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Abstract On-device training for deep neural networks (DNN) has become a trend due to various user

preferences and scenarios. The DNN training process consists of three phases, feedforward (FF), backprop-

agation (BP), and weight gradient (WG) update. WG takes about one-third of the computation in the

whole training process. Current training accelerators usually ignore the special computation property of

WG and process it in a way similar to FF/BP. Besides, the extensive data sparsity existing in WG, which

brings opportunities to save computation, is not well explored. Nevertheless, exploiting the optimization

opportunities would meet three underutilization problems, which are caused by (1) the mismatch between

WG data dimensions and hardware parallelism, (2) the full sparsity, i.e., the sparsity of feature map (Fmap),

error map (Emap), and gradient, and (3) the workload imbalance resulting from irregular sparsity. In this

paper, we propose a specific architecture for sparse weight gradient (SWG) computation. The architecture

is designed based on hierarchical unrolling and sparsity-aware (HUSA) dataflow to exploit the optimization

opportunities of the special computation property and full data sparsity. In HUSA dataflow, the data di-

mensions are unrolled hierarchically on the hardware architecture. A valid-data trace (VDT) mechanism is

embedded in the dataflow to avoid the underutilization caused by the two-sided input sparsity. The gradient

is unrolled in PE to alleviate the underutilization induced by output sparsity while maintaining the data

reuse opportunities. Besides, we design an intra- and inter-column balancer (IIBLC) to dynamically tackle

the workload imbalance problem resulting from the irregular sparsity. Experimental results show that with

HUSA dataflow exploiting the full sparsity, SWG achieves a speedup of 12.23× over state-of-the-art gradient

computation architecture, TrainWare. SWG helps to improve the energy efficiency of the state-of-the-art

training accelerator LNPU from 7.56 to 10.58 TOPS/W.
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1 Introduction

In recent years, artificial intelligence (AI) applications are ubiquitous, and deep neural networks (DNNs)
are widely applied in AI tasks. Directly deploying the DNNs trained from the cloud on devices suffers
from performance degradation due to different user scenarios and specific tasks [1]. To guarantee the
performance of DNNs, a common solution is to send the users’ data to the cloud and receive the retrained
DNNs from the cloud. However, this highly relies on communication capability and stability. Also,
sending users’ data to the cloud may cause privacy issues. As an alternative solution, on-device training
has aroused increasing interest and several DNN training accelerators have been proposed.

The DNN training process consists of three phases, feedforward (FF), backpropagation (BP), and
weight gradient (WG) update. The update phase can be separated into computing WG and updating
the weights. WG computation occupies a significant portion of the training process. Table 1 lists the
operation (multiplication-and-accumulation) counts of WG computation in one iteration of four typical
DNN models [2–5] on the CIFAR-100 dataset. The proportion of WG computation operations is 28.96%–
33.47%. Since it takes up a non-negligible part of the training process, optimization for WG computation
is necessary to promote training acceleration. Nevertheless, the optimization opportunities for WG
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Table 1 Operation counts of WG computation of DNNs

DNN model Operations (M) Operation (%)

AlexNet [2] 193.54 29.58

VGG-16 [5] 336.2 33.39

RES-18 [4] 580.79 28.96

GoogleNet [3] 33.69 33.47

computation are not well explored in existing training processors. These opportunities are from (1) the
special computation property and (2) the full data sparsity of WG.

Special computation property. The WG computation properties are remarkably different from that
of FF and BP. Compared to FF and BP computation, WG computing is 2D convolution (CONV) with
a large kernel size, and there is no accumulation across the input channel dimension. However, previous
training architectures usually ignore these differences. In training studies like [6, 7], designers consider
the WG computation as a similar operation to FF/BP and mainly focus on the latter’s optimization.
Hence the WG process shares the same architecture with FF and BP in these studies. This simplification
is over-optimistic on account of the differences between WG and FF/BP computation mentioned above.
The distinctions lead to a mismatch between hardware parallelism and WG data dimensions, making the
WG process inefficient in existing training accelerators. This mismatch problem incurs low utilization
and makes the accelerator less energy-efficient. Therefore, a specific WG computation architecture is
required to improve the training efficiency.

Full data sparsity. There is extensive data sparsity existing in WG computation. (1) Two-sided
input sparsity. As the inputs of WG computation, feature maps (Fmaps), and error maps (Emaps)
contain a large amount of zero data due to the employment of ReLU (rectified linear unit) in DNNs.
The computation involved in these data can be eliminated considering they have no contribution to
the final results. (2) Output sparsity. The sparsity of gradients comes from the corresponding weights’
sparsity. Nowadays, model pruning techniques are broadly used in DNNs [8–12]. To maintain accuracy,
the training of pruned models usually follows a prune-retrain processing pattern. During retraining, the
pruned weights would not be updated. Therefore the calculation of related gradients can be eliminated,
which results in gradient sparsity. The benefit of skipping the computation of these gradients is more
remarkable when the batch size becomes large. Although a dedicated WG architecture, TrainWare [13],
was proposed recently, it only handles dense WG and fails to exploit the inherent sparsity.

Leveraging the special computation property and full sparsity brings immense opportunities for saving
computation. To fully exploit the optimization opportunities and process sparse WG computation effi-
ciently, three types of underutilization remain to be addressed. (1) Underutilization caused by mismatch
problem. The available unrolling dimensions of FF/BP and WG are different due to their distinctions.
Thus there is a mismatch between WG data dimensions and hardware parallelism based on traditional
dataflow which focuses on optimizing FF/BP. Processing WG with the FF/BP-tailored hardware paral-
lelism incurs a low utilization. (2) Underutilization caused by full sparsity. Each gradient is generated by
an inner-product operation, where the elements of the Fmap and Emap within a CONV window should
be aligned to generate a correct dot product, i.e., a gradient. The two-sided input sparsity would incur
misalignment between Fmap and Emap, leading to invalid computation, which makes the processing
element (PE) underutilized. Additionally, the output sparsity would randomly make some PEs idle and
cause underutilization. (3) Underutilization caused by workload imbalance. The workload imbalance
induced by irregular sparsity of input and output data makes the execution time depend on the PE with
the heaviest workload, which brings a performance loss.

In this paper, we propose SWG, a specific architecture designed for sparse weight gradient computation.
SWG exploits the optimization opportunities provided by the special computation property and full
sparsity of WG. The architecture is designed based on a hierarchical unrolling and sparsity-aware (HUSA)
dataflow to overcome the underutilization resulting from the mismatch and full sparsity. In HUSA, the
data dimensions are unrolled hierarchically on the hardware architecture. The Fmap and Emap channel
dimensions are unrolled on the PE array to avoid the mismatch and leverage the channels’ inter-reuse
opportunities. The kernel plane is unrolled in the register file (RF) with a valid-data trace (VDT)
mechanism to exploit the two-sided input sparsity and avoid invalid computation induced by the sparsity.
The output plane is unrolled within the PE to alleviate underutilization caused by output sparsity while
maintaining the data reuse opportunities. To tackle the workload imbalance problem incurred by the
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irregular sparsity, we design an intra- and inter-column balancer (IIBLC), which dynamically remaps the
Fmap to each PE in a column and adjusts the Emap allocation for each PE column.

The main contributions of this work are summarized as follows.

• An HUSA dataflow with a VDT mechanism is proposed to overcome the underutilization caused by
mismatch and full sparsity.

• A specific architecture for SWG computation is designed to support the HUSA dataflow.

• An IIBLC is proposed to dynamically tackle the workload imbalance resulting from the irregular
sparsity in WG, which further improves the performance.

2 Preliminary

2.1 DNN training

The DNN training process comprises FF, BP, and WG update. Figure 1 illustrates the three phases in a
CONV layer. In the FF phase, the inputs are N ×H×L Fmaps, where N is the input channel count and
H×L is the size of the Fmap. The weights are formed into M 3D kernels of which the size is N×K×K.
Each kernel performs a 3D CONV on the input Fmaps with a sliding stride of S, generating an R × C

output Fmap. The output Fmaps channel equals the kernel number M , thus there are M ×R×C output
Fmaps. The outputs of the last layer in FF are compared with the ground truth to generate errors. In
the BP phase, the errors are backpropagated through layers in a similar way to FF. As shown in Figure 1,
to gain the N ×H × L output Emaps, the M ×R×C input Emaps are convoluted by N ×M ×K ×K

rotated kernels. In the WG phase, each of the old weights is updated by its corresponding gradient with
a learning rate. To compute the gradients, each channel of the Fmaps is convoluted by each channel of
the Emaps to generate M ×N gradients.

The WG computation of one layer can be described by several nest loops as the pseudo code shown
in Figure 2. Notably, there are mainly three differences between WG and Fmap/Emap computation.
(1) While the computation results of different Fmap channels are partial sums (psums) and should be
accumulated in FF/BP, these computation results are not accumulated in WG computation. The data
of each Fmap channel are reused M times and that of each Emap channel is reused N times, assuming
the gradient size K = 1. Hence the input (Fmap) channel N and the kernel (Emap) channel M are
inter-reused. (2) The output plane in WG is small. Each gradient corresponds to one weight, so the
output gradient plane equals the weight kernel size in the same layer. Weight kernels’ sizes (K ×K) in
DNNs are usually small. (3) Unlike the small kernel size in Fmap and Emap computation, the sliding
window of the 2D CONV performed in every channel is large (R × C). Within the large window, the
elements of Fmap and Emap should be aligned to generate a correct gradient. In other words, each
gradient is generated by an inner-product computation. The 2D large window CONV in WG requires the
alignment of Emap and Fmap, meanwhile, it reduces the data reuse opportunities for the Emap plane.

2.2 Sparsity in DNNs

It is widely known that there is considerable inherent redundancy in DNNs and eliminating the redundant
data helps to reduce the computation requirement. In recent years, many accelerators exploiting the
sparsity in DNNs have been proposed. Some work leverage one-sided input sparsity, i.e., activation or
weight sparsity, to reduce computation. Eyeriss [14] utilizes data gating logic to detect the zero input
activations and skips the corresponding computation. Cambricon-X [15] employs an indexing module to
skip zero weights computing. Cnvlutin [16] avoids invalid computation involving zero input activations
by using hierarchical data-parallel computing units. These studies miss the chance to utilize the other
input data’s sparsity. Other studies like Cambricon-S [17] and SCNN (sparse convolution neural network
accelerator) [18] exploit two-sided input sparsity, i.e., both activation and weight sparsity, to further
eliminate redundant computation. Cambricon-S prunes the weights in a coarse-grain and skips the
computation based on weight indexes and activation values. SCNN skips both zero-activations and zero-
weights by adopting a dataflow based on a Cartesian product, where all the elements of a vector A

are multiplied by all elements of another vector B. In this work, we exploit the full sparsity, i.e., both
two-sided input sparsity (Fmap and Emap sparsity) and output (gradient) sparsity, to accelerate the
computation of WG.
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Figure 1 (Color online) Computation of Fmap, Emap, and WG in a CONV layer.

O-C

I-N

O-P

K-P

for(m=0; m<M; m++)

for(n=0; n<M; n++)

for(kr=0; kr<K; kr++)

for(kc=0; kc<K; kc++)

for(i=0; i<R; i++)

for(j=0; j<C; j++)

G[m][n][kr][kc]+=

E[m][i][j]*F[n][kr+i][kc+j];

Figure 2 (Color online) Pseudo code of WG computation.

3 HUSA dataflow

The HUSA dataflow is proposed to overcome the underutilization caused by the mismatch and the full
sparsity, where the data dimensions are hierarchically unrolled on the hardware. The Fmap and Emap
channel dimensions are unrolled on the PE array, the kernel plane is unrolled within RFs, and the output
plane is unrolled within each PE. In HUSA dataflow, the mismatch is addressed by Emap and Fmap
channel unrolling based on the analysis of the WG computation property (Subsection 3.1). The in-
valid computation induced by two-sided input sparsity is eliminated by kernel plane unrolling with the
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Figure 4 (Color online) Utilization of FF, BP, and WG com-

putation with different unrolling dimensions.

embedded VDT mechanism (Subsection 3.2). The underutilization caused by output sparsity is allevi-
ated by unrolling the output plane within the PE while maintaining the data reuse opportunities (Sub-
section 3.3).

3.1 Sparsity-aware channel dimensions unrolling on PE array

3.1.1 Mismatch between hardware parallelism and WG data dimensions

Compared to FF and BP, WG computation is 2D CONV with a large kernel size, and there is no
accumulation across the input channel dimension. If these differences are ignored when designing the
architecture, underutilization will occur when processing WG. To capture the computation characteristics
of WG and identify the source of utilization reduction, we adjust WG computation into the 3D CONV
computing pattern, and then investigate the utilization when mapping it on CONV architectures. This
adjustment, as shown in Figure 3, will not change either the process or the results of WG computation.
Since the channel-dimension accumulation does not exist in WG, the channels of Fmap are independent.
An N -channel Fmap can be regarded as N Fmaps each with one channel. Each Fmap is reused by M

channels of the Emap, hence the Emap can be regarded as M large kernels each with one channel. In
this way, WG computation can be described as a combination of N 3D CONVs where each input with
only one channel and the kernel size is large.

When mapping one layer on a DNN accelerator, the computation is usually decomposed into several
nest loops due to the limited computing resources. The innermost is loop unrolling, which denotes
hardware parallelism. In the context of this paper, hardware parallelism means the parallelism of the PE
array. Unrolling a data dimension on a PE array indicates the dimension is processed in parallel. For
instance, unrolling the input channel dimension is to map the data of the input channel on the PE array
spatially. Any of the dimensions can be unrolled, depending on the architecture and dataflow design. In
CONV architectures, which are mainly designed for 3D CONV, the unrolled dimensions are usually the
ones with rich data in a 3D CONV layer, such as the input channel, output channel, and output plane.

To study the impact of each hardware parallelism on the utilization, we implement a PE array and
unroll different data dimensions on it. The array has a total of 16 PEs each with one multiply-accumulator
(MAC) inside. Figure 4 presents the PE utilization when processing FF, BP, and WG of dense VGG-16,
RES-18, and GoogLeNet [3–5] on the array with different unrolled data dimensions. The I-C, O-C, O-P,
I-N, and K-P denote the corresponding unrolled dimensions: input channel, output channel, output plane,
input number, and kernel plane, respectively. These dimensions in WG computation are marked as shown
in Figure 2. It is notable that the I-C mark is absent because the input channel in WG computation is 1
and there is no loop for it. Although some unrolled dimensions achieve high utilization when processing
FF and BP, they are not suitable for WG due to the mismatch between hardware parallelism and WG
data dimensions. The hardware parallelism of I-C, O-C, and O-P is widely used in existing training
architectures. For instance, DadianNao [7] unrolls I-C and O-C dimensions, and ScaleDeep [6] adopts
row stationary (RS) dataflow, which is one of the variants of O-P unrolling. Nevertheless, when processing
WG with I-C unrolled, where the input channel is 1, there will be a decline in PE utilization as shown
in Figure 4. Similarly, O-P unrolling leads to a waste of computing resources when dealing with WG as
there is not enough data to be mapped on the PE array. The output plane of WG equals the weight
kernel size which is usually small (3× 3 or 1× 1). As for the hardware parallelism of K-P and I-N, they
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Figure 5 (Color online) Different data dimensions unrolled on PE array.

are usually not seen in CONV architectures. Typically, designers do not unroll the K-P dimension since
the kernel size in 3D CONV is small. I-N dimension is generally “unrolled” temporally, which means
that different inputs are processed in time order. However, for WG, the data in these dimensions are rich
enough to be unrolled, which will help to achieve high utilization if the hardware is properly designed.

To summarize, the I-C and O-P hardware parallelism is common in existing accelerators, while in
WG there are only a few data in these dimensions. On the other hand, the data in WG’s I-N and K-P
dimensions are relatively rich, while the I-N and K-P hardware parallelism is rare in training accelerators.
This mismatch between hardware parallelism and WG data dimensions will cause underutilization when
processing WG on existing accelerators.

3.1.2 Hardware parallelism design for sparse weight gradient computation

To determine the hardware parallelism, we first draw preliminary conclusions based on the utilization
analysis of dense WG computation, and then further discuss the unrolling in the sparse case. Considering
dense WG computation, as indicated in the utilization results of different unrolling dimensions, hardware
parallelism of I-N, O-C, and K-P in WG computation contributes to relatively high utilization. Unrolling
the I-N and O-C on hardware provides not only high utilization but also large opportunities for data
reuse. In WG, each input Fmap, i.e., each channel of the Fmap, is reused by every channel of Emap,
and per Emap channel is reused by every channel of Fmap. Notably, there remains a potential for
high performance when unrolling the large kernel plane in WG computation. However, the utilization
of K-P unrolling is closely related to the kernel sizes. When the kernel size is small, the PE utilization
decreases. The PE number is fixed once a hardware architecture is designed while the kernel sizes of WG
computation in different layers are various. Therefore, K-P unrolling cannot guarantee utilization.

Considering sparse WG computation, to discuss the performance of different unrolling dimensions,
Figure 5 presents the examples of I-N, O-C, and K-P unrolling on PE array. The white grids in Fmap
and Emap represent zero data and the colored grids are non-zero data. In I-N, O-C, and K-P unrolling,
the data are mapped to the PE array in a compressed format to avoid zero-involved computation. A
compressed format indicates that zero data are squeezed out and only the non-zero data are reserved.

The K-P unrolling of the compressed data suffers severe underutilization. The underutilization results
from the misalignment of Emap and Fmap data. In WG computation, the Emap is performed as a large
CONV window sliding on the Fmap. Within the CONV window, the elements of Fmap and Emap should
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be aligned to perform an inner-product computation to generate one correct gradient. Therefore, in the
kernel plane of Emap and Fmap, only the aligned data (presented by deep color grids in Figure 5) involve
valid computation. The misaligned data, through non-zero, fail to participate in valid computation and
should be regarded as invalid data. This misalignment is inevitable in WG computation when Emap and
Fmap are sparse. Since only the aligned data (valid data), which are less than the compressed data,
can be mapped on the PE array, underutilization easily happens as illustrated in Figure 5. Therefore,
unrolling K-P on the PE array is not suitable for sparse WG computation. On the other hand, the invalid
computation could be naturally avoided without alignment in I-N or O-C unrolling. In WG computation,
Fmap and Emap channels are inter-reused, each of the Fmap channels is reused by all the data of Emap,
and vice versa. Hence skipping the mapping of zero data along the channel dimension merely eliminates
the zero-involved computation and would not induce any invalid computation, as shown in Figure 5.

Based on the special computation property of sparse WG, to solve the mismatch between the hardware
parallelism and WG data dimensions, and to leverage the channels’ inter-reuse opportunities, the I-N
(Fmap channel) and O-C (Emap channel) dimensions are chosen for unrolled on PE array.

3.2 Sparsity-aware kernel plane unrolling with VDT mechanism

Although I-N and O-C unrolling solve the mismatch problem and avoid invalid computation, they still
suffer from the two-sided input sparsity. In I-N and O-C unrolling, the irregularity of compressed data
induced by irregular input sparsity will destroy the order of output psum, resulting in index overhead.
To avoid the disorder, we equip the PE array with RFs and unroll K-P by row in the RFs. Specifically,
we store the Emap row (Erow) and Fmap row (Frow) in the RFs. RFs with Erows are shared by PE
columns and RFs with Frows are shared by PE rows. Each PE is able to access its corresponding RFs to
fetch the Erow and Frow data and compute the psums of the same gradient. In each PE, the psums are
accumulated locally. Unrolling K-P in RFs not only helps to avoid the disorder but also leverages the data
reuse opportunities of gradient psum. However, K-P unrolling in RFs also induces invalid computation,
which should be eliminated to better exploit the two-sided input sparsity.

In WG, the elements of Fmap and Emap within the 2D CONV window should be aligned to generate
a correct gradient. Failing to align the Fmap and Emap leads to invalid computation. We refer to the
data involved in invalid computation as invalid-data. As mentioned before, when processing the sparse
WG, the required alignment makes some non-zero data invalid. The compressed data in Fmap are valid
only when the data they aligned with in Emap are non-zero, and vice versa. Figure 6(a) illustrates
the distinction between compressed data and valid-data. The colored data represent no-zero data. For
each of them, if the other multiplier in the aligned position is zero, the value would be invalid. The
invalid computation can be avoided if the PE can selectively access the data (i.e., only fetch valid-data)
in the RFs. The way to track valid-data is related closely to the encoding scheme for sparse data.
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Previous sparsity architectures generally employ compressed sparse row (CSR) or compressed sparse
column (CSC) as compress encoding and gain significant benefit when the sparsity is high. However,
it will induce computing overhead to extract the valid-data if adopting CSR in sparse WG. To trace a
valid value, the CSR coding is first decoded to obtain the absolute positions for all the compressed data
in Fmap and Emap. Then the absolute positions of Fmap and Emap are compared to find the aligned
data, and the invalid data are discarded. Thus when using CSR (or CSC) to compress sparse WG, all
the data positions should be calculated whether the data are valid, which causes computation overhead.

Aiming at tracing the valid-data with low overhead, we design a VDT mechanism that employs binary
strings for compressed data indexing. In the binary string, each bit represents a data position, indicating
whether the corresponding value is zero, i.e., “1” for non-zero and “0” for zero. Examples of Fmap and
Emap using the compressed data index (D-index) are given in Figure 6(b). With this indexing approach,
the effective position could be obtained by bit-wise AND operations, and the generated result string is
a valid-data index (V-index). This V-index can be used to retrieve the valid-data. With binary string
indexing, the calculation and comparison of data positions can be eliminated.

To support the binary indexed data alignment and the valid-data fetching, we implement VDT as a
micro-architecture, which is embedded in each PE. VDT takes the D-indexes of Fmap and Emap as input
and outputs the aligned valid-data. Take the compressed data in Figure 6 as an example, the working
mechanism of VDT is illustrated in Figure 7. VDT workflow: 1© Fmap and Emap D-indexes are input
to a bit-wise AND to obtain the valid-data index (V-index). 2© VDT identifies the valid bit (“1”) and
traces it back to the corresponding “1” in the D-indexes of Emap and Fmap. 3© For Emap (or Fmap),
the valid bit is added up with all the bits in its front by a multi-in bit adder to calculate the valid-data
address. 4© VDT uses the adding result to track the valid value in cRF (or rRF) and fetch it to the
registers for gradient psum computation.

3.3 Sparsity-aware output plane unrolling within the PE

Although VDT helps to get rid of invalid computation, the risk of underutilization caused by output
sparsity remains to be reduced. As I-N and O-C are unrolled on the PE array and K-P unrolled in the
RFs, each PE is in charge of one gradient and the psums of different gradients are generated in parallel
and accumulated locally. As shown in Figure 8, this would randomly make some PEs idle since the output
gradient sparsity is irregular.

To alleviate the underutilization caused by the irregular gradient sparsity, we unroll the output plane
within each PE. Each PE holds the computation of a gradient plane (gradients of corresponding weight
kernel) instead of only one gradient, as presented in Figure 8. Although the gradient kernels are sparse,
there are usually still non-zero gradients in each kernel. Therefore, the proportion of idle PEs can be
significantly reduced. To support the computation, we store two Frows and two Erows in the correspond-
ing RFs, respectively. In each PE, the computation order is rearranged so that three psum rows (i.e.,
a kernel of gradients) can be generated with two Frows and two Erows as input. In this way, the reuse
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Figure 9 (Color online) Gradient kernel computing pattern for K-P unrolling within a PE.

opportunities of Fmap and Emap planes are exploited and the extra access can be reduced. Figure 9
illustrates this computing pattern using an example of 3× 3 gradient kernel. When computing a gradient
kernel, the 2D large window CONV can be regarded as the accumulation of several 1D CONV results.
In this case, the 6 × 6 Emap slides on the 8 × 8 Fmap with unit stride to generate a 3 × 3 kernel of
gradients. For the three gradient rows, the 1D CONV computations in the same color share the same two
Erows and two Frows. For instance, the psums of G-0–G-2 could be generated by sharing E-0, E-1, and
F-0, F-1. In most cases, Fmap is the same size as Emap and its first and last rows are zero paddings, of
which the computation can be skipped. This modified computing pattern can be easily adapted to 1× 1
gradients. For gradient kernels larger than 3× 3, they will be tiled before computation.

As mentioned above, the computation of a gradient kernel in a PE can be divided into several 1D CONV
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computations performed on each row. Figure 10 illustrates an example of such a gradient row computation
exploiting the full sparsity. Binary strings are employed for sparse gradient data indexing, named gradient
index (G-index). The G-index guides the window sliding and determines whether the computation should
be skipped. The window sliding in the row is performed by shifting the D-index of Emap and the gradient
psums are accumulated locally inside the PE. The PE architecture that supports this sparse gradient
computation is illustrated in Figure 11. Two Frows (Fi, Fi+1) and two Erows (Ei, Ei+1) contained in the
RFs are available to each corresponding PE. There are three VDTs in a PE, each for the data fetching of
one gradient row. When dealing with 1× 1 kernels, as only two VDTs are required, the third one would
be gated. The inputs of a VDT are the D-indexes of the Frow and Erow, i.e., Fi, Ei+1 for Gi, Fi, Ei for
Gi+1, and Fi+1, Ei for Gi+2. Before being sent to the VDT, the D-index of each Erow may shift right,
left, or maintain to perform window sliding, which is determined by the corresponding G-index in the
PE.

4 Overall architecture of SWG

4.1 HUSA dataflow based SWG architecture

The overall architecture of SWG which supports the proposed HUSA dataflow is presented in Figure 12.
The computation core of SWG is a 2D PE array consisting of 4 PE rows and 16 PE columns. Each
PE row is accompanied by a row RF (rRF) and each PE column is accompanied by two column RFs
(cRFs). The two cRFs act as ping-pong RFs for inter-column workload balance, which will be introduced
in Subsection 5.2. For each PE column, there is an intra-column balancer, which will be introduced in
Subsection 5.1. In each PE, besides one multiplier-accumulator and several registers to hold the psums,
there are three VDTs embedded in it for valid-data fetching as shown in Figure 11.

In HUSA dataflow, the Fmap and Emap channel dimensions are unrolled on the PE array to match the
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Figure 12 (Color online) Overall architecture of SWG.

hardware parallelism with data dimensions. The kernel plane dimension is unrolled in the RFs to leverage
the data reuse opportunities. The output plane is unrolled within each PE. The Fmap and Emap planes
are tiled by row and stored in the rRFs and cRFs attached to the PE array. Each rRF stores two Frows
and each cRF stores two Erows. The rRF is shared by its corresponding PE row for Emap reuse, and
rRFs of different PE rows store Frows of different channels for Fmap channel unrolling. Similarly, cRFs
shared by corresponding PE columns and different cRFs store the Erows of different channels. Thus in
the 2D PE array, every PE row shares an Fmap channel and every PE column shares an Emap channel.
Each PE stores an output gradient plane locally. In this way, Frows are reused across the PE row and
Erows are reused across the PE column, respectively.

In SWG, Fmap data from different channels are mapped on 4 PE rows and channels of Emap data
are mapped on 16 PE columns to generate 64 gradient psum results in parallel. The 2D CONV within a
large window is performed row by row. For each computation, PE fetches the valid-data of corresponding
Frow and Erow through the embedded VDT to compute one of the gradient psums and store it locally.
Take 3×3 gradient as an example, every PE performs the 9 psum results of one gradient kernel using two
Erows and two Frows stored in RFs. Each psum of the gradient is accumulated locally inside the PE,
and the window sliding in the row is performed by shifting the data fetching in cRF. If the Fmap/Erow is
larger than the RF, it will be divided into sequential segments to fit the RF. The output allocator sends
the gradient psum results to the output buffer and fetches them back to PEs when it comes to the next
computing of corresponding gradients. When dealing with the full-connect (FC) layer, the feature and
error vectors are tiled and stored in the rRFs and cRFs, respectively. This case is much simpler as there
is no invalid computation and the computing results do not need accumulation in FC.

The total PE number in our design is relatively small compared to previous training accelerators.
Considering the sparsity in WG, a large number of PE may cause a waste of computing resources. The
PE row and PE column can be expanded to handle the dense WG computation.

4.2 SWG architecture’s applicability to emerging models

In this subsection, we will discuss SWG architecture’s applicability to emerging models such as Efficient-
Netv2 [19], MobileNet [20], and MobileNetV2 [21]. Compared to the widely used DNN models, these
emerging models leverage depthwise (DW) CONV. In DW CONV, each input Fmap is convolved by its
corresponding weight kernel separately, and the generated output Fmaps are concatenated in the channel
dimension. In WG computation, each Fmap channel computes with its corresponding Emap channel to
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obtain the gradient kernel. Each channel of Fmap only computes with its corresponding channel of Emap
and will not compute with other Emap channels. Similarly, each Emap channel only computes with its
corresponding Fmap channel. In other words, there is no reuse opportunity across the Fmap channel
and Emap channel dimensions. Therefore the data mapping of DW on SWG should be different from
that of the standard convolution. However, SWG does not need to be redesigned. The architecture can
apply to DW CONV with appropriate data mapping. In SWG, rRFs are shared by corresponding PE
rows, and cRFs are shared by corresponding PE columns. For data mapping of DW CONV, the Emap
plane is tiled by row and stored in the cRF. Different cRFs store the Erows of different channels. The
Fmap is tiled by the channel dimension and the same pixel of different channels are stored in the rRF.
Different rRFs store the data of different Frows. The channels of Fmap data stored in the rRF respond
to the channels of Emap stored in the different cRFs. Thus in the 2D PE array, the PEs of the same PE
row compute different channels. Every PE column shares an Emap channel. Each PE stores one row of
an output gradient plane locally. In this way, Erows are reused across the PE column by Frows of the
corresponding channel. For each PE, the data of the Erow are reused by Fmap data. Since the gradient
kernel size of DW is usually 3 × 3, the fourth PE row could be gated to make the PE array (with 3
working PE rows) match the 3 rows of gradient kernel.

5 Intra- and inter-column workload balancer

There remains an underutilization problem resulting from workload imbalance to be addressed. Due to
the irregularity of input and output data, the computing task varies from PE to PE, making the execution
time depend on the operation time of the PE with the largest workload. The workload imbalance caused
by irregular sparsity will harm the performance badly. The sparsity caused imbalance is not a new issue,
previous studies have attempted to deal with this problem. In SparTen [22], the weight kernels are sorted
by their densities off-line and the kernels with similar density are assigned to one cluster for processing
in parallel. However, the workload depends on both kinds of input data, the density of the weight kernel
cannot determine the corresponding workload alone. In other words, balancing the weight kernels could
not essentially balance the workload. Also, the off-line sorting is not suitable for dynamic sparse data
like Emap and Fmap. LNPU (deep-learning neural processing unit) [23] relieves the imbalance by evenly
balancing the compressed input data to each PE. Although this method works when dealing with the
one-sided input sparsity caused imbalance, it fails to alleviate the imbalance in this work caused by the
irregularity of full sparsity.

In SWG, the workload of each PE is the valid computation to be performed in the PE. Since the
non-zero data is not necessarily the valid-data, the density of Fmap could not reflect the workload of the
corresponding PE. Simply analyzing the density of each Fmap, partitioning the Fmap, and remapping
them evenly on each PE will not alleviate the imbalance issue. In this work, the imbalance results from
two aspects, namely the intra-column imbalance and the inter-column imbalance. To even out these two
kinds of imbalance, we propose IIBLC, which consists of the intra-column balance scheme (IntraBLC)
and the inter-column balance scheme (InterBLC).

5.1 Intra-column workload balancer

The intra-column imbalance is induced by the irregular sparsity of Fmap. In a PE column, PEs share
the same Erows and each PE receives data from its corresponding Frows. The sparsities are various in
different Frows, making the workloads within a PE column various. PEs with less workload wait till
the last PE in the same column completes its work, which incurs underutilization. To even out the
intra-column imbalance, the workload of each PE should be calculated first. In this work, the workload
could be obtained by adding up all bits of the PE’s corresponding E-index generated from VDT. The
workloads of PEs within a column are compared, part of the heaviest workload is remapped to the PE
with the lightest one to balance the computation tasks evenly. The remapping of workload involves
partitioning the corresponding Frow and transferring the partitioned data. To support the transfer of
partitioned data, each PE should be allowed to access other Frows. A direct solution is to connect
every PE with all 8 rRFs. While building a fully-connected network between all the PEs and all the rRFs
provides flexibility for data delivery, this also brings high wiring complexity. Instead of introducing costly
connections, we exploit the interconnections between adjacent PEs within a column. By linking every
two neighbor PEs, each rRF is available for the PEs within a column since the data can be transferred
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through the connections between the PEs. In this way, the connecting complexity would be reduced to
O(n) compared to that of the all-to-all network (O(n2)). While the longest transmission time is increased
from O(1) to O(n). Using the intra-column connections to deliver data takes slightly more time than
the all-to-all network due to the longer transmission path. However, the transmission of data would not
prolong the execution time as the transmission overhead can be hidden behind the data computation in
PEs.

Figure 13 shows the architecture of IntraBLC and illustrates how the intra-column imbalance is tackled
by IntraBLC using the 1D-systolic-like network. IntraBLC takes the workloads of the PEs in a column
as input, seeking out the maximum and minimum workloads. The intra-column balance is achieved by
averaging out the workloads. Intra-BLC transfers the partitioned workload from the over-loaded PE to
the under-loaded PE. In the example given in Figure 13, PE1 suffers the heaviest computing tasks of 6
(WLD1), and PE2 is only in charge of 2 tasks (WLD2). To even out the imbalance, IntraBLC maps the
last 2 tasks of PE1 to PE2. The path from the over-loaded PE to the under-loaded PE is enabled by
the IntraBLC controller. When PE2 deals with the workloads from PE1, IntraBLC takes the V-index of
PE1 to extract the corresponding valid-data of Fmap1 and Emap. In this way, the load imbalance can be
reduced. The analysis and solution apply to other PE columns since each column suffers from the same
imbalance situation and they are independent.

5.2 Inter-column workload balancer

While the intraBLC balances the workload within each PE column, the inter-column imbalance remains
unsolved. Due to the irregular sparsity in Emap, the execution time of different PE columns are various.
In traditional designs where the input data (Emap) of the PE array share a unified data controller, the
overall processing time of the PE array will be determined by the PE column with the longest execution
time. Therefore keeping the data allocated at the same pace makes some PE columns idle and incurs
PE underutilization. To avoid the performance loss induced by idle PE columns, InterBLC dynamically
adjusts the Emap allocation for each PE column. The computing state of each PE column is monitored
by InterBLC. Once the computation tasks of a PE column are done, InterBLC allocates a new Erow
to the cRF of the PE column and the PE column continues to work. The InterBLC architecture and
its effect on speeding up are shown in Figure 14. By making each PE column process independent, the
execution time of the PE array can be reduced. It is notable that it may cause extra cycles for data
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Figure 14 (Color online) Architecture of inter-column balancer and the effect on speedup.

Table 2 ASIC area and power for SWG (TSMC 28 nm)

Component Power (mW) Area (mm2) Power (%) Area (%)

MACs 1.510 0.2045 14.10 5.79

RFs 1.067 0.2694 9.97 7.62

Buffers 5.670 1.2987 52.96 36.76

VDT 1.935 1.7566 18.07 39.17

IIBLC 0.381 0.0034 3.56 0.10

Others 0.144 0.0016 1.34 10.52

Total 10.707 3.5332 – –

access as different PE columns may complete their tasks at the same time. To cover the potential extra
access delay, we apply the ping-pong cRFs which serve alternately to each PE column. The output
aggregator collects the output psums from the PE columns and sent the data to the gradient buffer after
accumulating with the previous psums.

6 Evaluations

6.1 Experiment setup

Hardware evaluation. SWG is designed and synthesized using a synopsis design compiler with TSMC
28 nm LP technology. Functional simulations and performance measurements are conducted on Synopsys
VCS and the chip-only power consumption is estimated by PrimeTime PX.

Benchmarks and model sparsity. We select four famous DNNs as benchmarks: AlexNet [2],
GoogLeNet [3], VGGNet [5], and ResNet [4]. The models are trained on the CIFAR-100 dataset with a
batch size of 128. From epoch 180 to 280 in a total of 300 epochs, we randomly extract 10 batches from
each epoch at a step size of 20 epochs. In Figure 15, the average sparsity of Fmap, Emap, and WG from
the selected batches are shown.

Chip characteristics. The layout and characteristics of SWG in the TSMC 28 nm LP technology
are shown in Figure 16. SWG has a total of 64 MACs, 8 kB RFs, and 192 kB SRAM buffer. Each
MAC supports one 16-bit multiplier and one 32-bit accumulator. The accelerator consumes a small
area of only 3.53 mm2. Working at 200 MHz under the 0.81 V operating voltage, SWG’s total power
range is 8.56–10.707 mW, depending on benchmarks and data sparsity. The average energy efficiency is
14.2 TOPS/W, measured on the six benchmarks. The area and power estimates for SWG are listed in
Table 2.

Critical path analysis. We use a synopsis design compiler with TSMC 28 nm LP technology to
synthesize the proposed SWG design and obtain the timing report. The frequency of 200 MHz under
0.81 V operation voltage is selected to achieve low power. We utilize the timing report generated by the
compiler to find the critical path. In SWG architecture, the critical path lies in VDT, which is because



Wu W W, et al. Sci China Inf Sci February 2024, Vol. 67, Iss. 2, 122405:15

0

0.2

0.4

0.6

0.8

1.0

S
p
ar

si
ty

Fmap sparsity Emap sparsity Gradient sparsity

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

AlexNet VGG-8 VGG-16 RES-18

S
p
ar

si
ty

C
O

N
V

1

C
O

N
V

2.
2

In
ce

pt
io

n3
a2

.1

In
ce

pt
io

n3
a3

.1

In
ce

pt
io

n3
a4

In
ce

pt
io

n3
b2

.1

In
ce

pt
io

n3
b3

.1

In
ce

pt
io

n3
b4

In
ce

pt
io

n4
a2

.1

In
ce

pt
io

n4
a3

.1

In
ce

pt
io

n4
a4

In
ce

pt
io

n4
b2

.1

In
ce

pt
io

n4
b3

.1

In
ce

pt
io

n4
b4

In
ce

pt
io

n4
c2

.1

In
ce

pt
io

n4
c3

.1

In
ce

pt
io

n4
c4

In
ce

pt
io

n4
d2

.1

In
ce

pt
io

n4
d3

.1

In
ce

pt
io

n4
d4

In
ce

pt
io

n4
e2

.1

In
ce

pt
io

n4
e3

.1

In
ce

pt
io

n5
b3

.5
FC

2

C
O

N
V

1

C
O

N
V

1

C
O

N
V

3

C
O

N
V

5

C
O

N
V

7

C
O

N
V

9

C
O

N
V

11

C
O

N
V

13

C
O

N
V

2_
a1

C
O

N
V

2_
b1

C
O

N
V

3_
a1

C
O

N
V

3_
b

C
O

N
V

4_
a2

C
O

N
V

5_
a2

C
O

N
V

6_
a1

C
O

N
V

7_
a1

C
O

N
V

7_
b

C
O

N
V

8_
a2

C
O

N
V

3

C
O

N
V

5

C
O

N
V

2

C
O

N
V

4

C
O

N
V

6
fc

2
FC

2
FC

2

In
ce

pt
io

n5
b2

.5

In
ce

pt
io

n5
b5

In
ce

pt
io

n5
b3

.3

In
ce

pt
io

n5
b2

.3

In
ce

pt
io

n5
b4

In
ce

pt
io

n5
b3

.1

In
ce

pt
io

n5
b2

.1

In
ce

pt
io

n5
a4

In
ce

pt
io

n5
a3

.1

In
ce

pt
io

n5
a2

.1

In
ce

pt
io

n4
e4

(a)

(b)

Figure 15 (Color online) Sparsity of Emap, Fmap, and WG in (a) GoogLeNet, (b) AlexNet, VGG-8, VGG-16, and RES-18.

Technology TSMC 28 nm LP

Operating voltage 0.81 V

Area 3.53 mm2

SRAM 192 kB

Frequency 200 MHz

Energy-efficiency *
7.5 – 24.5 

TOPS/W

* Measure on the six benchmarks

Figure 16 (Color online) Layout and characteristics of SWG.

of the valid data tracing. In VDT, the valid bit (“1”) in the V-index should be identified and its position
should be traced to that of the corresponding D-indexes of Emap and Fmap. For each valid bit, VDT
needs to go through all the bits in front of the valid bit until finds it. Therefore, VDT consumes more
time than other components of the architecture.

6.2 Benefits of exploiting the special computation property

To evaluate the benefits of HUSA dataflow on PE utilization, we compare the average PE utilization
of the benchmarks among SWG, RS, and no local reuse (NLR) dataflow. For a fair comparison, we
modify the architecture with the same amount of computing resources (64 MACs) by adding requisite
interconnections between PEs and corresponding control logic to adapt RS and NLR processing patterns
respectively.

We compare the data flow without considering the sparsity. As shown in Figure 17, SWG maintains
high utilization in different benchmarks, which achieves 97.2% on average. The PE utilization using RS
is no higher than 67% (VGG8), and the lowest (23%) appears in GoogLeNet. The decline of utilization
results from the lack of two data dimensions in WG computation, the output row and the input channel.
When applying RS dataflow, the input rows and weight rows are mapped on the PE array and the output
rows are reused by diagonally moving the psums and locally accumulating them. The output row is large
in Fmap or Emap computation (e.g., 32) thus RS can achieve high utilization. While in WG, the output
row is usually small (K = 3 or K = 1) and insufficiency of output dimension causes the degradation of
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Figure 17 (Color online) Average utilization using RS, NLR, and SWG.
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Figure 18 (Color online) SWG’s speedup over TrainWare.

utilization. In addition, there is no input channel dimension in WG computation to be mapped on the PE
array, which further leads to an underutilization. In NLR dataflow, the input and output channels should
be spatially mapped on the PE array. Similarly, in WG computation, NLR suffers from low utilization
caused by insufficient input channels.

6.3 Benefits of exploiting the full sparsity

We compare the performance of SWG with another WG computing architecture TrainWare to prove the
benefits of exploiting the full sparsity by HUSA dataflow with VDT in SWG. The PE array in TrainWare
is highly related to the gradient size, which refers to the kernel size in TrainWare. To fairly compare
the acceleration, we modified TrainWare to fit different gradient sizes. In the modification, the PE array
structure with 27 MACs presented in TrainWare is taken as the base architecture and three PE arrays
with a total of 81 MACs are adopted as the MAC amount is comparable with SWG’s. SWG’s speedup over
TrainWare is presented in Figure 18. The acceleration time of each model indicates the total amount of
WG computation time in all layers. For briefness, SWG+SF, SWG+SE, SWG+SFE, and SWG+SFEW
are used to represent the WG computation on SWG with sparse Fmap, sparse Emap, sparse Fmap and
Emap (two-sided sparsity), and sparse Fmap, Emap and weight (full sparsity), respectively.

As presented in Figure 18, SWG+SF only reaches a speedup of 1.56×, which is relatively lower com-
pared to SWG+SE (4.63×). The gap between SWG+SF and SWG+SE results from the difference
between the balancing ranges of IntraBLC and InterBLC. In SWG+SF, the imbalance is purely induced
by the irregularity of sparse Fmap. InterBLC does not make a difference in this case as the PE columns
accomplish their tasks simultaneously and the computation duration depends on the sparse Fmap. Since
there is no optimization space for InterBLC and only IntraBLC takes effect, in which the balancing
range is relatively small (four PEs), the speedup of SWG+SF is minor. As for SWG+SE, where the
imbalance comes from the irregular sparsity of Emap, InterBLC tackles the imbalance problem of the
16 PE columns. The benefit of SWG+SE is more obvious as the balancing range of InterBLC is larger.
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Figure 19 (Color online) Speedup of SWG with 2-level balancer.
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Figure 20 (Color online) Layer-wise speedup comparison in VGG16.

SWG+SFE achieves an average speedup of 10.36×. Among the benchmarks, GoogLeNet sees the highest
average speedup (15.61×). In this case, both Fmap and Emap are sparse, reducing the computation and
speeding up the processing. In addition, the cooperation of IntraBLC and InterBLC guarantees global
balance and assists to gain a higher speedup. The speedup can be further increased by introducing weight
sparsity, which helps to eliminate the computation of corresponding gradients. As shown in the results,
12.23× speedup is achieved by SWG+SFEW. In the experiments, for simplification, we merely prune
10% weights to demonstrate the benefits of SFEW. The speedup effect can be enhanced by increasing
the pruning ratio since it is highly related to weight sparsity.

6.4 Benefits of intra- and inter-column balancer

To evaluate the benefits of SWG’s IIBLC on the workload imbalance problem, we conduct a comparison
of the designs with different balancing levels on total acceleration time, as shown in Figure 19. For
better comparison, the execution time is normalized to that of SWG without the balancer (SWG w/o
BLC), which is implemented by turning off both intra- and inter- column balancers. The IntraBLC in
the histogram denotes the execution time of SWG with only the IntraBLC works and the InterBLC is
gated.

Compared to the baseline (without balancer), the IntraBLC only gains the small benefit of 24.1% time
reduction on average. The IntraBLC merely even out the imbalance within each PE column. Therefore
the acceleration still suffers from the imbalance in different PE columns and the execution time depends
on the PE column with the heaviest workload. Applying both IIBLC, SWG saves the acceleration time
by 72.6% on average. Among the benchmarks, GoogLeNet shows the best result that 78.7% execution
time is reduced.

Figure 20 shows a layer-wise speedup comparison in VGG16 to study the effect of the workload balancer.
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Figure 21 (Color online) SWG’s benefits on energy saving.

As demonstrated in Figure 20, with the IntraBLC, SWG increases the utilization by 1.44× in the C-6
layer and 1.26× on average, which saves 30.6% and 20.8% acceleration time, respectively. With the
IIBLC, SWG further reduces the execution time by 68.0% on average. In the best case (C-7 layer), up
to 77.1% execution time can be saved.

6.5 Benefits on energy saving

We compare the accelerator energy of dense and sparse WG computation to demonstrate SWG’s benefits
on energy saving, the results shown in Figure 21. The sparse computation energy contains on-chip buffer
access, computing energy, and the operating energy of VDT and IIBLC. In dense computation the energy
only consists of the first two components, and the VDT and IIBLC are gated to eliminate the unnecessary
energy. For better comparison, the accelerator energy is normalized to Dense mode.

Although VDT and IIBLC induce extra energy, they bring significant advantages to the total accel-
erator energy saving by supporting sparse WG. Compared to dense computing, SWG saves 49.27% of
energy on average. SWG reduces the energy by 35.27% in AlexNet, which is the worst case. In ResNet,
SWG shows the most energy reduction of 62.52%.

6.6 Benefits of SWG in state-of-the-art training work

We combine SWG with state-of-the-art (SOTA) training work, LNPU [23], to prove the benefits of SWG.
In LNPU, FF, BP, and WG phases share the same architecture. To evaluate the benefits brought by
SWG, we take LNPU and SWG to assemble a training architecture, named L-SWG, where FF and BP
are processed in LNPU and the WG phase is accelerated by SWG. Since LNPU has 768 PEs, we scale
SWG’s PE number to 768 and synthesize it with a synopsis design compiler in TSMC 28 nm technology.
We run VGG-16 for one training epoch to compare the performance and energy efficiency of LNPU and
L-SWG.

Perfermance. We build a cycle-accurate simulator based on LNPU to model the execution time. In
LNPU, Fmap sparsity and Emap sparsity are exploited in FF and BP, respectively. In the WG phase,
LNPU only supports Fmap sparsity while the sparsity in Emap is ignored. Since the sparse information
in Fmap and Emap can be obtained, we exploit both Fmap and Emap sparsity to process the WG phase
on L-SWG. Figure 22 presents the layer-wise execution time comparison of VGG-16, the execution time
is normalized to LNPU’s. By optimizing the WG phase, L-SWG saves the training time by 21.9%.

Energy efficiency. We estimate the power consumption of LNPU and L-SWG to obtain the energy
efficiency. The power consumption of LNPU is 367 mW operating at 200 MHz, 1.1 V, in 65 nm technology.
For a fair comparison, we scale the voltage from 1.1 to 0.81 V (the operating voltage of SWG) at 200 MHz
to estimate the power consumption of LNPU. We further normalize the power consumption to 28 nm
technology. The energy efficiency of LNPU is 7.56 TOPS/W. As for L-SWG, the power consumption
consists of SWG and LNPU (fixed point) power. The power consumption of SWG is estimated by
PrimeTime PX. The data type in LNPU is a 16-bit floating point. The difference between floating
and fixed point multiplication-and-accumulation operations is responsible for the difference between the
power consumption of floating and fixed point architecture. Therefore we normalize the LNPU’s power
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Figure 22 (Color online) Normalized execution time of VGG-16 on LNPU and L-SWG.
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Figure 23 (Color online) SWG’s speedup over traditional and SOTA training process.

in L-SWG to a fixed point based on the synthesized energy consumption of the 16-bit operation in 28 nm
technology, which is 1.1 and 0.89 pJ for floating and fixed points, respectively. With SWG, L-SWG
achieves a higher energy efficiency of 10.58 TOPS/W.

6.7 Benefits of SWG for the traditional and the SOTA training process

To demonstrate the benefits of SWG for the training process, we conduct experiments on the traditional
and the SOTA training process to compare the performance with and without the help of SWG. In the
traditional training process [6,7], FF, BP, and WG phases perform computation without considering any
data sparsity. The SOTA training process [23] only exploits the data sparsity in FF and BP phases. We
build a computation simulator based on the 2D systolic array to model the computation behavior and
obtain the cycle-accurate execution time. Because the systolic array has been proven efficient for DNN
processing [24] and can also be adapted to handle sparse computation [25]. The training process with
SWG indicates that the WG phase is executed by SWG, which fully exploits data sparsity during the
WG computation. The comparisons are conducted on VGG-16, RES-18, and GoogLeNet.

Figure 23 compares the performance of the different training processes. For briefness, Traditional,
Traditional+SWG, SOTA, and SOTA+SWG are used to represent the traditional training process with-
out SWG, the traditional training process with SWG, the SOTA training process without SWG, and
the SOTA training process with SWG, respectively. All the numbers are normalized to the traditional
training process’s performance for better comparison. With the help of SWG, the traditional process
gains an average speedup of 1.41×. In traditional+SWG, only the WG phase exploits the sparsity of
Fmap and Emap. While in the SOTA training process, both FF and BP phases leverage the sparsity.
Therefore, the SOTA training process without SWG may be faster than the traditional one with SWG’s
help, as the results of benchmarks show. Notably, the speedup of SOTA+SWG over SOTA is higher
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than that of Traditional+SWG over Traditional. This is because the execution time reduced by SWG
contributes more to the SOTA process training time than that to the traditional one. On average, SWG
brings a 2.34× speedup to the SOTA training process.

7 Conclusion

In this paper, we propose SWG, an architecture for sparse weight gradient computing, which aims at
the acceleration of gradient computation and exploits the full sparsity in WG. Our design includes an
HUSA dataflow with a VDT mechanism to accelerate the sparse WG computation and an IIBLC to
dynamically tackle the workload imbalance resulting from the irregular sparsity. On average, SWG
achieves a speedup of 12.23× over another gradient computation architecture, TrainWare. As a WG
acceleration architecture, SWG helps to improve the training energy efficiency of SOTA accelerator
LNPU from 7.56 to 10.58 TOPS/W.
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