
SCIENCE CHINA
Information Sciences

February 2024, Vol. 67, Iss. 2, 122204:1–122204:11

https://doi.org/10.1007/s11432-023-3820-3

c© Science China Press 2024 info.scichina.com link.springer.com

. RESEARCH PAPER .

Value iteration algorithm for continuous-time linear
quadratic stochastic optimal control problems

Guangchen WANG & Heng ZHANG*

School of Control Science and Engineering, Shandong University, Jinan 250061, China

Received 20 February 2023/Revised 26 April 2023/Accepted 8 June 2023/Published online 25 January 2024

Abstract In this study, we investigate a continuous-time infinite-horizon linear quadratic stochastic optimal

control problem with multiplicative noise in control and state variables. Using the techniques of stochastic

stability, exact observability, and stochastic approximation, a value iteration algorithm is developed to solve

the corresponding generalized algebraic Riccati equation. Unlike the existing policy iteration algorithm, this

algorithm does not rely on an initial stabilizing control. Further, this algorithm can also be used to compute

policy evaluation steps that arise in the policy iteration algorithm. Herein, a simulation example is provided

to validate the obtained results.

Keywords stochastic systems, optimal control, linear quadratic stochastic problem, generalized algebraic

Riccati equation, value iteration algorithm

1 Introduction

The theory of optimal control is a major branch of modern control theory, which focuses on the meth-
ods for finding an optimal control to optimize the performance of a controlled system. Pioneered by
Wonham [1], the linear quadratic stochastic optimal control (LQSOC) problem and its generalization are
among the most significant topics of control problems, which frequently appear in applications such as
finance and engineering [2–8]. Because of its significance, this paper considers an infinite-horizon LQSOC
problem in the following manner:

inf
u(·)

J(u(·)) = E

∫ +∞

0

[
u(s)TRu(s) + x(s)TQx(s)

]
ds

subject to {
dx(s) =

[
Ax(s) +Bu(s)

]
ds+

[
Cx(s) +Du(s)

]
dw(s),

x(0) = ξ.

When solving the LQSOC problem, it is natural to encounter a generalized algebraic Riccati equation
(GARE):

{
PA+Q+ATP + CTPC − (CTPD + PB)(DTPD +R)−1(DTPC +BTP ) = 0,

DTPD +R > 0.
(1)

See [9–11] for more information. However, because GARE (1) is nonlinear, obtaining an analytical
solution of (1) is difficult. Even with the simpler algebraic Riccati equation found in linear quadratic
deterministic optimal control (LQDOC) problems (i.e., C = D = 0 in the system dynamics), it is still a
difficult problem. Therefore, numerical methods should be used to approximate the solution of GARE (1).

An efficient methodology for obtaining a numerical solution of GARE (1) is Newton’s method devel-
oped by Damm and Hinrichsen [12]. Using resolvent positive operators, the authors proposed a Newton’s
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method to solve the GARE appearing in multidimensional LQSOC problems. Later, Refs. [11, 13] in-
dependently proposed the policy iteration (PI) algorithm to approximate the unique stabilizing solution
of GARE (1), which was later shown to be equivalent to the Newton’s method in terms of matrices.
Initiated by a stabilizing control, the PI algorithm approximates the stabilizing solution of GARE (1)
by alternately implementing two procedures: policy evaluation and policy improvement. However, find-
ing a stabilizing control necessitates the adoption of other techniques, such as solving a Lyapunov-type
inequality [14] or a linear matrix inequality [9, 15], which may be computationally expensive for large-
scale systems. The PI and value iteration (VI) are two well-known main types of reinforcement learning
methods. Over the last two decades, the methods have been widely adopted to solve control problems.
See [11, 16–21] for more information. One of the primary motivations for developing a continuous-time
VI algorithm is to eliminate the need for an initial stabilizing control. However, to the authors’ best
knowledge, no VI algorithm that addresses the aforementioned LQSOC problem exists.

To address this gap, this study aims to abandon the assumption of an initial stabilizing control and
develop a VI algorithm to address the LQSOC problem. In Bian and Jiang [19], a VI algorithm is devel-
oped to solve a continuous-time LQDOC problem. Noteworthily, their algorithm is based on the fact that
a solution to a differential Riccati equation with any positive semidefinite terminal condition converges
to the unique solution to the corresponding algebraic Riccati equation as time passes. Nonetheless, since
GARE (1) has a more complex structure, obtaining a similar asymptotic behavior for GARE (1) and the
corresponding generalized differential Riccati equation (GDRE) is difficult. To address this issue, herein,
we employ the theory of exact observability and stochastic stabilizability. We show that the stabilizing
solution to GARE (1) is a locally asymptotically stable equilibrium point for the GDRE under some
stabilizability and exact observability assumptions (see Theorem 1 below). Consequently, we develop an
iterative VI algorithm by borrowing the stochastic approximation idea [22–24].

The main contributions of this paper are outlined below.

• In contrast to the PI algorithm described in [11, 13], the developed VI algorithm can initiate from
any positive definite matrix. Consequently, the need to search for a stabilizing control is eliminated.

• We show that the VI algorithm is effective at solving policy evaluation steps (see (5) below) arising
in the PI algorithm. A simulation example shows that the VI algorithm may outperform the strategy
developed by Kleinman [25] in solving the policy evaluation step.

• In summary monograph [20], the authors presented a VI algorithm for an ergodic control problem
under invariant probability measure (i.e., system state x(s), ∀s > 0, of (1), has the same probability
distribution as the initial state x(0)). Since this paper does not rely on the invariant probability measure
assumption, obtaining the asymptotic property is more difficult. By overcoming these difficulties, we
develop the VI algorithm for solving the LQSOC problem. Thus, the results obtained herein may serve
as a useful generalization of their findings.

This article is organized as follows. Section 2 formulates the LQSOC problem and provides some
preliminary information. Section 3 introduces the VI algorithm and demonstrates its utility in solving
policy evaluation steps. Section 4 validates the obtained results using a numerical example. Section 5
outlines the conclusion and outlook of this paper.

2 Problem formulation and some preliminaries

Let us begin with Z and R, which are collections of non-negative integers and real numbers, respectively.
Let Rl×m denote the collection of all l×m real matrices. Rl denotes the l-dimensional Euclidean space.
| · |F is the Frobenius norm for matrices. | · | is the Euclidean norm for vectors, or induced matrix norm
for matrices. Zero matrix (or vector) is defined as 0. diag{r} is a square diagonal matrix whose main
diagonal is made up of the elements of vector r. Il is the l-dimensional identity matrix. The transpose
of a vector or matrix G is indicated by GT. S

l
+, S

l
++, and S

l indicate the collections of all positive
semidefinite matrices, positive definite matrices, and symmetric matrices in R

l×l, respectively. For any
matrix G ∈ S

l
++ (resp. G ∈ S

l
+), let G > 0 (resp. G > 0). For matrices G ∈ S

l, L ∈ S
l, we write

G > L (resp. G > L) if G − L > 0 (resp. G − L > 0). For any G ∈ S
m, let gji be the (j, i)th element

of matrix G, and let vecs(G) := [g11,
√
2g12, . . . ,

√
2g1m, g22,

√
2g23, . . . ,

√
2gm−1m, gmm]T. Furthermore,

w(·) is a one-dimensional standard Brownian motion defined on a complete filtered probability space
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(Ω,F , {Fs}s>0,P). We define a Hilbert space as

L2F (Rl) :=

{
Ψ(·) : [0,+∞)× Ω → R

l

∣∣∣∣Ψ(·) is Fs-adapted and E

∫ +∞

0

|ψ(s, ω)|2ds < +∞
}
.

We consider a stochastic system described by
{
dx(s) =

[
Ax(s) +Bu(s)

]
ds+

[
Cx(s) +Du(s)

]
dw(s),

x(0) = ξ,
(2)

where B,D ∈ R
n×m, A,C ∈ R

n×n are constant matrices and the initial state ξ ∈ R
n is a constant vector.

The corresponding cost functional is in the form of

J(u(·)) = E

∫ +∞

0

[
u(s)TRu(s) + x(s)TQx(s)

]
ds, (3)

where R and Q are constant matrices of proper sizes.
We now define mean-square stabilizability and exact observability, which are commonly used in infinite-

horizon LQSOC problems.

Definition 1 ([9, 10]). System (2) is called mean-square stabilizable if for every ξ ∈ R
n, there is a

matrix K ∈ R
m×n such that lims→+∞ E[x(s)Tx(s)] = 0, where x(·) is governed by

{
dx(s) = (A+BK)x(s)ds+ (C +DK)x(s)dw(s),

x(0) = ξ.
(4)

In this case, we call the control u(·) = Kx(·) a (mean-square) stabilizing control.

Definition 2 ([26]). [A,C|Q] is called exactly observable, if for any S > 0, the system




dx(s) = Ax(s)ds+ Cx(s)dw(s),

h(s) = Qx(s),

x(0) = ξ

satisfies
h(s) ≡ 0 a.s., ∀s ∈ [0, S]⇒ x(0) = ξ = 0.

Assumption 1. System (2) is mean-square stabilizable.

Assumption 2. Q > 0, R > 0, and [A,C|Q] is exactly observable.
Define an admissible control set as

Uad := {u(·) ∈ L2F (Rm) |u(·) is stabilizing}.

The LQSOC problem is given below.
Problem (LQSOC). Given ξ ∈ R

n, our task is to find a suitable control u∗(·) ∈ Uad such that

J(u∗(·)) = inf
u(·)∈Uad

J(u(·)).

For any ξ ∈ R
n, Problem (LQSOC) is said to be well-posed if −∞ < infu(·)∈Uad

J(u(·)) < +∞. Under
Assumptions 1 and 2, it is simple to show that 0 6 infu(·)∈Uad

J(u(·)) < +∞, implying that Problem
(LQSOC) is well-posed.

The stabilizing solution to GARE (1) is then defined, which is closely related to the optimal control
of Problem (LQSOC).

Definition 3 ([10]). If GARE (1) has a solution P such that

u(·) = −(DTPD +R)−1(DTPC +BTP )x(·)

is stabilizing for system (2), then P is referred to as a stabilizing solution to GARE (1).
To conclude this section, we cite the existing PI method, which not only presents a strategy for

approximating the solution of GARE (1) but also establishes the relationship between the stabilizing
solution to GARE (1) and the optimal control of Problem (LQSOC).
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Lemma 1 ([11, 13]). Suppose Assumptions 1 and 2 hold and a stabilizing control u(·) = K0x(·) is
known. If Pk is solved by

Pk(A+BKk) +Q+ (A+BKk)
TPk +KT

k RKk + (C +DKk)
TPk(C +DKk) = 0, (5)

and

Kk+1 = −(DTPkD +R)−1(DTPkC +BTPk), (6)

then we have

(i) Kk and Pk, k = 0, 1, 2, . . . can be uniquely determined at each iteration step;

(ii) u(·) = Kkx(·), k = 0, 1, 2, . . . are stabilizing;

(iii) {Pk}+∞k=0 converges to the unique stabilizing solution P ∗ to GARE (1), {Kk}+∞k=1 converges to K
∗ =

−(DTP ∗D +R)−1(DTP ∗C +BTP ∗), and the optimal control of Problem (LQSOC) is u∗(·) = K∗x∗(·).
In the theory of reinforcement learning, a policy indicates an agent’s behavior at a given time. Accord-

ing to this concept, in the context of control theory, Eq. (5) is usually referred to as policy evaluation and
Eq. (6) is referred to as policy improvement. By employing these two steps alternately, the PI algorithm
converges to the optimal values K∗ and P ∗. However, as previously stated, a stabilizing control should
be known prior to running the PI algorithm.

3 VI algorithm for problem (LQSOC)

In this section, we propose an iterative VI algorithm to numerically approximate P ∗ without the prereq-
uisite of an initial stabilizing control. Furthermore, we also present some related results to demonstrate
that the obtained VI algorithm can be used to calculate step (5) arising in the PI algorithm.

To that end, we first perform an asymptotic analysis for GARE (1), which is a key component and
motivation for the VI algorithm.

Theorem 1. Let Assumptions 1 and 2 hold. Given a GDRE,






Ṗ (t)− (CTP (t)D + P (t)B)(DTP (t)D +R)−1(DTP (t)C +BTP (t))

+ P (t)A+Q+ CTP (t)C +ATP (t) = 0,

P (T ) = N,

DTP (t)D +R > 0

(7)

with N ∈ S
n
+, then the solution P (t) to GDRE (7) is monotonically nondecreasing as t decreases and

satisfies limt→−∞ P (t) = P ∗, where P ∗ is the unique stabilizing solution to GARE (1).

Before concluding the proof of Theorem 1, we present the following lemma to demonstrate some
asymptotic properties of GDRE (7).

Lemma 2. Suppose Assumption 1 holds, Q > 0, and R > 0.

(i) For any P (T ) = N > 0, the solution P (t) of GDRE (7) exists. In this case, P (t) is monotonically
nondecreasing as t → −∞, and P (t) converges to a positive semidefinite solution to GARE (1) as t
declines;

(ii) If a solution of GDRE (7) with P (T ) = 0 converges to P ∗ as t drops, then any solution to GDRE
(7) with a terminal condition P (T ) > 0 converges to P ∗.

Proof. (i) is a special case of Theorem 4.1 in Ait Rami et al. [10]. (ii) can be derived by applying
Theorems 4.2 and 4.6 in Ait Rami et al. [10]. The proof is finished.

With the help of Lemma 2, we can now prove Theorem 1.

Proof of Theorem 1. According to (ii) of Lemma 2, it is sufficient to demonstrate that limt→−∞ P (t) = P ∗

for P (T ) = 0. Indeed, (i) of Lemma 2 shows that limt→−∞ P (t) = P̂ > 0, where P (·) is the solution to
GDRE (7) with P (T ) = 0 and P̂ is a solution to GARE (1). It then suffices to prove that P̂ = P ∗.

To that end, we demonstrate that P̂ > 0. Inserting K̂ = −(DTP̂D + R)−1(DTP̂C + BTP̂ ) into (4)
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and applying Ito’s formula to xT(s)P̂ x(s), we get

d(x(s)TP̂x(s))

= {x(s)T((C +DK̂)TP̂ (C +DK̂) + (A+BK̂)TP̂ + P̂ (A+BK̂))x(s)}ds + {· · · }dw(s)
= {x(s)T(ATP̂ + CTP̂C + P̂A− (CTP̂D + P̂B)(DTP̂D +R)−1(DTP̂C +BTP̂ )

− K̂TRK̂)x(s)}ds + {· · · }dw(s).

(8)

For any fixed S > 0, Eq. (8) and GARE (1) imply

0 6 E

∫ S

0

[
x(s)T(K̂TRK̂ +Q)x(s)

]
ds = E

[
ξTP̂ ξ − x(S)TP̂ x(S)

]
. (9)

Suppose P̂ > 0 does not hold; then there exists a ξ 6= 0 such that P̂ ξ = 0. In view of (9), we arrive at

0 6 E

∫ S

0

[
x(s)T(K̂TRK̂ +Q)x(s)

]
ds = E

[
ξTP̂ ξ − x(S)TP̂x(S)

]
= −E

[
x(S)TP̂ x(S)

]
6 0,

which implies
(Q+ K̂TRK̂)x(s) = 0 a.s., ∀s ∈ [0, S]. (10)

According to the stochastic Popov-Belevith-Hautus criterion for exact observability (e.g., Theorem 4 in
Zhang and Chen [26]), we know that the exact observability of

[
A,C|Q

]
implies that of

[
A + BK̂,C +

DK̂|Q + K̂TRK̂
]
. Clearly, Eq. (10) contradicts with the exact observability of [A + BK̂,C +DK̂|Q +

K̂TRK̂], so we have P̂ > 0.
Since P̂ is a solution to GARE (1), GARE (1) can be transformed to

{
P̂ (A+BK̂) + (C +DK̂)TP (C +DK̂) + (A+BK̂)TP̂ = −K̂TRK̂ −Q,
DTP̂D +R > 0.

Using Theorem 6 in Zhang and Chen [26], we can deduce that P̂ = P ∗ > 0 is the stabilizing solution of
GARE (1). Then the proof is complete.

Remark 1. Since GDRE (7) is a nonlinear backward differential matrix equation, we can reverse the
timeline in (7) to get a forward differential matrix equation:





Ṗ (t) = ATP (t) +Q− (CTP (t)D + P (t)B)(DTP (t)D + R)−1(DTP (t)C +BTP (t))

+ CTP (t)C + P (t)A,

P (0) = N,

DTP (t)D +R > 0.

(11)

Obviously, Theorem 1 indicates that limt→+∞ P (t) = P ∗, where P (·) denotes the solution to (11) with
P (0) = N ∈ S

n
+.

Theorem 1 and Remark 1 mean that the stabilizing solution P ∗ of GARE (1) can be solved by the
limit of the solution to GDRE (7). However, due to the nonlinear structure of the GDRE, obtaining the
analytical solution of GDRE (7) remains difficult. Inspired by [11, 13, 19] hereinafter, we will propose a
novel VI algorithm to approximate P ∗ using this asymptotic property.

We are now going to define some symbols that will be used in the proposed algorithm. {Hd}+∞d=0 is
defined as a sequence of bounded collections with nonempty interiors that satisfy

lim
d→+∞

Hd = S
n
+, Hd ⊆ Hd+1, ∀d ∈ Z.

0 < γk ∈ R, k = 0, 1, 2, . . ., and {γk}+∞k=0 satisfies

+∞∑

k=0

γk = +∞, lim
k→+∞

γk = 0.

The VI algorithm is summarized in Algorithm 1, and its convergence proof is presented in the following
theorem.
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Algorithm 1 VI algorithm

1: Select P0 > 0. d← 0, k ← 0.

2: repeat

3: P̃k+1 ← Pk + γk[A
TPk + PkA + CTPkC + Q − (PkB + CTPkD)(R + DTPkD)−1(BTPk + DTPkC)];

4: if P̃k+1 ∈ Hd then

5: Pk+1 ← P̃k+1;

6: else

7: Pk+1 ← P0, d← d + 1;

8: end if

9: k← k + 1;

10: until |P̃k+1 − Pk|/γk < ε, where ε is a small constant threshold.

Theorem 2. Suppose Assumptions 1 and 2 hold; then we obtain
(i) There exists a compact set W ∈ S

n
+ and an integer ĥ ∈ Z such that P ∗ ∈ W and {Pk}+∞k=ĥ

⊂ W ;

(ii) {Pk}+∞k=0 obtained by Algorithm 1 satisfies limk→+∞ Pk = P ∗.
Proof. (i) First, we convert (11) into an ordinary differential equation (t will be suppressed for illustrating
simplicity):

ṗ = f(p), (12)

where p = vecs(P ), P := {P ∈ S
n |R+DTPD > 0}, and f(·) : vecs(P)→ R

n(n+1)/2 is

f(p) := vecs(PA+Q+ CTPC +ATP − (CTPD + PB)(DTPD +R)−1(DTPC +BTP )). (13)

According to Theorem 1 and Remark 1, if P (0) ∈ S
n
+, the solution P (·) of (11) converges to P ∗. Thus,

we know that p∗ = vecs(P ∗) is a locally asymptotically stable equilibrium point (see Khalil [27]) of (12).
Next, we show that the function f(p) is locally Lipschitz in vecs(P). To accomplish this, we simply

need to demonstrate the local Lipschitz property of

g(p) := vecs((CTPD + PB)(DTPD +R)−1(DTPC +BTP )).

In fact, for any P1, P2 ∈ S
n satisfying vecs(P1), vecs(P2) ∈ vecs(P), we know

|(CTP1D + P1B)(DTP1D +R)−1(DTP1C +BTP1)

− (CTP2D + P2B)(DTP2D +R)−1(DTP2C +BTP2)|F
= |(CTP1D + P1B)(DTP1D +R)−1[DT(P1 − P2)C +BT(P1 − P2)]

+ (CTP1D + P1B)(DTP1D +R)−1(DTP2C +BTP2)

− [CT(P2 − P1)D + (P2 − P1)B](DTP2D +R)−1(DTP2C +BTP2)

− (CTP1D + P1B)(DTP2D +R)−1(DTP2C +BTP2)|F
= |(CTP1D + P1B)(DTP1D +R)−1[DT(P1 − P2)C +BT(P1 − P2)]

− [CT(P2 − P1)D + (P2 − P1)B](DTP2D +R)−1(DTP2C +BTP2)

+ (CTP1D + P1B)[(DTP1D +R)−1(DTP2D +R)(DTP2D +R)−1

− (DTP1D +R)−1(DTP1D +R)(DTP2D +R)−1](DTP2C +BTP2)|F
= |(CTP1D + P1B)(DTP1D +R)−1[DT(P1 − P2)C +BT(P1 − P2)]

− [CT(P2 − P1)D + (P2 − P1)B](DTP2D +R)−1(DTP2C +BTP2)

+ (CTP1D + P1B)(DTP1D +R)−1[DT(P2 − P1)D](DTP2D +R)−1(DTP2C +BTP2)|F .

(14)

Since |vecs(P )| = |P |F , ∀P ∈ S
n, Eq. (14) and the property of Frobenius norm imply that g(·) is locally

Lipschitz.
Finally, since f(p) is locally Lipschitz, the converse Lyapunov theorem (e.g., Theorem 4.17 in Khalil [27])

can be applied and the set W and integer ĥ can be constructed using procedures similar to the proof of
Lemma 3.4 in Bian and Jiang [19].

(ii) First, based on (i) and Algorithm 1, it follows that

Pk+1 = Pk + γk
(
ATPk + CTPkC + PkA+Q

− (PkB + CTPkD)(DTPkD +R)−1(BTPk +DTPkC)
)
+ Zk, ∀k > ĥ,
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where

Zk :=

{
P0 − P̃k+1, if P̃k+1 /∈ W ,

0, otherwise.

Next, we define an interpolation

P 0(t) :=

{
Pk, t ∈ [tk, tk+1),

P0, t 6 0,

and its left-shifted process P k(t) := P 0(t+ tk), ∀t ∈ (−∞,+∞), where tk =
∑k−1

j=0 γj and t0 = 0.
Following these definitions, we derive

P k(t) = Pk +

q(t+tk)−1∑

j=k

γj
(
ATPj + CTPjC + PjA+Q

− (PjB + CTPjD)(DTPjD +R)−1(BTPj +DTPjC)
)
+

q(t+tk)−1∑

j=k

Zj ,

= P k(0) + Lk(t) + Zk(t) +Gk(t), ∀k > ĥ, ∀t > 0,

where

Lk(t) :=

∫ t

0

(
ATP k(s) + CTP k(s)C + P k(s)A+Q

− (P k(s)B + CTP k(s)D)(DTP k(s)D +R)−1(BTP k(s) +DTP k(s)C)
)
ds,

Zk(t) :=

q(t+tk)−1∑

j=k

Zj , q(t) :=

{
0, t < 0,

i, 0 6 ti 6 t < ti+1,

and

Gk(t) :=

q(t+tk)−1∑

j=k

γj
(
ATPj + CTPjC + PjA+Q

− (PjB + CTPjD)(DTPjD +R)−1(BTPj +DTPjC)
)
− Lk(t).

In the preceding procedures, we assume that the term
∑q(t+tk)−1

j=k equals zero when t ∈ [0, γk).
Then, using the stochastic approximation method, which is similar to the proof of Theorem 3.3 in Bian

and Jiang [19], we obtain the convergence of Algorithm 1. This brings the proof to a close.
Let us now give a corollary to analyze the convergence rate of the crucial updating equation:

Pk+1 ← Pk+γk[A
TPk+C

TPkC+PkA+Q−(PkB+CTPkD)(R+DTPkD)−1(BTPk+D
TPkC)], ∀k > ĥ.

Corollary 1. {Pk}+∞k=ĥ
converges in a sublinear rate to P ∗.

Proof. Given that P ∗ is a solution of GARE (1), we derive

Pk+1 − P ∗ = γk[A
TPk + CTPkC + PkA+Q− (PkB + CTPkD)(DTPkD +R)−1(BTPk +DTPkC)]

− γk[ATP ∗ + CTP ∗C + P ∗A+Q− (P ∗B + CTP ∗D)(DTP ∗D +R)−1(BTP ∗ +DTP ∗C)]

+ Pk − P ∗

= Pk − P ∗ + γk[A
T(Pk − P ∗) + CT(Pk − P ∗)C + (Pk − P ∗)A

+ (CTP ∗D + P ∗B)(DTP ∗D +R)−1[DT(P ∗ − Pk)C +BT(P ∗ − Pk)]

− [CT(Pk − P ∗)D + (Pk − P ∗)B](DTPkD +R)−1(DTPkC +BTPk)

+ (CTP ∗D + P ∗B)(DTP ∗D +R)−1[DT(Pk − P ∗)D](DTPkD +R)−1(DTPkC +BTPk)],

where the final equality is obtained using procedures similar to (14).
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Algorithm 2 PI implemented by Algorithm 1

1: Choose K0 such that u(·) = K0x(·) is a stabilizing control. Choose P0 > 0 and select two small thresholds ε1 > 0, ε2 > 0.

Initial i← 0.

2: repeat

3: d← 0, k ← 0;

4: loop

5: P̃k+1 ← Pk + γk[(A + BKi)
TPk + Pk(A + BKi) + (C + DKi)

TPk(C + DKi) + Q + KT
i
RKi];

6: if P̃k+1 ∈ Hd then

7: Pk+1 ← P̃k+1;

8: else if |P̃k+1 − Pk|/γk < ε1 then

9: return Pk;

10: else

11: Pk+1 ← P0, d← d + 1;

12: end if

13: k ← k + 1;

14: end loop

15: Ki+1 = −(DTPkD + R)−1(DTPkC + BTPk);

16: i← i+ 1;

17: until |Ki+1 −Ki| < ε2.

Keeping in mind that P ∗ ∈ W , {Pk}+∞k=ĥ
⊂ W , and limk→+∞ γk = 0, the above equation implies

lim
k→+∞

|Pk+1 − P ∗|
|Pk − P ∗|

= 1,

which completes the proof.
Furthermore, in light of the obtained VI algorithm, we summarize the implementation of the PI

method in Algorithm 2, whose policy evaluation steps are calculated by Algorithm 1. The following
theorem demonstrates the applicability of the VI algorithm in calculating the policy evaluation step and
provides the convergence of Algorithm 2.

Theorem 3. Let Assumptions 1 and 2 hold. Then we have
(i) For any Kk obtained by Lemma 1, the solution Pk of (5) can be solved by running Algorithm 1;
(ii) {Pi}+∞i=0 and {Ki}+∞i=1 defined in Algorithm 2 satisfy limi→+∞Ki = K∗ and limi→+∞ Pi = P ∗.

Proof. Given k ∈ Z, introduce a new system and a new cost functional as
{
dx(s) =

[
(A+BKk)x(s) + 0 · u(s)

]
ds+

[
(C +DKk)x(s) + 0 · u(s)

]
dw(s),

x(0) = ξ,
(15)

J(u(·)) = E

∫ +∞

0

[
u(s)Tu(s) + x(s)T(KkRKk +Q)x(s)

]
ds. (16)

It is clear that Eq. (5) is the corresponding GARE to this new problem (15) with (16). According
to Lemma 1, the system (15) is mean-square stabilizable. Furthermore, it follows from the stochastic
Popov-Belevith-Hautus criterion for exact observability (e.g., Theorem 4 in Zhang and Chen [26]) that[
A+BKk, C +DKk|Q+KT

k RKk

]
, ∀k ∈ Z is exactly observable. Thus, (i) can be obtained by applying

Algorithm 1 to problem (15) with (16). (ii) follows directly from (i) and Lemma 1. The proof is thus
completed.

4 Numerical example

In this section, we implement Algorithms 1 and 2 to solve the corresponding GARE of Problem (LQSOC).
All numerical results were generated by MATLAB (version R2020a) on a Windows computer (Windows 7)
with an Intel(R) core(TM) i7-7700 CPU running @ 3.60 GHz and 8 GB of main memory. The coefficient
matrices of system (2) are chosen according to Ait Rami and Zhou [9]:

A =




−0.76165 0.25467 −0.92393 −0.17284 −0.70045
1.47398 −0.68342 2.72667 −0.60199 −0.82622
0.85298 0.81451 −1.70868 −1.56195 1.13239

0.72233 −0.18848 0.06988 −0.38887 −0.23301
0.63808 −1.03274 −1.37728 0.65430 −0.23439




, B =




1.40276 −0.74610
0.32687 −1.7211
0.06135 −1.71576
−0.18905 0.10230

0.42498 −1.28586




,
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C =




0.15269 0.00291 0.00648 −0.11443 0.46638

−0.09445 −0.35861 0.19884 −0.14688 −0.32973
0.64373 0.43718 −0.34427 0.05755 −0.21438
−0.11438 0.04115 −0.22659 −0.06408 0.07433

−0.16133 0.22956 0.30741 0.29844 −0.38512




, D =




0.70138 −0.37305
0.16344 −0.86055
0.03068 −0.85788
−0.09453 0.05115

0.21249 −0.64293




.

We choose R = I2, Q = diag{0.5, 1, 1, 0.1, 1}, P0 = 0.01I5, γk = 100/(k+ 1), ∀k ∈ Z, and

Hd = {P ∈ S
n
+

∣∣ |P | 6 10(d+ 1)}, ∀d ∈ Z.

By applying Algorithm 1, the obtained approximation value P̃ ∗ is

P̃ ∗ =




0.55716 0.35001 0.21927 0.04877 −0.48710
0.35001 1.45536 1.41043 −1.08310 −0.86988
0.21927 1.41043 1.84026 −1.30250 −0.88101
0.04877 −1.08310 −1.30250 2.26032 0.08835

−0.48710 −0.86988 −0.88101 0.08835 1.86882




.

To check the error of the proposed algorithm, let

R(P ) = PA+Q+ATP + CTPC − (CTPD + PB)(DTPD +R)−1(DTPC +BTP ).

In this case, the difference between P̃ ∗ and the true value P ∗ is |R(P̃ ∗)| = 1.8392 × 10−15, and then
K̃∗ = −(DTP̃ ∗D +R)−1(DTP̃ ∗C +BTP̃ ∗) is

K̃∗ =

[
−0.50199 −0.12955 −0.00208 0.11095 −0.02374
0.43633 0.87418 0.97933 −0.90574 −0.41587

]
.

By setting ξ = [0.1, 0,−0.5, 2,−0.2]T, the state trajectories of system (2) subject to u(·) = 0 and u(·) =
K̃∗x(·) are plotted in Figures 1 and 2. Figures 1 and 2 show that P̃ ∗ obtained by Algorithm 1 is, in
fact, the stabilizing solution to GARE (1). Furthermore, to validate the performance of Algorithm 1 with
various initial values, we run the VI algorithm under three different P0. Table 1 shows the corresponding
results.

In addition, to demonstrate the efficacy of Algorithm 1 in determining policy evaluation steps, we solve
the original numerical example by implementing the PI algorithm in Lemma 1. For comparison purposes,
we solve the policy evaluation step (5) by Algorithm 1 and by the method in Kleinman [25], respectively.
Let

K0 =

[
−0.69238 −0.12700 0.03431 0.04340 0.02159

0.43765 0.89896 1.01608 −0.92002 −0.44953

]

and set other parameters as described at the beginning of this section. Table 2 shows the corresponding
simulation results, which suggest that Algorithm 1 may be a more powerful method for calculating policy
evaluation steps than the algorithm developed by Kleinman [25]. When compared with Table 2, Table 1
also implies that the computation error of Algorithm 1 is less than that of the PI algorithm. The above
results indicate that the VI algorithm may outperform the existing PI method.

5 Conclusion and outlook

In this study, we investigated an infinite-horizon LQSOC problem in continuous time. First, we developed
a novel VI algorithm to solve the problem. Unlike the PI algorithm established in [11,13], the VI algorithm
does not require a stabilizing control to initiate the algorithm. Then, we showed that Algorithm 1 can
be used to solve policy evaluation steps arising in the PI algorithm. Finally, we presented a simulation
example to illustrate the advantages of the obtained results.
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Figure 1 (Color online) State trajectories under u(·) = 0. Figure 2 (Color online) State trajectories under u(·) =

K̃∗x(·).

Table 1 Algorithm 1 with different P0

P0 = 0.05I5 P0 = 0.5I5 P0 = I5

|R(P̃∗)| 2.2025×10−15 1.5946×10−15 1.6052×10−15

CPU time (s) 0.1018 0.1109 0.4021

Table 2 Results of the PI algorithm

PI implemented by Algorithm 1 PI implemented by Kleinman [25]

|R(P̃∗)| 4.2798×10−15 6.1466×10−14

CPU time (s) 0.2480 0.7484

According to Chen et al. [28], one of the key differences between LQDOC problems and LQSOC
problems is that the weighting matrix R in performance index (3) can be indefinite. In this paper, we
only consider the case where R is positive definite. Otherwise, conducting an asymptotic analysis similar
to Theorem 1 is difficult. This problem will be considered in the near future.
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