
SCIENCE CHINA
Information Sciences

1

. Supplementary File .2

A blockchain-based data auditing scheme with3

key-exposure resistance for IIoT4

Pan YANG1 & Jingli REN1*
5

1Henan Academy of Big Data, Zhengzhou University, Zhengzhou 450052, China6

Appendix A Preliminaries7

The notations used in this paper are defined in Table A1.

Table A1 Notations

p Large prime number SSig Signature algorithm

Z∗p {1, 2, · · · , p− 1} (ssk, spk) Signing secret/public key pair

G1, G2 p−order multiplicative cyclic groups (x,R) The private/public key of the DO

e : G1 ×G1 → G2 The bilinear pairing (β, gβ) The private/public key of the MN

g, u Generators of G1 para, v Public parameter

H1 : {0, 1}l → G1 Secure map-to-point hash function mi,j Outsourced data blocks

H2 : {0, 1}∗ → G1 Secure map-to-point hash function S Addition on Z∗p

H3 : G1 → Z∗p Full domain hash function MZ∗p
,MG1

,MG2
Multiplication on Z∗p , G1, G2

f, h : {0, 1}∗ → Z∗p Hash function EG1
and EG2

Exponentiation on G1, G2

F : Z∗p × {1, 2, · · · , n} → {1, 2, · · · , n} Pseudorandom permutation P Pairing

n Number of total blocks H Map-to-point hash operation

c Number of challenged blocks |p| Element length in Z∗p

s Number of sectors |G1|, |G2| Element length in G1, G2

8

We recall some cryptographic primitives and security assumptions used in our scheme.9

Bilinear map. Let G1, G2 be two multiplication cyclic groups of order p, p being a large prime integer. A bilinear10

mapping is defined as e : G1 ×G1 → G2, if it satisfies the following properties:11

a) Bilinearity. For ∀a, b ∈ Z∗p , u, v ∈ G1, e(ua, vb) = e(u, v)ab.12

b) Non-degeneracy. There exist two generators u, v ∈ G1(u 6= v), such that e(u, v) 6= 1.13

c) Computability. There exists a efficient probabilistic polynomial time (PPT) algorithm to calculate e(u, v) for ∀u, v ∈14

G1.15

Computational Diffie-Hellman (CDH) assumption. Let G1 be a multiplication cyclic group with order p, and

ga, gb be two random elements in G1 with unknown a, b ∈ Z∗p . It is computationally intractable to calculate gab for any

PPT algorithm, and the advantage ε of algorithm A in solving CDH problem is negligible, which is defined as follows:

AdvCDHA = Pr[gab ← A(g, ga, gb)] 6 ε.

Discrete Logarithm (DL) assumption. Let G1 be a multiplication cyclic group with order p, and g, ga be two

random elements in G1 with an unknown a ∈ Z∗p . It is computationally intractable to calculate a by any PPT algorithm,

and the advantage ε of algorithm A in solving DL problem is negligible. It is defined as follows:

AdvDLA = Pr[a← A(g, ga)] 6 ε.

* Corresponding author (email: renjl@zzu.edu.cn)

Yang P, et al. Sci China Inf Sci 2

Appendix B Workflow and deployment of BAKER1

We assume that the CSP has no incentive to expose its hosted data to external entities and has the ability to forge a proof2

to pass verification. The DO is semi-trusted and may deny the auditing result. The verifier has the ability to check the3

integrity of the data for the DO using the proof from CSP, but it may be curious about the original data. The CSP has4

responsibility to generate the random challenge. In order to guarantee the unpredictability and randomness of the challenge,5

the CSP periodically traverses the auditing tasks of all DOs. When a new auditing task is found, the CSP uses the public6

information τ as a random seed to generate the challenge. Note that τ consists of the timestamp and parameters of the7

current block header, which cannot be controlled by the CSP [4].8

Appendix B.1 Workflow9

Figure B1 shows the working process of BAKER.

DO

CSP

Blockchain

i)
F

il
e

an
d

ta
gs

ii) Proof and verification result

iii) Key update information

iii
) V

er
if

ic
at

io
n

i) Deploy CSP Promise Chaincode

i) Deploy DO Setup Chaincode

Auditing
Chaincode

DO Setup
Chaincode

 CSP Promise
Chaincode

Decentralized public auditing

Delpoy chaincode

Figure B1 (Color online) Working process of the proposed scheme.

10

i) The DO first generates the corresponding authenticators for each data block of the file, and then sends tags and the file11

to CSP. The DO and the CSP deploy the DO Setup Chaincode and CSP Promise Chaincode on the blockchain, respectively.12

ii) The CSP traverses the blockchain to find auditing tasks, generates the corresponding challenge and proof by using13

the public status information of the current block, and submits a transaction proposal containing the proof and auditing14

chaicode ID on the blockchain. The verifier invokes the Auditing Chaincode through the proof and public parameters. Then15

the verification result is packaged into a new block on the blockchain.16

iii) To achieve key exposure resistance for decentralized data auditing, the DO constructs the authenticator for each data17

block of F using the auditing secret key SK. At each key update, the DO and the MN update their own private keys18

using a random value generated by the DO. The MN then generates an update message and sends it to the DO, which19

uses the update message to generate the latest auditing secret key. Since the random value is secret, it is impossible for an20

adversary to compute the latest auditing secret key, even if the adversary obtains the DO’s private key for some previous21

time period. To prevent a malicious CSP from tampering with the authenticator, especially those uploaded during the key22

exposure period, the DO generates the authenticator update key auk and sends it to the CSP who uses the auk to update23

the specified authenticators.24

Appendix B.2 Deployment of BAKER25

In the IIoT, DOs choose different cloud storage spaces based on business requirements and operating costs, and sometimes26

multiple DOs have to jointly maintain a data ledger due to business distribution, supply chain, or other factors. Therefore,27

the consortium blockchain is more suitable for our scheme. Hyperledger Fabric1) is an open source consortium blockchain28

platform with distributed ledger technology. The different channels and permissioned chain maintain a high level of privacy29

in industrial activities, and the pluggable consensus satisfies the requirements under different trust models, which are not30

available in the public blockchain.31

Given that the verification algorithm in BAKER runs on Fabric, it is important to address issues about trust and32

malicious peers. For trust issues, the identity authentication mechanism based on member service providers (MSPs) and33

policies in Fabric can keep illegal nodes out of the network. Any node that joins the network, such as a peer, must be issued34

a digital certificate by a Certificate authority (CA), which provides identity authentication for nodes on the blockchain and35

defines their permissions over on-chain resources. Policies, such as access control, chaincode lifecycle, and endorsements,36

clarify how members agree or refuse the state update of channels, chaincodes, ledgers, and more. For the ledger fork caused37

by malicious peers that exist in most permissionless blockchains, the raft ordering service in Fabric defines an ordering node38

(orderer) to sort transactions, and with the deterministic consensus algorithm, “ledger fork” is prevented.39

The consortium blockchain in our BAKER consists of the following components.40

• MN: The MN, as a certificate authority, is responsible to process the registration and revocation of members, and41

provides for dispute resolution as an arbitrator concurrently.42

1) https://hyperledger-fabric.readthedocs.io/en/release-2.3/index.html

Yang P, et al. Sci China Inf Sci 3

• Client: The client is an application that accessesand updates the ledger via a peer connection on the Fabric gateway.1

Updating the ledger involves more complicated interactions between the client and various peers, including the submission2

of the transaction proposal, endorsement, and submission of the endorsed transaction.3

• Peer: One peer can maintain multiple ledgers by joining different channels. There are four types of peers: the endorser4

simulates the transaction proposal and returns an endorsement response; the leader broadcasts the new transactions to5

other peers; the committer peer verifies the new block of transactions from the leader peer and updates the ledger; the6

anchor peer exchanges information with other organizations. Note that a peer may simultaneously play one or more roles7

and every peer can act as a committer to verify the new block.8

• Orderer: The orderer node is responsible for sorting the endorsed transactions, packaging them into a new block and9

broadcasts the block to leader peer.10

• Org: That is organization with several peers. It can be a department or an enterprise in IIoT.11

• Channel: Peers in the same channel maintain a ledger.12

• Chaincode: The chaincode contains one or more smart contracts and can be invoked in specific channels.13

Client

Blockchain Network

1

Orderer

3.
S

ub
m

it
tr

an
sa

ct
io

n
an

d
en

do
rs

em
en

t

4.Transactions are sorted and packaged into a new block

5. Broadcast the
new block

Peer

Ledger

Chain
code

Peer

Ledger

Chain-
code

Peer

Ledger

Chain
code

Peer

Ledger

Chain-
code

Org 1 Org 2

 Endorser 1 Endorser 2 Committer Leader

Verification workflow in Org 2

O
rdering Service (O

rderer)

Endorse-
ment

1. Submit transaction proposal 2. Return proposal response

Verify the
new block
and update
the ledger

Verify the
validity and

consistency of
endorsements

1

2
2

3
5

5

5

5 4

Client

Figure B2 (Color online) Deployment of BAKER.

In order to implement decentralized public auditing, DOs and CSPs in the same channel should get the certificates from14

the MN before they are permitted to join the blockchain network as peers. All peers and the orderer are nodes in the15

Hyperledger Fabric, and their interaction process during the auditing phase is as follows (see Figure B2).16

1. The CSP submits a transaction proposal, including the proof, auditing chaincode ID, and signature, to multiple17

endorsers through the client.18

2. The endorser takes the transaction proposalas input to run the auditing chaincode and gets the verification result after19

validating that the signature on the transaction proposal is correct. The verification outcomes will then be signed and put20

into the proposal response. Note that this is a simulation of transaction execution and will not affect the status of the21

blockchain.22

3. After receiving enough proposal responses (i.e., endorsements), the client checks their signatures and consistency before23

forwarding the endorsed transaction to the orderer. The endorsement strategy determines the number of endorsements. If24

there are inconsistent verification results in responses, the transaction is aborted, indicating that the verification failed.25

4. The orderer sorts all transactions received in order and packages them into a new block. The orderer then broadcasts26

the new block to the leader of each Org within the channel.27

5. Each leader checks the validity of transactions in the new block. The valid block will be broadcasted to committers28

within the organization and saved locally. The committer first verifies the transactions in the new block. The new block29

will be added to the blockchain only if the verification passes. That is, the current auditing task confirms the integrity of30

the data.31

The ledger and data of all organizations within the same channel will be synchronized through their respective anchor32

peers.33

Appendix C BAKER Design34

Appendix C.1 The concrete construction of BAKER35

The BAKER consists six algorithms: KeyGen, TagGen, KeyUpdate, AuthUpdate, ProofGen, and Verification.36

Yang P, et al. Sci China Inf Sci 4

Given a security parameter κ, it determines a finite field Zp and a bilinear pairing map e : G1 × G1 → G2, where1

G1, G2 are two multiplicative cyclic groups of a large prime order p. Let g, u be two different generators of G1. Select2

a pseudorandom permutation F : Z∗p × {1, 2, · · · , n} → {1, 2, · · · , n}. Set five different collision resistant hash functions3

H1 : {0, 1}l → G1, H2 : {0, 1}∗ → G1, H3 : G1 → Z∗p , f : {0, 1}∗ → Z∗p , h : {0, 1}∗ → Z∗p , where l is the length of time4

period t, f maps {0, 1}∗ to the key space of F . We assume that all the verifiers and CSPs have long-term private/public5

key pairs on the blockchain, and the public keys correspond to their addresses on the blockchain.6

(1) KeyGen. The DO first generates a signing private/public key pair (ssk, spk), randomly picks x ∈ Zp as the private7

key. Then selects β ∈ Z∗p as the secret key of the MN, Computes SK = H1(t0)βx, gβ , R = gβx, sets SK = H1(t0)βx8

as the auditing secret key of the initial time period, and sends β to the MN in a secure channel. The public parameter9

tuple is para = (H1, H2, H3, f, h,F , g, u, gβ , R, spk) and visible to everyone in this system, while the secret parameters is10

confidential.11

(2) TagGen. For a file F to be uploaded to a cloud server in the system, the DO first divides the file into n × s sectors.12

To protect the confidentiality of IIoT data, each sector is encrypted and denoted as mi,j , 1 6 i 6 n, 1 6 j 6 s, assuming a13

symmetric encryption algorithm used. Record each s-sector as a data block mi = (mi,1, · · · ,mi,s) in order. Then he does14

the following:15

• Select s+1 random secrets α, α1, · · · , αs ∈ Z∗p , and compute v = gα, uj = uαj ∈ G1, j = 1, · · · , s, and the authenticator16

of the i− th block as σi = (hi · u
∑s

j=1 αjmi,j)α · SK, where hi = H2(name‖i‖Cid), name,Cid are the identifiers of the file17

and CSP, respectively.18

• Set F = {mi}i∈[1,n],Φ = {σi}i∈[1,n], U = {u1, · · · , us}. Compute the file tag as19

FT = (name‖Cid‖t‖U‖v)‖SSigssk(name‖Cid‖t‖U‖v)

to ensure the correctness of the file identifier name and time period t.20

• The DO sends {F,Φ,FT} to CSP who verifies whether they are valid once receiving data-tag pairs:

e(g, σi) =e(v, hi ·
s∏
j=1

u
mi,j

j) · e(R,H1(t)), i = 1, · · · , n. (C1)

If it holds, the CSP stores these data blocks and Φ = {σi|i = 1, · · · , n}; otherwise, the storage transaction is aborted.21

(3) KeyUpdate. At the beginning of time period t, the DO selects a random number ρ ∈ Z∗p , updates her/his own private22

key to xt = x/ρ, and sends ρ, t to MN through a secure channel. The MN updates the private key as βt = β · ρ, calculates23

the update message H1(t)βt , and returns it to the DO. The DO computes H1(t)βtxt and checks the correction of H1(t)βt24

as follows25

e(g,H1(t)βtxt) = e(R,H1(t)). (C2)

If it holds, the DO sets S̃K = H1(t)βtxt as the auditing secret key of time period t.26

(4) AuthUpdate. The authenticators will be updated after a new auditing secret key S̃K is generated at time period t.27

Concretely,28

• The DO computes the authenticator update key auk = S̃K/SK and sends it to the CSP, where SK is the auditing29

secret key of the last time period t− 1.30

• The CSP verifies whether auk is valid through the equation below

e(g, auk) = e(R,H1(t)/H1(t− 1)). (C3)

Only if it holds, the CSP updates all block authenticators by computing σ̃i = σi · auk, and displaces Φ with Φ̃.31

(5) ProofGen. The CSP periodically traverses the auditing tasks of all DOs, and gets the public information τ . Then do32

the following.33

• Choose a random 1 6 c 6 n and compute k = f(τ). ∀i ∈ [1, c], compute the challenge si = F(k, i) ∈ [1, n], vi =34

h(τ‖i) ∈ Z∗p . Let I = {s1, s2, · · · , sc} be the index set of the challenged blocks.35

• Select s random numbers η1, · · · , ηs ∈ Z∗p , and compute Q =
∏s
j=1 u

ηj
j ∈ G1, γ = H3(Q), µj = ηj + γ

∑
i∈I vi ·mi,j36

with j = 1, · · · , s. Let µ = {µ1, · · · , µs}. Calculate the aggregate authenticator σ =
∏
i∈I σ

viγ
i .37

• Submit a transaction proposal containing the proof P = (FT, τ, c,Q, µ, σ) and auditing chaincode ID on blockchain.38

(6) Verification. Verifiers first checks the validity of the file tag FT and verifies the authenticity of state information τ via

blockchain. If any verification failed, it aborts. Otherwise, recover name,Cid, U, v, and compute γ = H3(Q), k = f(τ), I =

{F(k, i)}, vi = h(τ‖i), hi = H2(name‖i‖Cid) for i = 1, · · · , c. Then verifiers check whether the following equation (C4)

holds

e(v,Q) · e(g, σ) = e(v, (
∏
i∈I

h
vi
i)γ ·

s∏
j=1

u
µj

j) · e(R,H1(t)
γ

∑
i∈I

vi
). (C4)

If it holds, then return “True”; otherwise, return “False”.39

yp
高亮

yp
高亮

yp
高亮

yp
高亮

Yang P, et al. Sci China Inf Sci 5

DO Setup Chaincode
Data owner’s address: DO.addr
CSP’s address: CSP.addr
System public parameters: para
Storage cycle: SC
Auditing tasks: AT
Deposit: D
Service fee：SF
……

Auditing Chaincode
Promise: {
if (Verification(para,P) == True)
Execute: Transaction(from: DO.addr, to: CSP.addr,
value: SF;}
else
Execute: Transaction(from: CSP.addr, to: DO.addr,
value: FD;}
……

CSP Promise Chaincode
CSP’s address: CSP.addr
Data owner’s address: DO.addr
Deposit: D
Compensation for the delay of auditing task: CD
Fine for data corruption: FD
if (The auditing task is not performed according to
the DO Setup Chaincode:)
Execute: Transaction(from: CSP.addr, to: DO.addr,
value: CD;}
……

Figure C1 DO Setup Chaincode.

CSP Promise Chaincode
CSP’s address: CSP.addr
Data owner’s address: DO.addr
Deposit: D
Compensation for the delay of auditing task: CD
Fine for data corruption: FD
if (The auditing task is not performed according to the DO Setup Chaincode:)
Execute: Transaction(from: CSP.addr, to: DO.addr, value: CD);
……

Figure C2 CSP Promise Chaincode.

Auditing Chaincode
Promise: {
if (Verification(para,P) == True)
Execute: Transaction(from: DO.addr, to: CSP.addr, value: SF);}
……

Figure C3 Auditing Chaincode.

Appendix C.2 Supporting arbitration1

Service fees and compensation. After successfully uploading the data to the cloud server, the DO deploys the DO2

Setup Chaincode (see Figure C1) on the blockchain. The chaincode contains information such as the DO’s address on the3

blockchain (i.e., public key), the CSP’s address on the blockchain, public parameters, the storage period, auditing tasks,4

and the storage service fee payable for each verification. The CSP deploys a chaincode to state that it will conduct integrity5

checks in accordance with the auditing task list. It promises to pay compensation if the check is not completed within the6

specified time or verification fails, see Figure C2. The verification algorithm is packaged into the auditing chaincode, see7

Figure C3, which triggers a service fee transaction when the verification passes, at which point the CSP can receive the8

service fee due for this period from the DO.9

Arbitration. If a malicious verifier outputs “False”, for example, the DO may frame the CSP for compensation. The10

framed CSP can apply for arbitration to the MN who selects s random numbers {v′1, · · · , v′c} from Z∗p and sends them to11

the CSP. The CSP generates a new proof as follows:12

• Compute µ′j =
∑
i∈I v

′
i ·mi,j with j = 1, · · · , s. Let µ′ = {µ′1, · · · , µ′s}. Calculate the aggregate authenticator13

σ′ =
∏
i∈I σ

v′i
i .14

• Submit a transaction proposal containing the proof P ′ = (FT, τ, c, µ′, σ) and auditing chaincode ID on blockchain.15

After the MN receives P ′, it first verifies whether the file tag FT and τ are valid. If any verification failed, it aborts.

Otherwise, recover the identifiers name,Cid, and compute k = f(τ), I = {F(k, i)}, i = 1, · · · , c. Then check whether the

following equation (C5) holds

e(g, σ′) = e(v,
∏
i∈I

h
v′i
i

s∏
j=1

u
µ′j
j) · e(R,H1(t)

∑
i∈I v

′
i). (C5)

If it holds, it means the data is stored correctly; otherwise, the data is corrupted, and the CSP has to pay compensation16

and fine to the DO.17

Appendix D Security analysis18

Theorem 1. (Correctness) If all challenged data blocks and authenticators are correct, then the proof from the CSP will19

pass verification.20

Proof. Equation (1) is used to verify the correctness of the data blocks and Φ once the CSP receives the file and tag set.

e(g, σi) =e(g, (hi · u
∑s

j=1 αjmi,j)α) · e(g,H1(t)βx)

=e(v, (hi ·
s∏
j=1

uαjmi,j)) · e(R,H1(t))

=e(v, hi ·
s∏
j=1

u
mi,j

j) · e(R,H1(t)).

The DO uses equation (2) to verify the validity of the update message from the MN in the KeyUpdate phase21

e(g,H1(t)βtxt) = e(gβx, H1(t)) = e(R,H1(t)).

The CSP verifies the correctness of the authenticator update key auk from DO using equation (3).

e(g, auk) = e(g,H1(t)βtxt/H1(t− 1)βt−1xt−1) = e(g, (H1(t)/H1(t− 1))βx) = e(R,H1(t)/H1(t− 1)).

yp
高亮

yp
高亮

Yang P, et al. Sci China Inf Sci 6

Equation (4) is used to proved that the challenged data blocks are stored securely in the cloud. Using public parameters,

e(u,Q) · e(g, σ) can be computed as follows

e(v,Q) · e(g, σ) =e(v,

s∏
j=1

u
ηj
j) · e(g,

∏
i∈I

((hi · u
∑s

j=1 αjmi,j)α · SK)viγ)

=e(v,
∏
i∈I

h
viγ
i

s∏
j=1

u
ηj+γ

∑
i∈I vi·mi,j

j) · e(g, SK
γ

∑
i∈I

vi
)

=e(v, (
∏
i∈I

h
vi
i)γ ·

s∏
j=1

u
µj

j) · e(R,H1(t)
γ

∑
i∈I

vi
).

The MN uses the equation (5) to check if the data is stored correctly by CSP. Using the public parameters and the proof

generated by CSP, it yields

e(g, σ′) =e(g,
∏
i∈I

(hi · u
∑s

j=1 αjmi,j)αv
′
i) · e(g,

∏
i∈I

SKv′i)

=e(g,
∏
i∈I

(hi · u
∑s

j=1 αjmi,j)αv
′
i) · e(R,H1(t)

∑
i∈I v

′
i)

=e(v,
∏
i∈I

h
v′i
i

s∏
j=1

u
µ′j
j) · e(R,H1(t)

∑
i∈I v

′
i).

This ends the proof.1

In order to formally define the security of the proposed BAKER, we design a game composed of an adversary A and a2

challenger C to attack the security of the system:3

(1) Setup phase. C runs KeyGen to generate the secret key x and the system public parameters para. Give para to A.4

(2) Query phase. A is allowed to perform a series of queries:5

• Secret key queries. A can query the secret key in time period t. C returns the secret key x in time period t to A.6

• Authenticator queries. A can query the authenticator of any data block mi = (mi,1, · · · ,mi,s) in time period t. C7

returns the authenticator σi corresponding to (mi, t).8

(3) Forgery phase. A outputs the authenticator σ̂i for a block m̂i in time period t̂(6= t), which is never queried in query9

phase.10

Theorem 2. (Soundness) If the CDH assumption holds in group G1, our proposed scheme is key exposure resistant and11

the authenticators generated during key-exposure time period are secure.12

Proof. Given CDH instance (g,G1,Υ = ga,Λ = gb), if A wins the game with non-negligible probability ε, then the13

challenger can solve the CDH problem. Suppose that the adversary makes qs secret key queries and qa authenticator14

queries.15

(1) Setup phase. The challenger C initializes the time period as t = 0, randomly selects SKC = x ∈ Z∗p , and sets16

PKMN = Υ, PKC = Υx, SKMN = a that C has no idea about it. Then C randomly selects α ∈ Z∗p and s random17

values (α1, · · · , αs) ∈ Z∗p , and computes u = gα and uj = gαj (1 6 j 6 s). Finally, C sends the public parameters18

(H1, H2, g, u, {uj}, PKMN , PKC) to A. Let t′ be the challenged time period, that is, A cannot query the private19

key and tags during time period t′.20

(2) Query phase. H1 and H2 are considered to be two different random oracles. There are four queries in this phase:21

a) H1 query. The challenger C creates a hash table H1−table to record all queries and response about H1 query.22

The H1−table is empty at the beginning. When A queries H1 at (t), C responds as follows:23

• For input (t), if H1−table contains a tuple (t, ω, h1), C returns h1.24

• Otherwise, C randomly chooses ω ∈ Z∗p . If t 6= t′ computes gω and adds (t, ω, h1 = gω) to H1−table.25

Otherwise, C computes Λω and adds (t, ω, h1 = Λω) to H1−table. Finally, C responds with h1.26

b) H2 query. The challenger C creates a hash table H2−table to record all queries and response about H2 query.27

The H2−table is empty at the beginning. When A queries H2 at (name‖i‖Cid), C responds as follows:28

• For input (name‖i‖Cid), if H2−table contains a tuple (name‖i‖Cid, ζ, h2), C returns h2.29

• Otherwise, C randomly chooses ζ ∈ Z∗p and adds (name‖i‖Cid, ζ, h2 = gζ) to H2−table. C responds with30

h2.31

c) The secret key query. If A wants to query the private key SKC,t during time period t, C retrieves (t, ω, h1)32

in H1−table.33

• If t = t′, C aborts.34

• Otherwise, C randomly chooses ρt ∈ Z∗p , computes SKC,t = xρt as well as SKt = ΥωSKC . Note that35

SKt = h
SKMNSKC
1 = gωSKMNSKC = ΥωSKC . Finally, C responds with SKC,t.36

d) The Authenticator query. As for the query of (t, name, i, Cid), C first recovers (t, ω, h1) from H1−table37

and (name‖i‖Cid, ζ, h2) from H2−table.38

• If t = t′, C aborts.39

Yang P, et al. Sci China Inf Sci 7

• Otherwise, C computes σi = (h2 · u
∑s

j=1 αjmi,j)α · SKt = (gζ
∏s
j=1 u

mi,j

j)α ·ΥωSKC , and responds with1

(t, σi).2

(3) Forgery phase. The challenger C chooses a time period t in which A never made a key query and an authenticator3

query. It requests A to return a valid tag σi for challenged block mi = (mi,1, · · · ,mi,s). A outputs (t, σi) and C4

recovers (t, ω̂, ĥ1) from H1−table.5

a) If t 6= t′, C aborts.6

b) If t = t′, h1 = Λω̂ and h2 = gζ̂ . If the forgery is valid, then

e(g, σi) = e(g, (h2 ·
s∏
j=1

u
mi,j

j)α · SKt) = e(g, uζ̂+
∑s

j=1 αjmi,j) · e(g, gabxω̂).

C proceeds to calculate the value of gab. The result for the given CDH instance is gab = (σi/u
ζ̂+

∑s
j=1 αjmi,j)(xω̂)

−1
.7

Let A1 denote the secret key query phase, A2 denote the authenticator query phase, A3 denote the forge phase, and

Ω = qs+qa

qs+qa+1
. The probability of A solving the given CDH problem is

Pr[¬A1 ∧ ¬A2 ∧ ¬A3] > ΩqsΩqa (1− Ω) =

(
(qs + qa)q

s+qa

(qs + qa + 1)qs+qa+1

)
,

which is not negligible, and this contradicts the CDH assumption. Therefore it is not possible to forge a valid authenticator.8

Further we will show that the proof P is also unforgeable. The above analysis implies the aggregation tag σ cannot

be forged. Let P = (t̂, Q, µ, σ) be the correct proof for a challenge {(i, vi)|i ∈ I} in time period t̂. If A outputs a proof

P ′ = (t̂, Q, µ′, σ) satisfying the equation (4), then we have

s∑
j=1

αj(M
′
j −Mj), M ′j =

∑
i∈I

vim
′
i,j ,Mj =

∑
i∈I

vimi,j .

Assuming that there exist d (d > 1) forged M ′j (6= Mj), the probability of selecting the proper {αj} is pd−1

pd
= 1

p
, which is9

a negligible value. Thus a valid proof cannot be forged.10

Similarly, we can prove that the proof P ′ in the Section 4.3 is also unforgeable.11

From the above analysis, under the CDH assumption, our proposed scheme is key exposure resistant and the authenti-12

cators generated during key-exposure time period are secure.13

Theorem 3. In our scheme, it is difficult to forge auditing secret key even if the DO’s private key was exposed.14

Proof. In each time period t, the auditing secret key SK = H1(t)xβ contains two secret values: the DO’s private key and15

the MN’s private key. Since the MN’s private key is secret, it is impossible to successfully forge a valid auditing secret key16

under the DL assumption, even if an adversary obtains the DO’s private key in the current period. Furthermore, the DO’s17

private key and the MN’s private key are updated using a random value, and it is impossible for an adversary to derive the18

DO’s new private key since the random value is secret. Therefore, the auditing private key in our scheme is secure.19

Theorem 4. (Privacy preserving) Any verifier cannot recover the original data simply by the proof P from CSP.20

Proof. We prove this theorem from the following cases.21

(1) Note that
∑
i∈I vimi,j is blinded by ηj and γ in equation µj = ηj+γ

∑
i∈I vimi,j . Verifiers cannot learn

∑
i∈I vimi,j22

from µj = ηj + γ
∑
i∈I vimi,j without the random secret ηj . It is impossible to get ηj from Q under the assumption23

of CDH.24

(2) Verifiers cannot learn any information on
∑
i∈I vimi,j from σ. Note that σ =

∏
i∈I((hi ·

∏s
j=1 u

mi,j

j)α ·H(t)xβ)γvi =25 ∏
i∈I(hαi ·H(t)xβ)γvi

∏s
j=1 u

γ
∑

i∈I vimi,jα

j . It is hard to compute
∏
i∈I(hαi ·H(t)xβ)γvi under the CDH assumption,26

so u
γ
∑

i∈I vimi,jα

j cannot be derived.27

Therefore, the proposed scheme guarantees data privacy.28

Theorem 5. (Detectability) Suppose that the file F stored in the cloud server is divided into n blocks, and the number29

of corrupted data blocks is a. If there are c challenged data blocks, the proposed scheme is (a
n
, 1− (n−a

n
)c) detectable.30

Proof. We use X as the corrupted blocks in challenged blocks. Since each block mi can be selected repeatedly for

challenge, the detection probability of the corrupted blocks is

P{X > 1} = 1− P{X = 0} = 1− (
n− a
n

)c.

Thus our scheme is (a
n
, 1− (n−a

n
)c) detectable.31

Fairness. In the proposed scheme, we design chaincodes to realize fair payments between DOs and CSPs based on32

consortium blockchain. Specifically, the details and trigger conditions of the transactions are embedded in the chaincodes.33

When the CSP honestly provides proof of data possession, it can get the service fee. However, when the CSP refuses to34

provide proof of possession or the verification reslut shows that the data is corrupted, the DO can initiate arbitration to35

obtain compensation. When a malicious node frames a CSP, the CSP can initiate arbitration to prove possession of the36

correct data. All actions of the auditing process are recorded by the blockchain, which can provide enough evidence to37

ensure fair transactions. Therefore, the proposed scheme achieves payment fairness.38

Yang P, et al. Sci China Inf Sci 8

Appendix E Performance evaluation1

A functionality comparison is given between the proposed scheme and several related schemes [1–6]. See Table E1.

Table E1 Comparison of Public Auditing Schemes

Schemes Decentralized Data Auditing Key Update Authenticator Update Key-Exposure Resistance Fair Payment

[1] × X × X ×
[2] × X X X ×
[3] × X X × ×
[4] X × × × X

[5] X × × × X

[6] × X × X ×
Our scheme X X X X X

2

Appendix E.1 Theoretical result3

Computational overhead. We discuss the computational overhead in the five phases: key update, authenticator gener-4

ation, authenticator update, proof generation, and verification. A comparison of our computational overhead with [1, 2, 6]5

is shown in Table E2. In the key update phase, the computational overhead in our scheme is 2MG1
+ 2EG1

+H, which is6

less than [1, 2, 6] because the computational overhead of a H operation is higher than that of EG1
and MG1

. During the7

authenticator update phase, the DO only needs to compute one MG1
to generate the authenticator update key, whereas8

MG1
+ 2EG1

are required in [2]. [1,6] do not discuss the authenticator update. Since we divide the file with each data block9

containing s sectors, whereas the other three schemes do not, we have n′ = n ∗ s for a file of size |F |. Obviously, when10

s > 2, the computational overhead to generate authenticators for F in our scheme is significantly less than that in [1, 2, 6].11

Our scheme is also lower in terms of computational costs for the proof and verification phases. For example, assuming the12

file F has a corrupted data blocks. From the Theorem 5, it needs c > 44 to achieve a detection probability of 99% if we set13

a = 20, n = 200 and s = 50. While for n′, it requires c′ > 2301. As can be seen from Table E2, for the same size of file, the14

computational cost of our scheme is less compared to [1, 2, 6].15

Table E2 Computational Overhead

Schemes [1] [2] [6] Our scheme

KeyUpdate MG1
+ 2EG1

+ 2H 2(S + EG1
+H) + 2MG1

2MG1
+ EG1

+ 2H 2MG1
+ 2EG1

+H

AuthUpdate \ MG1
+ 2EG1

\ MG1

TagGen
n′(MZ∗p + 2MG1

+

2EG1
+H)

n′(2MG1 + 3EG1 +H)
n′(MZ∗p +MG1

+

2EG1
+H)

n((s− 1)S + sMZ∗p +

2MG1
+ 2EG1

+H)

ProofGen
(c′ − 1)(S +MG1

)+

cMZ∗p + P + (c′ + 1)EG1

c′S + (c′ + 1)MZ∗p +

(c′ − 1)MG1 + c′EG1+

EG2 + P +H

(c′ − 1)(S +MG1
)+

c′MZ∗p + (c′ + 1)EG1

s(cS + (c+ 1)MZ∗p)+

(c+ s− 2)MG1+

(s+ c+ 1)EG1 +H

Verification
(c′ − 1)S + (c′ + 1)MG1

+

(c′ + 2)EG1
+MG2

+3P + (c′ + 1)H

(c′ − 1)S +MZ∗p +

(c′ + 1)MG1
+ 2MG2

+

(c+ 4)EG1
+ 3P + c′H

(c′ − 1)S + cMZ∗p +

2EG1
+ 2MG2

+

4P + 2H

(c− 1)S +MZ∗p +

(s+ c− 1)MG1
+ 2MG2

+

(s+ c+ 2)EG1
+ 4P + cH

Communication overhead. The communication overhead in the key update phase comes from two parts: the DO16

sends the secret ρ to the MN, and the MN sends back the update information H1(t)βt . So the communication overhead is17

|p|+ |G1|, which costs the same as in [2]. Although the communication overhead is |G1| in [1,6], their schemes only update18

the auditing secret key but not the DO’s private key. In the authenticator update phase, only the DO needs to send an19

authenticator update key auk to the CSP with a communication overhead of |G1|, which is identical to [2], while [1, 6] do20

not discuss the authenticator update. The proposed scheme uses blockchain and smart contracts to achieve decentralized21

public auditing. Thus, there is no interaction during the challenge process. While in the other three schemes [1, 2, 6], the22

communication overhead is c|p|, c|p|, and |p|, respectively.23

Table E3 Communication Overhead

Schemes [1] [2] [6] Our scheme

KeyUpdate |G1| |p|+ |G1| |G1| |p|+ |G1|
AuthUpdate \ |G1| \ |G1|

Challenge c|p| c|p| |p| 0

We analyze the communication and computational overhead of KeyUpdate, AuthUpdate, ProofGen and Verification in24

BAKER and [1,2, 6]. See Table E3 and E2.25

Note that the file in BAKER is divided into n blocks containing s sectors, whereas [1, 2, 6] do not, so we set n′ = n ∗ s26

for a file of size |F |. Obviously, when s > 2, the computational overhead to generate authenticators for F in our scheme is27

Yang P, et al. Sci China Inf Sci 9

significantly less than that in [1,2,6]. Our scheme is also lower in terms of computational costs for the proof and verification1

phases. For example, assuming the file F has a corrupted data blocks. From the Theorem 5, it needs c > 44 to achieve a2

detection probability of 99% if we set a = 20, n = 200 and s = 50. While for n′, it requires c′ > 2301. As can be seen from3

Table E2, for the same size of file, the computational cost of our scheme is less compared to [1, 2, 6].4

Appendix E.2 Off-chain experimental result5

In order to intuitively observe the performance of our proposed scheme, we carry out experimental simulation on algorithms:6

TagGen, KeyUpdate, AuthUpdate, ProofGen and Verification. All algorithms are written by Python language with the7

Charm-Crypto library 2). The time consumption of these algorithms is simulated on Ubuntu 20.04.3 LTS with 4GB RAM.8

The bilinear mapping is obtained by using type A elliptic curve with 160 bits. In our experiment, the selected file sizes are9

200KB, 400KB, 600KB, 800KB, and 1MB. Set the size of each data block to 20 bytes in [1, 2, 6]. Set each data block to10

consist of 50 sectors of size 20 bytes in our scheme.11

First, the simulation result of TagGen is shown in Figure E1. The time cost for generating the authenticator ranges12

from 1.00 s to 4.57 s as the file size increases. Compared with [1, 2, 6], the proposed scheme has a much lower time cost in13

computing authenticators for outsourced data blocks. This means that as the outsourced files grow, the proposed scheme14

is more friendly to the DO.15

200 400 600 800 1000
Size of the file (KB)

0

50

100

150

200

250

300

Th
e

tim
e

fo
r D

O
 to

 g
en

er
at

e
ta

gs
 (s

)

[1]
[2]
[6]
Our scheme

Figure E1 (Color online) Time

cost for TagGen.

200 400 600 800 1000
Size of the file (KB)

0

2

4

6

8

10

12

14

Th
e

tim
e

fo
r C

SP
 to

 g
en

er
at

e
th

e
pr

oo
f (

s)

[1]
[2]
[6]
Our scheme

Figure E2 (Color online) Time

cost for ProofGen

200 400 600 800 1000
Size of the file (KB)

0

5

10

15

20

25

30

35

40

Th
e

tim
e

fo
r v

er
ifi

ca
tio

n
(s

)

[1]
[2]
[6]
Our scheme

Figure E3 (Color online) Time

cost for Verification

Then, we test the time cost of generating proofs and completing verification in the case that the number of corrupted16

data blocks is 20 and the detection probability of the corrupted blocks is 99%. Under this premise, files of sizes 200 KB,17

400 KB, 600 KB, 800 KB, and 1 MB require a minimum number of challenge blocks of 44, 90, 134, 182, and 228 in BAKER18

respectively, while in [1,2,6] the corresponding minimum number of challenge blocks is respectively 2301, 4603, 6902, 9208,19

and 11511. The time required to generate the proof P and verify P is shown in Figure E2 and Figure E3. Figure E2 reflects20

that the time consumption of ProofGen in our scheme increases linearly with the size of the file, which varies from about21

0.11 s to 0.30 s. Compared to the scheme of [1, 2, 6], our scheme has higher efficiency. The verification incurs higher time22

costs because the verification process involves more exponential and pairing operations than the proof generation process.23

As shown in Figure E3, the time for verification increases as the file size increases, which varies from 0.21 s to 0.85 s in Our24

BAKER, while in [1, 2] the time cost is over 38 s for a 1 MB file. In [6], although the verification takes less time, ranging25

from 0.01 s to 0.04 s, it requires more computational resources to generate the proof.26

In addition, we implement algorithms for key update and authenticator update while considering the range of time27

periods from 1 to 10, see Figure E4. In our scheme, there are one multiplication and two exponential operations when28

updating the auditing key, which are independent of the time period. As shown in Figure E4, the key update time is29

approximately 3.77 ms in any time period from 1 to 10 in our scheme, which is less than [1, 2, 6]. This means that it does30

not have to worry that the time cost of updating the auditing secret key will increase significantly with the time period.31

Since the DO only needs to compute a division in the AuthUpdate phase, the time consumption is independent of time32

period. The time costs of AuthUpdate in our scheme and [2] are approximately 0.0034 ms and 2.1915 ms on DO’s side33

respectively, which maintain at a low level as shown in Figure E5.34

Finally, we numerically analyze the detectability of the proposed scheme. As shown in Figure E6, given the probabilities35

60%, 80%, 90% , 95%, 99% that 50 corrupted blocks are detected, there is a linear relationship between the number of36

challenged blocks and total blocks. When the number of data blocks is 10000, about 920 challenged blocks are required37

to achieve a 99% detectable probability. Figure E7 shows that the ratio of challenged data blocks to the total number is38

inversely proportional to that of corrupted data blocks to the total number, where the total number of data blocks ranges39

from 2000 to 10000. Moreover, as the total number of data blocks grows, the ratio of challenged blocks decreases.40

2) https://pypi.org/project/charm-crypto/

Yang P, et al. Sci China Inf Sci 10

1 2 3 4 7 8 9 105 6
The time period

1

2

3

4

5

6

7

8

9

10

C
om

pu
ta

tio
na

l c
os

t f
or

 K
ey

U
pd

at
e

ph
as

e
(m

s) [1]
[2]
[6]
Our scheme

Figure E4 (Color online) Time cost for

KeyUpdate.

1 2 3 4 7 8 9 105 6
The time period

0

2

4

6

8

10

C
om

pu
ta

tio
na

l c
os

t f
or

 A
ut

hU
pd

at
e

ph
as

e
(m

s)

[2]

Our scheme

Figure E5 (Color online) Time cost for

AuthUpdate

0 2000 4000 6000 8000 10000
0

200

400

600

800

1000

Number of data blocks (the number of corrupted blocks is 50)

N
um

be
r o

f c
ha

lle
ng

ed
 b

lo
ck

s

99%
95%
90%
80%
60%

Figure E6 (Color online) Ratio of

challenged blocks VS. ratio of corrupted

blocks

0.02 0.04 0.06 0.08 0.1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Ratio of corrupted blocks to total blocks

R
at

io
 o

f c
ha

lle
ng

ed
 b

lo
ck

s t
o

to
ta

l b
lo

ck
s 10000 data blocks

8000 data blocks
6000 data blocks
4000 data blocks
2000 data blocks

Figure E7 (Color online) Ratio of

challenged blocks VS. ratio of corrupted

blocks.

100 200 300 400 500 600
Number of challenged data blocks

0

5

10

15

20

25

O
n

ch
ai

n
tim

e
co

st
 (s

)

Figure E8 (Color online) Time cost

of on-chain verification

Appendix E.3 On-chain experimental result1

We develops three chaincodes to realize decentralized public auditing and fair payment. The codes are written by Java2

program language with the JPBC library3), and packaged into the chaincode. We deploy and invoke the chaincodes in3

Hyperledger Fabric 2.4 version test network on CentOS 7 with 4GB RAM.4

The bilinear mapping is obtained by using a type A elliptic curve with 160 bits. In our on-chain experiment, the number5

of challenged data blocks ranges from 100 to 600. Each block consists of 50 sectors with a size of 20 bytes. We focus on6

testing the time consumption of on-chain verification. The time cost of on-chain verification is positively linearly related to7

the number of challenged blocks, as shown in Figure E8, ranging from 3.06 s to 17.85 s.8

References9

1 Yu J, Wang H Q. Strong key-exposure resilient auditing for secure cloud storage. IEEE Transactions on Information10

Forensics and Security, 2017, 12: 1931–194011

2 Xu Y, Sun S, Cui J, et al. Intrusion-resilient public cloud auditing scheme with authenticator update. Information12

Sciences, 2020, 512: 616–62813

3 Zheng W Y, Lai C F, He D B, et al. Secure storage auditing with efficient key updates for cognitive industrial iot14

environment. IEEE Transactions on Industrial Informatics, 2021, 17: 4238–424715

4 Wang H, Qin H, Zhao M H, et al. Blockchain-based fair payment smart contract for public cloud storage auditing.16

Information Sciences, 2020, 519: 348–36217

5 Li Z W, Xin Y, Zhao D, et al. A noninteractive multireplica provable data possession scheme based on smart contract.18

Security and Communication Networks, 2022, 2022: 626844919

6 Nithya S, Uthariaraj V R. Identity-based public auditing scheme for cloud storage with strong key-exposure resilience.20

Security and Communication Networks, 2020, 2020: 483849721

3) http://gas.dia.unisa.it/projects/jpbc/

	Preliminaries
	Workflow and deployment of BAKER
	Workflow
	Deployment of BAKER

	BAKER Design
	The concrete construction of BAKER
	Supporting arbitration

	Security analysis
	 Performance evaluation
	Theoretical result
	Off-chain experimental result
	On-chain experimental result

