an abruptly discontinuous phase transition for P∞ and U∞. For ρ

greater than a certain critical value ρ∗c , P∞ is continuous and free from phase transitions and U∞ is continuous phase transition.

Similarly, in Figure D1(b) and Figure D1(d), fixed ρ = 0.05,we find that rich phase transition behavior by tuning weak dependency

parameter α. According to the structural features of the real-world networks, we reasonably adjust the reinforced fraction and

dependency strength to further significantly improve the robustness of the system while optimizing the resource allocation.
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