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Abstract Surface acoustic wave (SAW) resonators with an ultrahigh Q-factor are designed and fabricated

on silicon-based gallium nitride (GaN/Si). The temperature-dependent performance is characterized over a

wide range, from 10 to 500 K. Finite element analysis is employed to guide the design of the SAW resonator

from indications of the Rayleigh mode and weak propagation direction dependence of SAW in the c-plane of

GaN/Si. The SAW resonator with 100 pairs of interdigital transducers (IDT), 100 pairs of grating reflectors

(GR) for each side, aperture size of 80 µm, metallization ratio of 0.5, and electrode width of 500 nm resonates

at 1.9133 GHz accordingly with an ultrahigh Q-factor of 7622 at room temperature, which contributes the

fr × Qr, up to 14.583×1012 Hz. A resonator operating over 10 to 500 K indicates an approximately linear

decreasing temperature dependence above 280 K while being approximately constant below 40 K. The fitting

to resonator characteristics using the modified Butterworth Van Dyke (mBVD) model reveals a reduction in

both the electrode and mechanical losses while worsening the dielectric loss with cooling down.

Keywords GaN/Si SAW resonator, ultrahigh Q-factor, temperature-dependent performance, mBVD,

losses

1 Introduction

The surface acoustic wave (SAW) device has been widely introduced to play a vital role in applications,
such as RF front-end filters by the demands of fifth-generation (5G) wireless communication [1]. Advanced
nanotechnology has promoted SAW devices toward miniature, low cost, and steady performance, as
a promising candidate for telecommunications, biosensors, microfluidics, 2D materials, and quantum
information [2–6]. These extensive applications of SAW benefit from the electromechanical conversion
mechanism of piezoelectric materials [7]. Compared with the fabrication of SAW on the bulk or thin-
film materials of LiTaO3 and LiNbO3 [8–10], III-Nitride semiconductors, such as AlN and GaN, have
been considered powerful technologies for future acoustofluidics and lab-on-chip devices, because of their
compatibility with integrated manufacturing processes [7, 11–13].

GaN is a wide bandgap semiconductor with good piezoelectric properties and can be batch grown
with high quality on silicon substrates [14]. Owing to the 2-dimensional electron gas (2DEG) between
AlGaN/GaN heterostructure, GaN is generally utilized to fabricate active devices, such as high electron
mobility transistors (HEMT) for high frequency, high temperature, and high power applications [15–19].
In addition, GaN-based SAW resonators are widely investigated to develop the advantages of GaN in
monolithic millimeter-wave integrated circuits and lab-on-chip applications [20–22]. Ansari et al. [23–34]
have reported the design, fabrication, and characterization of advanced electro-acoustic devices and in-
tegrated micro/nano-systems based on GaN/Si. A GaN/Si monolithic SAW lumped element resonator
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Figure 1 (Color online) (a) Structure diagram of GaN/Si SAW resonator, (b) hexagonal crystal structure of wurtzite GaN.

was proposed by Neculoiu et al. [35] for applications above the 5-GHz frequency range. Sun et al. [36]
piloted the development of a GaN-based acoustic tweezer and its application in manipulating micropar-
ticles and biological cells. Qamar et al. [37] presented ultrahigh quality factor (Q) GaN SAW resonators
and characterized their temperature response in a broad range of temperatures (77–773 K). The reported
evidence suggests that high integration, high thermal stability, and tolerance to extreme temperatures
are the most significant advantages of GaN SAW resonators. Furthermore, the ultrahigh Q results in a
large product of f and Q, which indicates a promising potential for harsh environment applications.

To completely explore and validate the possible high performance of GaN SAW resonators, this study
demonstrates the SAW resonators fabricated on a 6-inch Si-based GaN wafer. The vibration and propa-
gation properties of the GaN/Si SAW resonators are simulated. The fabricated resonators with various
structural configurations exhibit ultrahigh Q at room temperature. The temperature behavior of the res-
onator over 10 K to 500 K illustrates the remarkable phenomenon that the GaN/Si SAW resonator has
a constant resonant frequency below 40 K. Furthermore, the modified Butterworth Van Dyke (mBVD)
model is utilized to analyze the temperature dependence of losses.

The remainder of this paper is organized as follows. In Section 2, the propagation characteristics of
GaN/Si SAW are simulated by the finite element method (FEM) via COMSOL. Section 3 presents the
growth of a 6-inch GaN/Si wafer and the fabrication of resonators with different electrode configurations.
The radiofrequency (RF) characteristics of the resonators are analyzed in Section 4. Moreover, in Sec-
tion 5, the temperature behavior from 10 to 500 K is investigated. Finally, the conclusion of this study
is presented in Section 6.

2 FEM simulation of the GaN/Si SAW resonator

The structure diagram of the GaN/Si SAW resonator is illustrated in Figure 1(a), comprising the in-
terdigital transducer (IDT) and grating reflector (GR). The propagation direction of the acoustic wave,
together with the x-direction, can rotate in the plane by patterning the resonator at different angles.
Figure 1(b) illustrates the hexagonal crystal structure of wurtzite GaN. The HEMT transistors are gen-
erally fabricated in the (0001) plane, also named the c-plane [38]. The SAW resonators must also be
manufactured in the c-plane to integrate with HEMT on the GaN/Si by compatible fabrication tech-
nology. Therefore, it is necessary to study the influence of SAW propagation direction on the resonator
performance in the c-plane.

A 3D GaN/Si SAW resonator mode is built to theoretically study the propagation characteristics by
FEM via COMSOL multiphysics software. In the resonator model, a buffer layer with a total thickness
of 2.0 µm, comprising 170-nm AlN and 1.83-µm graded-AlGaN layers, is formed on the silicon substrate.
The piezoelectric layer is a 3.0-µm GaN layer on the buffer layer. Furthermore, a period of Al electrodes
with a thickness of 0.1 µm is built on the GaN layer. The width a of Al electrodes is 0.5 µm, and the
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Figure 2 (Color online) (a) Response admittance and vibration mode of GaN/Si SAW; (b) normalized displacements of the

Rayleigh mode.

center distance p of two adjacent electrodes is 1.0 µm. One of the Al electrodes is electrically grounded,
while the other is taken as a signal terminal. The metallization ratio (MR) is obtained by a/p and equal
to 0.5; thus, the wavelength λ is 2.0 µm. In the FEM simulation, the periodic boundary condition is
set. The material parameters are referred to [34] and the COMSOL material library. The elastic matrix,
piezoelectric constant matrix, and permittivity matrix of AlGaN with different Al fractions are calculated
by linear interpolation [39].

Figure 2(a) illustrates a typical simulated admittance response of the modeled GaN/Si SAW resonator
and indicates that a resonant frequency (fr) is approximately 1.9731 GHz. The inset in Figure 2(a)
illustrates the corresponding deformation shape when the SAW is excited. The normalized displacements
(u) comprising three partial components are illustrated in Figure 2(b). Evident that the normalized
displacements along the y-direction (uy) are close to zero, simultaneously, their longitudinal (uz) and
vertical shear components (ux) are dominant, which indicates that the resonant mode corresponds to the
Rayleigh mode [40]. The phase velocity (vp) of the Rayleigh mode can be calculated from [41]

vp =
fr + fa

2
· λ = f0 · λ, (1)

where fa is the anti-resonant frequency and f0 is the center resonant frequency. The extracted vp of the
Rayleigh mode is approximately 3949 m/s.

The SAW can propagate in different directions in the c-plane. The propagation direction is rotated
from 0◦ to 360◦ around the z-axis to study the propagation characteristics in the c-plane. The slowness
of Rayleigh mode (1/vp) related to propagation direction is illustrated in Figure 3(a). Furthermore, the
K2 can be obtained by [40]

K2 =
πfr
2fa

tan

(

πfr
2fa

)−1

. (2)

Figure 3(b) illustrates the calculated K2 at different propagation directions. It is clearly evident that
both slowness and K2 are weak dependent on the propagation directions. The Q is calculated by the
following equation [42]:

Q(f) =
ω|S11| · (dφ/dω)

|S11|2 − 1
+

ωφ · d|S11|/dω

|S11|2 − 1
, (3)

where S11 is the reflection coefficient, φ is the phase of S11, and ω is obtained by 2πf . If the magnitude of
|S11| is constant, the second term is zero [42]. In this case, Eq. (3) degenerated as Q(f) = (ωτG|S11|)/(1−
|S11|

2), where the measured group delay is τG = −dφ/dω [43]. Qr and Qa, denoting the quality factors
at fr and fa, respectively, can be calculated by (1). The simulation results indicate that the Qr and
Qa of the GaN/Si SAW resonator are both above 104 ideally without considering mechanical damping,
which means the GaN has promising potential to realize ultrahigh Q resonators. However, the actual Q
depends on not only the material growth, but also the device design and fabrication process. In general,
Qr is adopted to evaluate the performance of the SAW resonator.
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Figure 3 (Color online) (a) Slowness and (b) K2 of the Rayleigh mode at different propagation directions in the c-plane of

GaN/Si.
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Figure 4 (Color online) (a) Layer structure, (b) AFM image, (c) XRD 2θ scan, (d) ∆ω scan of GaN(002), and (e) TEM image

of GaN/Si epitaxial films.

3 Material growth, device design and fabrication

As illustrated in Figure 4(a), the GaN epitaxy layer used for this study is grown by metal-organic chemical
vapor deposition (MOCVD) on a 6-inch high-resistivity silicon(111) substrate. First, an AlN nucleation
layer followed by a 170-nm AlN layer is grown on the Si substrate. Subsequently, a 1.83-µm graded AlGaN
layer is deposited to release the stress caused by the lattice mismatch. Furthermore, a 3.0-µm GaN layer,
comprising unintentionally doped (UID) GaN, carbon (C) doped GaN, and UID-GaN layers, is grown to
obtain a high-quality piezoelectric layer. Figure 4(b) illustrates the atomic force microscopy (AFM) image
of the GaN surface with the root mean square surface roughness of 0.564 nm. Figure 4(c) illustrates the X-
ray diffraction (XRD) 2θ scan patterns of the GaN/Si epitaxy, which demonstrates the diffraction maxima
attributed to Si(111), GaN(002), graded AlGaN(002), AlN(002), and AlN(101), respectively. It indicates
that the GaN layer has a single out-of-plane crystallographic orientation. Figure 4(d) illustrates the ∆ω
curve of the GaN(002) layers with a full width at half maximum (FWHM) of 353.99 arcsec, demonstrating
the excellent quality of the GaN layer. The cross-sectional transmission electron microscopy (TEM) image
of the grown GaN/Si structure is illustrated in Figure 4(e).

A series of one-port SAW resonators with various electrode configurations are fabricated on the 6-inch
GaN/Si epitaxial films. The design parameters of four-group resonators with different λ, MR, number of
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Table 1 Designed parameters of GaN/Si SAW resonators

λ = 2p (µm) MR = a/p (a.u.) NIDT (pairs) NGR (pairs)

2 to 3.2, step = 0.2 0.5 100 20

3 0.4 to 0.65, step = 0.05 100 20

2 0.5 50 to 250, step = 50 20

2 0.5 100 20 to 100, step = 20

10 µm100 µm 2 µm

Signal

Ground

Ground

IDT

GR

Electrode

a
p

IDT

GR

Figure 5 SEM image of a fabricated GaN/Si SAW resonator with the λ of 2.0 µm.

IDTs (NIDT), and number of GRs (NGR) are presented in Table 1. All of them have an acoustic aperture
W of 40λ. The metal electrodes with a 10-nm-thick Ti transition layer and a 100-nm-thick Al layer are
patterned and fabricated using the photolithography and lift-off processes, which are compatible with
the typical GaN/Si HEMT process flow. In Figure 5, a representative resonator with the λ of 2.0 µm
is observed using the scanning electron microscope (SEM), indicating that the prepared electrodes have
excellent consistency. The on-wafer pads of the fabricated GaN/Si SAW resonators are configured to a
ground-signal-ground (GSG) single port.

4 Characterization of GaN/Si SAW resonators with various geometries

The GaN/Si SAW resonators at the same MR of 0.5 are fabricated with different λ from 2.0 to 3.2 µm,
and each resonator comprises 100 pairs of IDTs and 20 pairs of GRs on each side. The S-parameters are
measured by the vector network analyzer, Agilent N5242. Before the measurements, the vector network
analyzer is calibrated on-chip probing using the short, open, and load (SOL) calibration standards. The
admittance characteristics converted from the measured S-parameters are illustrated in Figure 6(a). It
is evident that the resonant frequency and admittance magnitude decrease as λ increases. The ripples
caused by the longitudinal modes are suppressed as λ decreases. The spurious longitudinal modes are
associated with the ratio of the thickness of the electrode (hAl) to λ and can be alleviated by increasing
hAl/λ. Figure 6(b) illustrates fr and fa extracted from admittance characteristics. The discrepancy
between fr and fa is calculated by ∆f = fa − fr, and a positive correlation is observed between ∆f and
λ. The vp calculated by (1) is 3830 m/s at the λ of 2.0 µm and increases with the λ enlarging. The relative
error of vp between the experimental and simulation results is approximately 3.01%, which is most likely
attributed to IDT’s mass loading effect and the difference in parameters between the prepared material
and simulation [44, 45]. In Figure 6(c), Qr and K2 illustrate the opposite relationship. When λ is equal
to 2.0 µm, Qr has a maximum value of 3373; however, K2 achieves the maximum value of 0.57% at λ of
3.2 µm. These results indicate that K2 is proportional to λ, which depends on the normalized thickness
of the piezoelectric thin film by λ [46].

The admittance curves of resonators with λ of 3.0 µm, 100 pairs of IDTs, 20 pairs of GRs, and various
MR values from 0.4 to 0.65 are illustrated in Figure 7(a). It is evident that the larger admittance
amplitude can be obtained for larger MR, which is mainly caused by the rising capacitance between the
IDTs. The ripples are evident at the MR values from 0.4 to 0.65, which is caused by the low value of
hAl/λ. fr and fa are extracted and illustrated in Figure 7(b). fr is approximately constant at different
MR values; however, fa decreases as the MR varies from 0.4 to 0.65. Qr and K2 are illustrated in



Yu G F, et al. Sci China Inf Sci February 2024, Vol. 67, Iss. 2, 122402:6

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
−41

−40

−39

−38

−37

−36

−35

−34

−33

−32

A
d
m

it
ta

n
ce

 (
d
B

)

Frequency (GHz)

MR = 0.5

(a)

2.0 2.2 2.4 2.6 2.8 3.0 3.2
500

1000

1500

2000

2500

3000

3500

λ (µm) λ (µm) 

0.2

0.3

0.4

0.5

0.6

K2

K
2
 (

%
)

(c)

1.2

1.4

1.6

1.8

2.0

f
r

f
a

v
p

3830

3840

3850

3860

3870

v p
 (

m
/s

)

2.0 2.2 2.4 2.6 2.8 3.0 3.2

2.0

2.5

∆
f 

(M
H

z)

(b)

N
IDT

 = 1000 pairs

N
GR

 = 20 pairs

λ = 2.0 to 3.2 µm, step=0.2 µm

f r,
 f

a
 (

G
H

z)

Q
r 
(a

.u
.)

Q
r

Figure 6 (Color online) (a) Admittance curves, (b) extracted fr , fa, vp and ∆f , and (c) Qr and K2 of GaN/Si SAW resonators

with the λ varying from 2.0 to 3.2 µm.
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Figure 7 (Color online) (a) Admittance curves, (b) fa, fr , and vp, and (c) Qr and K2 of different MR values.

Figure 7(c). The results indicate that Qr increases as the MR enlargement, but with an opposite trend
for K2.

To further study the properties of GaN/Si SAW resonators, several resonators with IDTs varying from
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of 2.0, 2.4, and 2.8 µm with different pairs of IDTs.

50 to 250 pairs are fabricated, measured, and analyzed. Figure 8(a) illustrates the admittance responses
of the resonators with λ of 2.0 µm, 2.4 µm, and 2.8 µm, respectively. The admittance curves shift to
higher values and discrepancies between the amplitudes at fr and fa become more significant as the
NIDT increases. The longitudinal modes characterize the standing wave characteristics along the finite
propagation path and can be alleviated by increasing the propagation length [47]. It can be observed that
the ripples caused by the spurious longitudinal modes are suppressed with an increase in NIDT. fr and fa
extracted from admittance responses are illustrated in Figure 8(b), which indicates that the resonators
with fewer pairs of IDTs have a larger fr and fa. As illustrated in Figure 8(c), the calculated Qr and K2

indicate that an increase in IDTs can improve Qr while K2 will decrease. However, when NIDT is larger
than 150, this effect is not so significant. However, the peak of Qr is up to 6291 for the 2.0 µm resonator
with NIDT of 200 pairs, followed by a reduction in Qr with further increasing NIDT.

Figure 9(a) illustrates the effect of the grating reflectors on the admittance. The resonators with
wavelengths of 2.0, 2.4, and 2.8 µm are configured with 20 to 100 pairs of GRs. As can be observed, the
reflectors have a noticeable influence on the peak of the admittance. fr and fa are extracted to indicate
the negative correlation of resonant frequency with NGR in Figure 9(b). As illustrated in Figure 9(c),
the larger Qr is obtained at more pairs of GRs, while K2 has the opposite relationship. The maximum
value of Qr is 7622 at λ of 2.0 µm with NGR of 100 pairs.

Table 2 compares the performances of the resonator in this study with the previously published studies.
It can be observed thatK2 of GaN is negligible compared to LiTaO3 and LiNbO3; however,Qr can achieve
a relatively large value. The wavelength determines the resonant frequency, and the higher the resonant
frequency, the more difficult it is to achieve a high-quality factor. In this study, the highest values of
fr ×Qr up to 14.583× 1012 Hz, and Qr of 7622, are obtained.

5 Temperature behavior of the GaN/Si SAW resonator

Section 4 reveals that the prepared GaN/Si resonators have ultrahigh Q and fr×Qr, which may give great
application potential in the field of extreme environments. Therefore, the GaN/Si resonator operating at
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Table 2 Comparison of SAW resonators with published studies

Refs. Material K2 (%) Qr (a.u.) fr (GHz) fr × Qr (1012Hz)

[8] LiTaO3 9.5 560 1.9 1.06

[9] LNOI 25.2 280 1.35 0.378

[10] LiNbO3/SiC 26.6 1092 1.90 2.075

[12] AlN/Sapphire 0.031 6380 0.456 2.909

[22] Bulk GaNa) 0.13 3900 0.473 1.845

[48] GaN/Sapphire *b) 2000 3.578 7.156

[49] GaN/SiC 0.35 542 11.11 6.022

This work GaN/Si 0.06 7622 1.9133 14.583

a) The K2 is re-calculated by (2).

b) The K2 is not found in the reference.

a wide temperature range is studied in this section to understand the temperature characteristics further.
The investigated resonator has a λ of 2.0 µm and an MR of 0.5, comprising 250 pairs of IDTs and 20
pairs of GRs on each side. The wide temperature range from 10 to 500 K is provided by the Lakeshore
Cryogenic probe station. The vector network analyzer is calibrated using cryogenic calibration standards
(CS-5 by GGB Industries Inc.) at each measurement temperature.

Figure 10(a) illustrates the frequency-dependent admittance curves from 10 to 500 K, which indicates
that the resonant frequency increases as the temperature decreases. The spurious mode wave is suppressed
and the main mode is enhanced at low temperatures [50]. The low temperatures reduce the ohmic
dissipation of metal electrodes and mechanical losses caused by the GaN layer. fr and fa from 10 to
500 K are illustrated in Figure 10(b). At temperatures above 280 K, the resonant frequency decreases
approximately linearly with temperature. The frequency temperature coefficient (TCF) can be calculated
by [41]

TCF =
1

fr(T0)

∂fr
∂T

, (4)
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Figure 10 (Color online) (a) Admittances, (b) extracted fr and fa, and (c) fr × Qr from 10 to 500 K.

where T0 is the reference temperature of 300 K, resulting in a value of −28.13 ppm/K for the temperature
higher than 280 K, as illustrated in Figure 10(b). However, when the temperature is cooled from 280
down to 40 K, the resonant frequency gradually saturates with lowering the temperature. Remarkably, the
resonant frequency remains approximately unchanged below 40 K. The resonant frequency is associated
with vp and λ. For the Rayleigh mode, vp is mainly determined by

√

C44/ρ. C44 is the elastic constant in
the plane and ρ is the mass density. λ is affected by the thermal expansion of GaN [51]. The temperature
dependence of elastic constant in the plane can be theoretically justified by the Einstein-oscillator model
as follows [52, 53]:

Cij(T ) = Cij(0)−
βCij

×ΘE

e
ΘE
T − 1

. (5)

The lattice constant related to temperature is described by [54]

l(T ) = l(0) +
βl ×ΘE

e
ΘE
T − 1

, (6)

where Cij(T ) and l(T ) are elastic and lattice constants in the c-plane of GaN at the temperature of T ,
respectively. βCij

and βl are constant of the model, and ΘE is the Einstein temperature. Eqs. (5) and
(6) were reduced at high temperatures to a linear relation with T . However, the equation is approxi-
mately constant when the ambient temperature is cooled down [53]. This is in good agreement with the
experimental results.

fr × Qr from 10 to 500 K is calculated and illustrated in Figure 10(c). It can be observed that
fr × Qr can be improved with the decrease in temperature. The resonator can obtain higher fr × Qr

values at low temperatures, indicating increased stability and sensitivity. This means that the GaN/Si
resonator can be utilized as a linear temperature sensor with good performance at high temperatures. In
contrast, the resonator with a near-zero temperature coefficient at low temperatures can be utilized as a
high-performance signal generator in cryogenic applications.

To further investigate the temperature influence on GaN/Si SAW, the mBVD model is utilized to
describe the characteristics from 500 to 10 K. The equivalent circuit of the mBVD model is illustrated
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characteristics from 10 to 500 K.

in the inset of Figure 11(a). The analytical expression of impedance Z(ω) is given by [55]

Z(ω) = RS +
(R0 +

1
jωC0

)(Rm + 1
jωCm

+ jωLm)

R0 +
1

jωC0
+Rm + 1

jωCm
+ jωLm

. (7)

The admittance Y can be obtained by 1/Z(ω). Here, RS is the resistance of contact pads and electrodes.
The capacitance between electrode pairs and material loss is represented by C0 and R0, respectively. The
motional branch, comprising Cm, Lm, and Rm, describes the mechanical resonance [56]. The parameters
are extracted using the methods in [57]. Figure 11(a) illustrates the simulation results of the mBVD
model based on the extracted model parameters at 500, 300, and 10 K, respectively.

The parameters of mBVD from 10 to 500 K are illustrated in Figures 11(b)–(g). It is obvious that
RS has a positive temperature coefficient, caused by the decrease in lattice scattering with temperature
cooling. R0, associated with the dielectric loss, is moderately enhanced as temperature decreases. C0,
considering the GaN layer as dielectric, is dominated by the temperature dependence of the dielectric
constant. Rm has a positive temperature coefficient, demonstrating the resonator’s mechanical loss. fr
can be obtained by

√

[1/(LmCm)]/2π, leading to the inverse proportion of Lm and Cm; thus it is hard
to exactly extract these two parameters independently. Via the simulation of the mBVD model, it is
determined that RS and Rm make the peak-to-peak values of the resonator’s admittance at fr and fa
increase with the decrease in temperature, which is mainly caused by the reduction of ohmic loss of the
metal electrode and mechanical loss. The admittance below fr and above the fa is dominated by the
product of R0 and C0. The value of R0 × C0 grows with the temperature cools; thus, the admittance
curves out of fr and fa decrease slightly. The product of Lm and Cm decreases with a decrease in
temperature, resulting in an increase in fr and fa.

6 Conclusion

This study demonstrated the ultrahigh Q one-port resonators on the 6-inch GaN/Si wafer. The per-
formance of GaN/Si resonators was proved to be weak-dependent on propagation direction by FEM
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simulation. The c-plane GaN/Si epitaxy was grown by the MOCVD. Furthermore, various resonators
with different electrode configurations were designed and fabricated by the lift-off technology. The experi-
mental results indicated that the GaN/Si resonators can obtain ultrahigh Q by optimizing the geometries
of the electrode layout configurations. The GaN/Si resonator with a wavelength of 2.0 µm, 100 pairs of
IDTs, and 100 pairs of GRs was determined to give the highest Q of 7622; thus fr×Qr is 14.583×1012 Hz.
Furthermore, λ = 2.0 µm resonator with 250 pairs of IDTs and 20 pairs of GRs was investigated over
a wide temperature range, from 10 to 500 K. The resonant frequency increased approximately linearly
with cooling, at the temperature above 280 K with corresponding TCF of −28.13 ppm/K. The resonant
frequency was approximately constant when the temperature was lower than 40 K. This exciting phe-
nomenon could be explained by the Einstein-oscillator model of elastic and lattice constant. Finally, the
parameters of the mBVD model were extracted from 10 to 500 K for the fabricated resonator. It was
evident that the electrode and mechanical losses were reduced with decreasing temperature. However,
on the contrary, the dielectric loss was enhanced at low temperatures.
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