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Abstract Sparse synthetic aperture radar (SAR) imaging has emerged as a reliable microwave imaging

scheme in the recent decade and excels in down-sampling reconstruction and full-sampling performance

improvements such as noise, sidelobe, speckle, and ambiguity suppression. To utilize complex image products

of sparse reconstruction for improvement in polarimetric, interferometric, and tomographic SAR imaging, it

is necessary to evaluate the phase preservation of sparse SAR imaging. In this study, we first introduce

the general alternating direction method of multipliers (ADMM) as the universal framework for sparse

reconstruction algorithms and adopt chirp scaling algorithm (CSA)-based azimuth-range decouple operators

to avoid expensive data storage and processing. Further, we theoretically analyze the phase preservation of

the sparse reconstruction algorithm through a comparison with the reconstruction results of CSA. Finally,

we conduct the interferometric offset test on the sparse reconstruction results of simulated and real Gaofen-3

(GF-3) SAR data, demonstrating the phase-preserving ability of sparse methods.

Keywords sparse SAR imaging, phase preservation, interferometric offset test, general ADMM, azimuth-

range decouple

1 Introduction

Synthetic aperture radar (SAR) imaging is an active airborne and spaceborne remote sensing technology
and has a broad range of applications, from environmental protection and disaster monitoring to ocean
observations and geological mapping. As the demand for high observation resolution and swath width
increases, the development of SAR systems encounters bottlenecks owing to the radar resolving theory
and Nyquist-Shannon sampling theorem [1]. Consequently, sparse SAR imaging gradually emerged as a
popular research topic [2–4].

Sparse SAR imaging is an emerging microwave imaging scheme in the recent decade that integrates the
sparse signal processing method and SAR imaging for down-sampling reconstruction and full-sampling
performance improvement. Furthermore, it has been successfully applied to multiple SAR imaging
modes [5,6]. Oriented toward various applications, sparse SAR imaging can utilize appropriate sparsity in
the spatial or transform domain as prior information in the optimization problem, which is typically im-
plemented via regularization. Typical applications include feature enhancement of point and distributed
targets and suppression of azimuth ambiguity, corresponding to spatial, gradient, and group sparsity,
respectively. As the representative of the above three sparsity constraints, ℓ1, total variation (TV), and
ℓ2,1 regularization are widely used in sparse reconstruction [7–9].

In various spatial sparse constraints, ℓ0 norm is the most suitable choice because it can directly return
the number of nonzero coefficients. Unfortunately, ℓ0 regularization is a nondeterministic polynomial-
time hard (NP-hard) problem, and hence, the penalty function must be relaxed to render the problem
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mathematically solvable. Consequently, the relaxed ℓ1 regularization becomes an efficient tool for spa-
tial sparse reconstruction because of its solvability and equivalence with ℓ0 regularization under certain
conditions [10]. When adopted in SAR imaging, ℓ1 regularization can suppress additive noise and side-
lobes, thereby enhancing the point targets-based features such as the target background ratio (TBR) [11].
However, the single ℓ1 norm constraint applies only to feature enhancement of point targets in spatial
sparse scenes, while ignoring features of distributed targets. Therefore, the TV norm of the image mag-
nitude is introduced as the gradient sparse constraint in the SAR imaging model. Benefiting from the
suppression of speckles by TV regularization, ℓ1-TV realizes feature enhancement of distributed targets
as well as point targets, such as the equivalent number of looks (ENL) [12]. Furthermore, the azimuth
ambiguity has always puzzled researchers in SAR imaging and applications. To solve this issue, in ℓ2,1
regularization, the group sparsity between the target area and ±1 ambiguity area is utilized to suppress
ambiguity, thereby considerably reducing azimuth ambiguity signal ratio (AASR) [13].

Sparse SAR imaging has been proven effective through the assessment of parameters such as TBR,
ENL, and AASR. However, these traditional quality requirements for sparse SAR imaging are primarily
based on amplitude measurements and ignore the phase. Over the years, SAR polarization, interferom-
etry, and tomography have become increasingly popular, which all need to utilize the phase information
in SAR complex products [14]. Compared with the matched filtering method, two-dimensional sparse
reconstruction is more advantageous for noise, sidelobe, speckle, and ambiguity suppression. Thus, there
is potential to improve the performance of polarimetric, interferometric, and tomographic SAR imaging
based on the results of sparse reconstruction [15–17]. Accordingly, there is a need to evaluate the phase
preservation of sparse SAR imaging, so that we can utilize its results for more in-depth work. In the
research [18], the interferometric offset test was proposed to evaluate the phase preservation of four dif-
ferent ERS SAR processors. Based on this, the authors in [19] extended the test to different acquisition
modes, namely StripMAP, ScanSAR, TopSAR, and SPOTLIGHT. However, no research or testing on
the phase preservation of sparse reconstruction has been conducted.

The considerations and major contributions of our study are as follows:
First, we introduced the general alternating direction method of multipliers (ADMM) as the universal

framework for sparse reconstruction algorithms [20, 21]. Compared with other algorithms, such as iter-
ative shrinkage and thresholding algorithm (ISTA) and complex approximate message passing (CAMP)
algorithm [5], ADMM has better compatibility with various regularization problems, including ℓ1, ℓ1-TV,
and ℓ2,1. In addition, the unified framework can facilitate the analysis of phase preservation.

Second, to simplify the phase preservation analysis, we adopted the chirp scaling algorithm (CSA)-
based azimuth-range decouple operators to substitute the measurement matrix and its Hermitian trans-
pose, which can establish an association between sparse reconstruction and CSA [22,23]. Furthermore, in
large-scale SAR imaging applications, the volume of the observation matrix generally exceeds 106 × 106.
The decouple scheme can avoid huge resource consumption in storage and calculation to accelerate signal
processing.

Third, since it has been proven that CSA preserves phase, we theoretically analyzed the phase preser-
vation of the sparse reconstruction algorithm represented by the general ADMM framework based on
azimuth-range decouple in a stepwise manner by comparing with reconstruction results of CSA.

Finally, we processed the simulated and real Gaofen-3 (GF-3) SAR data using sparse methods, con-
ducted the interferometric offset test on imaging results, and demonstrated the phase-preserving capa-
bility of the sparse reconstruction algorithm.

The remainder of this paper is structured as follows: In Section 2, we introduce the sparse reconstruc-
tion model for SAR imaging and focus on the three commonly used sparse constraints. In Section 3,
we first present the general ADMM framework-based sparse reconstruction algorithm, then derive its
combination with azimuth-range decouple operators in detail, and finally theoretically analyze the phase
preservation of the developed algorithm. In Section 4, we present the results of experiments and per-
formance analysis conducted to verify the phase preservation characteristics of sparse reconstruction.
Finally, the conclusion and future work are discussed in Section 5.

2 Reconstruction models of sparse SAR imaging

The SAR observation model suitable for sparse signal processing framework can be expressed as [1]

y = Hx+ n, (1)
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Figure 1 (Color online) Diagram of sparsity in spatial, gradient, and structural domains.

where x = vec(X) ∈ C
NaNr×1 andX ∈ C

Na×Nr denote the complex-valued reflectivity of the surveillance
region, y = vec(Y ) ∈ CNηNτ×1 and Y ∈ CNη×Nτ denote the sampled echo data, vec(·) represents the
vectorization along the range direction, and n is the additive noise vector. And H is the corresponding
measurement matrix of the SAR system, determined by the waveform of the transmitted signal, the
geometric relationship between the radar and the observation scene, as well as the sampling scheme. In
this paper, considering that linear frequency modulation (LFM) signal is the commonly used waveform
for SAR system, the measurement matrix H is therefore constructed as the chirp signal-based matrix,
whose structure can be adjusted according to different SAR imaging modes and down-sampling schemes.

The reconstruction model of joint feature-enhanced sparse SAR imaging can be written as the following
compound regularization form:

min
x

‖y −Hx‖22 +
N
∑

i

λipi (x) , (2)

where pi (x) is the penalty function which is selected according to the demand of feature enhancement,
and λi is the regularization parameter. As shown in Figure 1, spatial sparsity, gradient sparsity, and
group sparsity are the three most commonly used sparse priors in the reconstruction model.

Firstly, for feature enhancement of point targets, ℓ1 norm is the typical penalty reflecting spatial
sparsity [1, 11],

min
x

‖y −Hx‖
2
2 + λ ‖x‖1 , (3)

‖x‖1 =

NaNr
∑

m

|xm| . (4)

Then, for feature enhancement of distributed targets, TV norm is the typical gradient sparse con-
straint [8, 21],

min
x

‖y −Hx‖22 + λ1 ‖x‖1 + λ2TV (|x|) , (5)

TV (|x|) =

Na,Nr
∑

a,r

√

(|Xa+1,r| − |Xa,r|)
2
+ (|Xa,r+1| − |Xa,r|)

2
, (6)
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where Xa,r represents the element in the ath-row and rth-column.
And for suppression of azimuth ambiguity, ℓ2,1 is the typical group sparse constraint [9, 13],

min
x

‖y −Hx‖22 + λ ‖x‖2,1 , (7)

‖x‖2,1 =

NaNr
∑

m

(

|(x−1)m|
2
+ |(x0)m|

2
+ |(x+1)m|

2
)

1
2

, (8)

where H = [H−1,H0,H+1] comprises measurement matrices of target area and ±1 ambiguity area, and
then x = [xT

−1,x
T
0 ,x

T
+1]

T.

3 Analysis of phase preservation based on sparse reconstruction algorithms

3.1 General ADMM framework based sparse reconstruction

In this subsection, we introduce the general ADMM framework to solve the optimization problem (2) and
theoretically analyze the phase preservation based on the framework [20, 21]. According to the variable
splitting scheme [24], Eq. (2) can be converted to the following equivalent problem:

min
x

‖y −Hx‖22 +
N
∑

i

λipi (zi) s.t. Gx = z, (9)

where G = [IT, . . . , IT]T, z = [zT
1 , . . . , z

T
N ]T, and I is the identity matrix. As shown above, variable

splitting is a very simple procedure that consists of creating a new variable, say the auxiliary variable
z, to serve as the argument of penalty functions {pi|i = 1, 2, . . . , N} under the constraint that Gx = z.
Then the augmented Lagrangian multiplier (ALM) method-based objective function can be written as

L(x, z,λ, µ) = ‖y −Hx‖
2
2 +

N
∑

i

λipi(zi) + λT(z −Gx) +
µ

2
‖Gx− z‖

2
2

= ‖y −Hx‖22 +
N
∑

i

λipi(zi) + µ ·
λT

µ
(z −Gx) +

µ

2
‖Gx− z‖22 ,

(10)

where λ is the Lagrange multiplier vector and µ is the augmented Lagrangian penalty parameter. For
convenience, let d = λ

µ , f(x) = ‖y −Hx‖22, and then Eq. (10) can be rewritten as

L(x, z,d, µ) = f(x) +

N
∑

i

λipi(zi) + µdT(z −Gx) +
µ

2
‖Gx− z‖

2
2

= f(x) +

N
∑

i

λipi(zi) +
µ

2

[

‖Gx− z‖
2
2 − 2dT(Gx− z) + ‖d‖

2
2

]

−
µ

2
‖d‖

2
2

= f(x) +

N
∑

i

λipi(zi) +
µ

2
‖Gx− z − d‖

2
2 −

µ

2
‖d‖

2
2 .

(11)

Naturally, the optimization of the objective function (11) can be divided into the three subproblems
in (12), and then be solved alternately:

(a) x(t+1) = argmin
x

L(x, z(t),d(t), µ),

(b) z
(t+1)
i = argmin

zi

L(x(t+1), z,d(t), µ), (12)

(c) d(t+1) = argmax
d

g(d),

where g(d) = L(x(t+1), z(t+1),d, µ) is the Lagrangian dual function. Next, we present solutions to the
three subproblems in turn.
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Table 1 Proximal operators for different penalties

Penalty Proximal operator: Ψ (x, λ)

ℓ1 norm sign (x) · max (|x| − λ, 0)

ℓ1-TV norm [8] sign (x) · (|x| − λ · fTV (|x|))

ℓ2,1 norm sign (x) · (|x| − λ·|x|
max{xhybrid,λ}

)

Subproblem (a) in (12) can be simplified as a quadratic programming problem. In this paper, we use
the gradient descent (GD) algorithm to solve the problem instead of the least squares, so as to prepare
for the combination of decouple operators in Subsection 3.2 [25]:

x(t+1) = argmin
x

L(x, z(t),d(t), µ)

= argmin
x

f(x) +
µ

2

∥

∥

∥
Gx− z(t) − d(t)

∥

∥

∥

2

2

= argmin
x

∥

∥

∥

∥

∥

[

√

µ
2G

H

]

x−

[

√

µ
2 (z

(t) + d(t))

y

]∥

∥

∥

∥

∥

2

2

= argmin
x

∥

∥Hx− β
∥

∥

2

2

= x(t) −
1

L
∇x

[

∥

∥Hx− β
∥

∥

2

2

]

= x(t) +
1

L
H

H
(β −Hx(t))

= x(t) +
1

L

[

µ

2

N
∑

i

(z
(t)
i + d

(t)
i )−

µ

2
Nx(t) +HH(y −Hx(t))

]

,

(13)

where 1
L represents the step size.

Subproblem (b) in (12) is the Moreau proximal mapping proxpi
for the penalty function pi(·), whose

closed-form solution Ψpi
has been given in Table 1 [21],

z
(t+1)
i = argmin

zi

L(x(t+1), z,d(t), µ)

= argmin
zi

λipi(zi) +
µ

2

∥

∥

∥
I · x(t+1) − zi − d

(t)
i

∥

∥

∥

2

2
= argmin

zi

λipi(zi) +
µ

2

∥

∥

∥

(

x(t+1) − d
(t)
i

)

− zi

∥

∥

∥

2

2

= proxpi

(

x(t+1) − d
(t)
i

)

= Ψpi

(

x(t+1) − d
(t)
i ,

λi

µ

)

.

(14)

As shown in Table 1, the proximal operators for the three typical penalties all consist of two parts:
the left part sign (x) represents the phase of the input complex data x, and the right part only performs
operations on |x|, which is the amplitude of x. For ℓ1 norm and ℓ2,1 norm, the amplitude-operation
is essentially a thresholding process on non-negative real data, in which the thresholding function can
maintain the positive or negative attributes of the data. For ℓ1-TV norm, according to the lemma in [21],
as the input |x| is non-negative, the output of its amplitude-operation will definitely be non-negative.
Therefore, the three proximal operators are all phase-preserving operations that only affect the amplitude
without changing the phase.

Besides, the typical penalties in the popular nonconvex regularization, such as the minimax concave
(MC) penalty and the smoothly clipped absolute deviation (SCAD) penalty, have the same form and
property of proximal operators as ℓ1 norm. As a consequence, the conclusion of phase preservation can
also be extended to the proximal operators for penalty functions in nonconvex regularization satisfying
the above conditions.

Subproblem (c) in (12) aims to solve d (the variant of the Lagrange multiplier vector λ) by maximizing
the Lagrangian dual function [20]. The dual problem can be solved by the gradient ascent method, as
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shown in the last line of (15):

d(t+1) = argmax
d

L(x(t+1), z(t+1),d, µ)

= argmax
d

[

µdT
(

z(t+1) −Gx(t+1)
)]

= argmax
d

[

dT
(

z(t+1) −Gx(t+1)
)]

= d(t) +
1

L′
∇d

[

dT
(

z(t+1) −Gx(t+1)
)]

= d(t) +
1

L′

(

z(t+1) −Gx(t+1)
)

,

(15)

where 1
L′ represents the step size.

Above all, the general ADMM framework-based sparse reconstruction is summarized in Algorithm 1.

Algorithm 1 General ADMM framework-based sparse reconstruction

Input: The echo data y, the initial solution x(0) = 0, z
(0)
i

= 0, d
(0)
i

= 0, the measurement matrix H and its Hermitian transpose

HH, the error parameter ǫ, and the minimum and maximum number of iteration t ∈ [0, Tmax].

1: while res > ǫ and t 6 Tmax do

2: x(t+1) = x(t) + 1
L
[µ2

∑N
i
(z

(t)
i

+ d
(t)
i

) − µ
2 Nx(t) + HH(y − Hx(t))];

3: z
(t+1)
i

= Ψpi
(x(t+1) − d

(t)
i

,
λi
µ
);

4: d
(t+1)
i

= d
(t)
i

+ 1
L′ (−x(t+1) + z

(t+1)
i

);

5: res = ‖x(t+1) − x(t)‖2/‖x
(t)‖2;

6: t = t + 1;

7: end while

Output: X̂ = X(t).

3.2 Azimuth-range decouple-based fast sparse reconstruction

Considering the huge memory and computational cost caused by the large-scale measurement matrix H ,
we adopt the CSA-based azimuth-range decouple operators as follows [1, 22]:

I(Y ) = F−1
a

(

Fa(Y )⊙ΘscFr ⊙ΘrcF
−1
r ⊙Θac

)

, (16)

where I represents the imaging operator, Θsc is the phase matrix for differential range cell migration
correction (RCMC) in CSA, Θrc is the phase matrix for range compression, secondary range compression
(SRC) and bulk RCMC, and Θac is the phase matrix for azimuth compression and phase correction.
Multiplied by the Fourier matrix Fa or its inverse matrix F−1

a on the left represents azimuth Fourier
transform or inverse transform, multiplied by the Fourier matrix Fr or its inverse matrix F−1

r on the
right represents range Fourier transform or inverse transform.

And the inverse imaging operator G can be derived from the above imaging operator I,

G(X) = F−1
a

(

Fa(X)⊙Θ∗
acFr ⊙Θ∗

rcF
−1
r ⊙Θ∗

sc

)

, (17)

where Θ∗
ac, Θ

∗
rc, and Θ∗

sc are the conjugate of Θac, Θrc, and Θsc.
The above azimuth-range decouple operators are able to substitute measurement matrix H and its

Hermitian transpose in (13). In the actual implementation, as there are slight differences between the
observation models of ℓ1, ℓ1-TV regularization and ℓ2,1 regularization, the combination with decouple
operators will also be different.

For ℓ1 and ℓ1-TV regularization, the measurement matrix H consists of only one block; hence it is
equivalent to the following CSA-based azimuth-range decouple operators [22]:

Hx ∼= vec [G(X)] , HHy ∼= vec [I(Y )] . (18)

And then Eq. (13) can be written as the following two dimensional expression:

X(t+1) = X(t) +
1

L

[

µ

2

N
∑

i

(Z
(t)
i +D

(t)
i )−

µ

2
NX(t) + I(Y − G(X(t)))

]

. (19)

For ℓ2,1 regularization, the measurement matrix H consists of three blocks, corresponding to three
couples of operators respectively, in which G0, I0 are operators of target area, and G±1, I±1 are operators
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of ±1 ambiguity area [13]:

Hx =
[

H−1,H0,H+1

]









x−1

x0

x+1









= H−1x−1 +H0x0 +H+1x+1

∼= vec [G−1(X−1) + G0(X0) + G+1(X+1)] ,

HHy =









(H−1)
H

(H0)
H

(H+1)
H









y ∼=









vec [I−1(Y )]

vec [I0(Y )]

vec [I+1(Y )]









.

(20)

Hereby Eq. (13) can be written as the following two dimensional expression:

X(t+1) =









X
(t+1)
−1

X
(t+1)
0

X
(t+1)
+1









= X(t) +
1

L

[

µ

2

N
∑

i

(Z
(t)
i +D

(t)
i )−

µ

2
NX(t)

+









I−1(Y − G−1(X
(t)
−1)− G0(X

(t)
0 )− G+1(X

(t)
+1))

I0(Y − G−1(X
(t)
−1)− G0(X

(t)
0 )− G+1(X

(t)
+1))

I+1(Y − G−1(X
(t)
−1)− G0(X

(t)
0 )− G+1(X

(t)
+1))

















.

(21)

Taking ℓ1 regularization as the example, the azimuth-range decouple-based general ADMM for sparse
reconstruction is summarized in Algorithm 2, which consists of two dimensional operations.

Algorithm 2 Azimuth-range decouple-based general ADMM for sparse reconstruction

Input: The echo data Y , the initial solution X(0) = 0, Z
(0)
i

= 0, D
(0)
i

= 0, the azimuth-range decouple operators G and I, the

error parameter ǫ, and the minimum and maximum number of iteration t ∈ [0, Tmax].

1: while res > ǫ and t 6 Tmax do

2: X(t+1) = X(t) + 1
L
[µ2

∑N
i
(Z

(t)
i

+ D
(t)
i

) − µ
2 NX(t) + I(Y − G(X(t)))];

3: Z
(t+1)
i

= Ψpi
(X(t+1) − D

(t)
i

,
λi
µ

);

4: D
(t+1)
i

= D
(t)
i

+ 1
L′ (−X(t+1) + Z

(t+1)
i

);

5: res = ‖X(t+1) − X(t)‖F/‖X
(t)‖F;

6: t = t + 1;

7: end while

Output: X̂ = X(t).

3.3 Theoretical analysis of phase preservation

Benefiting from the approximate representation, the decouple operator-based algorithm and the mea-
surement matrix-based algorithm have the equivalent phase preserving ability. Moreover, the operators
establish an association between sparse reconstruction and CSA, which makes the analysis more simple
and intuitive.

Hereby, we can illustrate the phase preservation of sparse reconstruction by analyzing Algorithm 2
step by step. For convenience, this paper takes zero initialization as an example for analysis. Thanks
to the good convergence of the algorithm, taking other initial values can converge to the same optimal
solution as taking zero initial value [21, 26]. Therefore, the following analysis is universal to arbitrary
initial values:

• For t = 0, initialize X, Z, and D to 0; then
(1) X(t+1): X(1) = 1

LI(Y ), which means the phase of X(1) is consistent with that of CSA.

(2) Z
(t+1)
i : the proximal operators for three kinds of penalties are listed in Table 1. Since Ψ only

affects the amplitude without changing the phase [8, 9, 21], the phase of Z
(1)
i is consistent with that of

X(1).
• For t > 1, the above analysis results indicate that X(1) and Z

(1)
i are phase preserving; then

(1) ℓ1 and ℓ1-TV regularization: since I and G are inverse operators, the expressions of X(t+1) and

Z
(t+1)
i only include the ± operation under the same phase condition and the amplitude-proximal oper-

ation based on 1
LI(Y ), X(1), and Z

(1)
i , without any operation that affects the phase preserving ability.
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Figure 2 (Color online) Diagram of offset test.

Table 2 The evaluation criteria

Evaluation index Requirement

Mean of interferogram phase (ϕ0) 6 0.1◦

Standard deviation of interferogram phase (σϕ) 6 5.0◦

Therefore, the sparse reconstruction results X(t+1) always keep the same phase as I(Y ), while suppress-
ing the amplitude of additive noise and smoothing the amplitude of speckles. Furthermore, the phase
preservation indexes of ℓ1 and ℓ1-TV regularization will be consistent with CSA.

(2) ℓ2,1 regularization: as there exist I0(G−1(X
(t)
−1)) and I0(G+1(X

(t)
−1)) in the expression of X(t+1),

the phase values and phase preservation indexes of ℓ2,1 regularization will be slightly different from CSA
results I0(Y ). Nevertheless, thanks to the phase preservation of the ambiguity-area-operators G±1, all

processings in the expression of X
(t+1)
0 are phase-preserving; therefore, the ℓ2,1 regularization still has

the phase preserving ability.

In conclusion, according to the above theoretical analysis of our algorithm, we can preliminarily prove
that the general ADMM framework-based sparse reconstruction has the same level of phase preserving
ability as CSA.

4 Experiments and the interferometric offset test

4.1 Definition of the interferometric offset test

To validate the phase-preserving capability of sparse SAR imaging, the interferometric offset test must
be conducted [18]. As shown in Figure 2 and Table 2, considering the accuracy requirements of phase in
the interferometric and tomographic SAR [14], we need to evaluate the mean and standard deviation of
the interferogram phase of the overlap-focused area.

4.2 Experimental results and analysis

In this subsection, the simulated and real GF-3 SAR data are used to validate the phase preservation of
sparse reconstruction.

In the simulation, we have arranged three sets of 2048 × 2048 scenarios, and generated raw echo
data respectively under the condition of signal to noise ratios (SNRs) = −30,−20,−30 dB. We used
representative spaceborne SAR parameters in the experimental setup: the altitude of the simulated SAR
platform was 800 km, and the slant range of the scene center was 850 km. The main SAR system
parameters are listed in Table 3. Simulation data were obtained by generating echoes from each point in
the observation scene and stacking them linearly.

In Scene 1, we placed 9 point targets in the scene center and employed CSA and ℓ1 regularization to
reconstruct the scene. As shown in column 1 in Figure 3, ℓ1 regularization can significantly suppress
additive noise. In Scene 2, we placed a distributed target in the scene center. According to [27], we set
an equivalent phase center in each pixel cell of the distributed target; their amplitudes were independent
and identically distributed Rayleigh random variables with mean µ =

√

πσ0/2 and standard deviation

σ =
√

(1− π/4)σ0 (σ0 is the backscattering coefficient) and their phases were uniformly distributed over
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Table 3 The main SAR system parameters in the simulation

Parameter Value Unit

Carrier frequency 5.3 GHz

Pulse duration 40 µs

Range frequency modulation rate 0.5 MHz/µs

Range sampling rate 24 MHz

Antenna length 10 m

Effective radar velocity 7100 m/s

Pulse repetition frequency (PRF) 1700 Hz

Figure 3 (Color online) Imaging results (◦) of the simulated Scene 1 SAR data. Column 1: before shift; column 2: after shift;

column 3: interferometric phase. Row 1: CSA; row 2: ℓ1.

Figure 4 (Color online) Imaging results (◦) of the simulated Scene 2 SAR data. Column 1: before shift; column 2: after shift;

column 3: interferometric phase. Row 1: CSA; row 2: ℓ1-TV.

[−π,+π). Next, we employed CSA and ℓ1 regularization to reconstruct the scene [27]. As shown in
column 1 in Figure 4, ℓ1-TV regularization could suppress speckles and additive noise.
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Figure 5 (Color online) Imaging results (◦) of the simulated SAR data. Column 1: before shift; column 2: after shift; column 3:

interferometric phase. Row 1: CSA; row 2: ℓ2,1.

Table 4 Offset test results of the simulated SAR data

Scene 1 Scene 2 Scene 3

CSA ℓ1 CSA ℓ1-TV CSA ℓ2,1

ϕ0 (◦) 2.1236 × 10−4 2.1236 × 10−4 2.1756 × 10−4 2.1756 × 10−4 7.6168 × 10−4 6.7699 × 10−4

σϕ (◦) 1.2548 1.2548 1.1848 1.1848 1.1574 1.1601

In Scene 3, we placed a point target (labeled by the green dotted box) and performed 50% uniform
down-sampling in the azimuth direction. As shown in column 1 in Figure 5, there are obvious ambigu-
ities in the CSA results labeled by red dotted circles, while ℓ2,1 regularization can effectively suppress
ambiguities.

Then, we set the azimuth and range shift to 100 lines/points, cut, and zero-padded the original data.
Next we repeat the above imaging processing on these shifted data, and the results are shown in column
2 in Figures 3–5.

Finally, we conducted the interferometric offset test on the imaging results and obtained the inter-
ferogram phase as shown in column 3 in Figures 3–5. Further, we calculated the mean and standard
deviation of the interferogram phase, as shown in Table 4. Evidently, ℓ1, ℓ1-TV, and ℓ2,1 regularization
meet the requirements of phase preservation. The indices of ℓ1 and ℓ1-TV are similar to those of CSA,
whereas that of ℓ2,1 is slightly different, which is consistent with the analysis presented in Subsection 3.3.

GF-3 is the first C-band remote sensing satellite with quad-polarization and multiangle capability in
the civilian field of China. It operates with 12 imaging modes and a spatial resolution of up to 1 m,
and its remote sensing data are extensively utilized and recognized in China. In this experiment, the
StripMAP mode data with HH polarization were used.

In the processing of real GF-3 SAR data, we selected an area containing points as well as distributed
targets as the experimental scene. For full sampling, we employed CSA, ℓ1, and ℓ1-TV regularization
to reconstruct the scene. Similarly, for down-sampling, we employed CSA and ℓ2,1 regularization to
reconstruct the scene. Experimental results shown in column 1 in Figures 6 and 7 reveal that sparse
reconstruction methods can suppress noise, speckle, and ambiguity (labeled by red, blue, and green
dotted boxes).

Next, we set the azimuth and range shift to 100 lines/points, cut, and zero-padded the original data.
Subsequently, we repeated the imaging process on the shifted data, as shown in column 2 in Figures 6
and 7.

Finally, the interferometric offset test was conducted on the imaging results of real SAR data. The
interferogram phase in column 3 in Figures 6 and 7 and the calculated ϕ0, σϕ in Table 5 validated the
phase preservation of ℓ1, ℓ1-TV, and ℓ2,1 regularizations in real SAR data processing.
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(a)

(b)

(c)

Figure 6 Imaging results (◦) of GF-3 SAR data under the full sampling condition. Column 1: before shift; column 2: after shift;

column 3: interferometric phase. (a) CSA; (b) ℓ1; (c) ℓ1-TV.

(a)

(b)

Figure 7 Imaging results (◦) of GF-3 SAR data under the down-sampling condition. Column 1: before shift; column 2: after

shift; column 3: interferometric phase. (a) CSA; (b) ℓ2,1.
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Table 5 Offset test results of the real GF-3 SAR data

CSA

full sampling
ℓ1 ℓ1-TV

CSA

down-sampling
ℓ2,1

ϕ0 (◦) 2.9550 × 10−4 2.9550 × 10−4 2.9550 × 10−4 8.7895 × 10−4 5.2193 × 10−4

σϕ (◦) 1.8161 1.8161 1.8161 1.8796 1.8801

5 Conclusion

In this study, we evaluated the phase preservation of sparse SAR imaging for applying two-dimensional
sparse reconstruction results in polarimetric, interferometric, and tomographic SAR. We considered ℓ1,
ℓ1-TV, and ℓ2,1 regularizations as examples and theoretically analyzed the phase preservation of sparse
reconstruction algorithm, which was represented by the general ADMM framework based on azimuth-
range decouple, through a comparison with the reconstruction results of CSA. Finally, we processed
the simulated and real GF-3 SAR data and conducted the interferometric offset test on sparse SAR
imaging results. The results of experiments and analysis verified the phase-preserving capability of
sparse reconstruction. Based on the results of this study, we will utilize the sparse reconstruction results
for more in-depth research in the future.
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21 Güven H E, Güngör A, Cetin M. An augmented lagrangian method for complex-valued compressed SAR imaging. IEEE Trans

Comput Imag, 2016, 2: 235–250

22 Fang J, Xu Z, Zhang B, et al. Fast compressed sensing SAR imaging based on approximated observation. IEEE J Sel Top

Appl Earth Observations Remote Sens, 2013, 7: 352–363

23 Raney R K, Runge H, Bamler R, et al. Precision SAR processing using chirp scaling. IEEE Trans Geosci Remote Sens, 1994,

32: 786–799

24 Afonso M V, Bioucas-Dias J M, Figueiredo M A T. Fast image recovery using variable splitting and constrained optimization.

IEEE Trans Image Process, 2010, 19: 2345–2356

25 Xu Z, Zhang B, Zhou G, et al. Sparse SAR imaging and quantitative evaluation based on nonconvex and TV regularization.

Remote Sens, 2021, 13: 1643

26 Calafiore G C, Ghaoui L E. Optimization Models. Cambridge: Cambridge University Press, 2014

27 Oliver C, Quegan S. Understanding Synthetic Aperture Radar Images. Valencia: SciTech Publishing, 2004

https://doi.org/10.1109/TCI.2016.2580498
https://doi.org/10.1109/JSTARS.2013.2263309
https://doi.org/10.1109/36.298008
https://doi.org/10.1109/TIP.2010.2047910
https://doi.org/10.3390/rs13091643

	Introduction
	Reconstruction models of sparse SAR imaging
	Analysis of phase preservation based on sparse reconstruction algorithms
	General ADMM framework based sparse reconstruction
	Azimuth-range decouple-based fast sparse reconstruction
	Theoretical analysis of phase preservation

	Experiments and the interferometric offset test
	Definition of the interferometric offset test
	Experimental results and analysis

	Conclusion

