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Abstract This paper investigates the prescribed-time state-feedback stabilization and prescribed-time in-

verse optimality problems for stochastic high-order nonlinear systems. First, a time-varying controller is

designed by developing scaled quartic Lyapunov functions, which can guarantee that the system has a unique

strong solution almost surely on the prescribed interval for any system initial conditions and that the states

and the control converge to the origin in a mean-square form within the prescribed time. Then, the controller

is redesigned to address the problem of prescribed-time inverse optimal mean-square stabilization. Finally,

a concrete example is provided to confirm the efficiency of the proposed design schemes.

Keywords stochastic high-order nonlinear systems, prescribed-time stabilization, the scaled design, inverse

optimality

1 Introduction

Stochastic nonlinear systems have widespread applications in many fields, such as finance and engineer-
ing [1, 2].

The stochastic nonlinear design has gained significant attention [3,4] since Krstic and Deng presented
a global asymptotic stabilization control design by developing quartic Lyapunov functions [5–7]. Tremen-
dous advancements have been made in asymptotic stabilization designs for a class of important stochastic
systems called stochastic high-order nonlinear systems, whose Jacobian linearizations are likely to possess
unstable structures [8–12].

In recent decades, stochastic finite-time control has attracted considerable interest due to its advan-
tages, such as faster convergence rates and improved stability. Refs. [13, 14] first defined finite-time
stability and established the stability theory in stochastic finite-time control. Successful treatments of
finite-time stabilization problems of stochastic high-order systems are presented in [15,16]. Unfortunately,
in the results presented in [13–16], the settling time is uncertain and relies on the initial conditions of a
system, which makes it difficult to apply the results in practice.

Prescribed-time control, namely the settling time of a controlled system being deterministic and exactly
assignable, is uniquely superior in that it allows the control designers to set the convergence time in ad-
vance regardless of the initial conditions of the system. Although numerous solutions to the deterministic
prescribed-time control have been reported [17–21], few studies have addressed stochastic settings. In the
realm of stochastic prescribed-time control, Ref. [22] addressed the problems of stochastic prescribed-time
stabilization together with prescribed-time inverse optimality with nonscaled new Lyapunov functions for
the first time. The design employing the new scaled quartic Lyapunov functions proposed by [23] has
a smaller control effort than the design proposed by [22]. Ref. [24] proposed two different output feed-
back control design solutions for the systems where unobservable states and unknown growth rates exist
without or with sensor uncertainty to resolve the prescribed-time mean-square stabilization problems.
Recently, Ref. [25] resolved mean-nonovershooting prescribed-time control problems in the presence of
the finite-time vanishing noise. However, notably, Refs. [22–25] have not considered stochastic high-order
nonlinear systems.
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In addition to stabilization, another important topic in stochastic control is inverse optimality. Ref. [6]
published the first paper to present inverse optimal designs for general stochastic nonlinear systems. Sub-
sequently, Refs. [26, 27] addressed the inverse optimal design problems of stochastic high-order systems.
However, inverse optimal stabilization could only be achieved asymptotically in these studies. Further-
more, to the best of our knowledge, only Ref. [22] has considered the stochastic prescribed-time inverse
optimal design but did not consider high-order systems.

Motivated by the above observations, this paper addresses the prescribed-time control problems in
stochastic high-order nonlinear systems. The contributions comprise the following three components:

(1) This paper studies more general system models. Unlike the designs described by [28], where a
system with only two integrators is investigated, this paper investigates more general stochastic high-
order systems with an arbitrary number of integrators. Further, the system model studied herein is
more general than those studied by [22–25] because it allows the Jacobian linearizations to have unstable
modes.

(2) Unlike the designs described in [15, 16], where the convergence time depends on the initial condi-
tions of a system, the designs developed herein have the significant advantage of the convergence time
independent of the initial conditions of the system. The convergence time is deterministic, known, and
can be arbitrarily preset as required.

(3) Unlike the inverse optimal designs described by [26, 27] where asymptotic stabilization controllers
are constructed to minimize meaningful cost functionals, a new inverse optimal controller design in the
prescribed-time sense is developed herein based on the results described by [22, 26].

The rest of the paper is structured as follows: Section 2 elaborates on the problems to be studied.
Sections 3 and 4 focus on the design and analysis of the prescribed-time stabilization and prescribed-time
inverse optimality, respectively. Section 5 provides a concrete example to demonstrate the validity of our
designs. Finally, this study is summarized in Section 6.

Note. The implication of each notation, the requisite definitions, and lemmas are the same as those
presented in [22] and have been omitted here.

2 Problem description

Consider the following stochastic high-order nonlinear systems:

dxi = xp
i+1dt+ ϕT

i (t, x)dω, i = 1, . . . , n− 1, (1)

dxn = updt+ ϕT
n (t, x)dω, (2)

where p > 1 is an odd integer, x = (x1, . . . , xn)
T ∈ R

n is the system state vector, and u ∈ R is the
control input. ϕi : R

+ × R
n → R

m are smooth functions and satisfy ϕi(t, 0) = 0. ω is an m-dimensional
independent standard Wiener process defined on the complete filtered probability space (Ω,F ,Ft, P )
with a filtration Ft satisfying the usual conditions (i.e., it is increasing and right continuous while F0

contains all P -null sets).
For the system (1) and (2), the following assumption is made.

Assumption 1. There exists a positive constant c such that the smooth functions ϕi, i = 1, . . . , n
satisfy

|ϕi(t, x)| 6 c
(

|x1|
p+1
2 + · · ·+ |xi|

p+1
2

)

. (3)

Remark 1. Compared with [28], we consider a more general system model in (1) and (2). Specifically,
the system (1) and (2) allows that the number of integrators is arbitrary. However, Ref. [28] only studied
a system with two integrators. Hence, the system model in [28] is a special case of (1) and (2).

Remark 2. Assumption 1 is natural for the prescribed-time control of stochastic high-order nonlinear
systems. When p = 1, Assumption 1 reduces to Assumption 1 presented in [22]. In addition, Assumption 1
is important in ensuring the prescribed-time stability of (1) and (2). More details can be found in the
design process.

Herein, we aim to address prescribed-time control problems for the high-order system (1) and (2).
Specifically, we first designed state-feedback controllers to render the system (1) and (2) prescribed-time
mean-square stable. Thereafter, a new controller was redesigned to force the system (1) and (2) to achieve
inverse optimal stabilization in the prescribed time.
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3 Prescribed-time mean-square stabilization

3.1 Controller design

To start with, a scaling function is introduced as follows:

µ(t) =

(

T

t0 + T − t

)m

, ∀t ∈ [t0, t0 + T ), (4)

where T > 0 refers to any prescribed time and m > 2 is an integer.
Next, we implement the prescribed-time controller design for the system (1) and (2) based on the

backstepping technique.
Step 1. We first construct the virtual controller x∗

2.
Define

z1 = x1, (5)

and choose the 1st Lyapunov candidate function

V1 =
1

4
z41 . (6)

From (1), (6), and Lemma 1 in [22], we have

LV1 = z31x
p
2 +

3

2
z21 |ϕ1|2

6 z31x
p
2 +

3

2
c2zp+3

1

6 z31(x
p
2 − x∗p

2 ) + z31x
∗p
2 +

3

2
c2µpzp+3

1 . (7)

Choosing

x∗
2 = −α1µz1, (8)

α1 =

(

n+
3

2
c2
)1/p

, (9)

which substitute into (7), we can get

LV1 6 −nµpzp+3
1 + z31

(

xp
2 − x∗p

2

)

. (10)

Deductive step: In this step, we aim to design the virtual controller x∗
l .

Assume that the design procedures from Step 1 to Step l − 1 have been completed, and the virtual
controllers x∗

j for Step j − 1 (j = 2, . . . , l) have been constructed as follows:

x∗
j = −αj−1µzj−1, (11)

zj−1 = xj−1 − x∗
j−1, (12)

where αj−1 is a positive constant, and the (j − 1)th Lyapunov candidate function Vj−1 = Vj−2 +
1

4µ4(j−2) z
4
j−1 satisfies

LVj−1 6− (n− (j − 2))

j−1
∑

k=1

µp−4(k−1)zp+3
k +

1

µ4(j−2)
z3j−1

(

xp
j − x∗p

j

)

+

j−2
∑

k=1

(j − k − 1)µ−4(k−1)+1z4k +

j−1
∑

k=2

∆k2µ
−4k+1. (13)

Next, we verify that Eq. (13) is also valid for Step l.
Define

zl = xl − x∗
l , (14)
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and choose the lth Lyapunov candidate function

Vl = Vl−1 +
1

4µ4(l−1)
z4l . (15)

From (11) and (14) we get

zl = xl +
l−1
∑

k=1

βk(t)xk, (16)

βk =

l−1
∏

i=k

µαi. (17)

Applying Itô differentiation rule, we have

dzl =

(

xp
l+1 +

l−1
∑

k=1

β̇k(t)xk +
l−1
∑

k=1

βk(t)x
p
k+1

)

dt+

(

ϕT
l +

l−1
∑

k=1

βk(t)ϕ
T
k

)

dω. (18)

From (13), (15), (18), and Lemma 1 in [22], we get

LVl 6−
(

n− (l − 2)
)

l−1
∑

k=1

µp−4(k−1)zp+3
k +

1

µ4(l−2)
z3l−1

(

xp
l − x∗p

l

)

+

l−2
∑

k=1

(l − k)µ−4(k−1)+1z4k +

l−1
∑

k=2

∆k2µ
−4k+1

+
1

µ4(l−1)
z3l

(

xp
l+1 +

l−1
∑

k=1

β̇k(t)xk +

l−1
∑

k=1

βk(t)x
p
k+1

)

− m

4T
µ−4(l−1)+ 1

m z4l +
3

2µ4(l−1)
z2l

∣

∣

∣

∣

∣

ϕT
l +

l−1
∑

k=1

βk(t)ϕ
T
k

∣

∣

∣

∣

∣

2

. (19)

From (11), (12), (14), and Lemmas 2.1, 2.3, 2.5 in [29] we have

1

µ4(l−2)
z3l−1

(

xp
l − x∗p

l

)

6
1

µ4(l−2)
p|zl−1|3|zl|

(

xp−1
l + x∗p−1

l

)

6
1

µ4(l−2)
|zl−1|3|zl|

(

(cm + 1)pαp−1
l−1 µ

p−1zp−1
l−1 + cmpzp−1

l

)

6 (cm + 1)pαp−1
l−1 µ

p−4(l−2)−1|zl−1|p+2|zl|+ cmpµ−4(l−2)|zl−1|3|zl|p

6
1

2
µp−4(l−2)zp+3

l−1 +∆l1µ
p−4(l−1)zp+3

l , (20)

where

cm = max
{

1, 2p−2
}

, (21)

∆l1 =
1

p+ 3

(

p+ 3

4(p+ 2)

)−(p+2)
(

(cm + 1)pαp−1
l−1

)p+3

+
p

p+ 3

(

p+ 3

12

)−3/p

(cmp)(p+3)/p. (22)

From (17) we obtain

βk = µl−k
l−1
∏

i=k

αi, (23)
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β̇k =
m(l − k)

T

l−1
∏

i=k

αiµ
l−k+1/m 6

m(l − k)

T

l−1
∏

i=k

αiµ
l−k+1. (24)

By (14), (24), and Lemma 2.1 in [29], we obtain

1

µ4(l−1)
z3l

l−1
∑

k=1

β̇k(t)xk

6 |zl|3
l−1
∑

k=1

m(l − k)

T

(

l−1
∏

i=k

αi

)

µl−k−4(l−1)+1(|zk|+ αk−1µ|zk−1|)

6

l−1
∑

k=1

m(l − k)

T

(

l−1
∏

i=k

αi

)

(1 + αk)µ
l−k−4(l−1)+1|zk||zl|3

6

l−1
∑

k=1

µ−4(k−1)+1z4k +
3

4
× 4−

1
3

l−1
∑

k=1

(

m(l − k)

T

(

l−1
∏

i=k

αi

)

(1 + αk)

)
4
3

µ−4l+5z4l

6

l−1
∑

k=1

µ−4(k−1)+1z4k + µp−4(l−1)zp+3
l +∆l2µ

−4l+1, (25)

where

∆l2 =
p− 1

p+ 3

(

p+ 3

4

)− 4
p−1
[

3

4
× 4−

1
3

l−1
∑

k=1

(

m(l − k)

T

(

l−1
∏

i=k

αi

)

(1 + αk)

)
4
3
]

p+3
p−1

. (26)

By (11), (12), (23), and Lemmas 2.1, 2.3 in [29] we obtain

1

µ4(l−1)
z3l

l−1
∑

k=1

βk(t)x
p
k+1

6
1

µ4(l−1)
|zl|3

l−1
∑

k=1

µl−k

(

l−1
∏

i=k

αi

)

(

2p−1|zk+1|p + 2p−1αp
kµ

p|zk|p
)

6

l−1
∑

k=1

2p−1(1 + αp
k)

(

l−1
∏

i=k

αi

)

µp+l−k−4(l−1)|zk|p|zl|3 + 2p−1αl−1µ
−4l+3zp+3

l

6
1

4

l−1
∑

k=1

µp−4(k−1)zp+3
k +∆l3µ

p−4(l−1)zp+3
l , (27)

where

∆l3 =
3

p+ 3

(

p+ 3

4p

)−
p

3 l−1
∑

k=1

[

2p−1(1 + αp
k)

(

l−1
∏

i=k

αi

)

]

p+3
3

+ 2p−1αl−1. (28)

By (11), (12), (23), and Lemmas 2.1, 2.3 in [29] we obtain

3

2µ4(l−1)
z2l

∣

∣

∣

∣

∣

ϕT
l +

l−1
∑

k=1

βk(t)ϕ
T
k

∣

∣

∣

∣

∣

2

6
3lc2

2µ4(l−1)
z2l

(

|xl|p+1 +

l−1
∑

k=1

β2
k|xk|p+1

)

6
3lc2

2µ4(l−1)
z2l

(

2pzp+1
l + 2pαp+1

l−1 µ
p+1zp+1

l−1
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+

l−1
∑

k=1

µ2(l−k)

(

l−1
∏

i=k

α2
i

)

(

2pzp+1
k + 2pαp+1

k−1µ
p+1zp+1

k−1

)

)

6
3lc2

2µ4(l−1)
z2l

(

2pzp+1
l + 2p+1αp+1

l−1 µ
p+1zp+1

l−1

+

l−2
∑

k=1

2p
(

1 + αp+1
k

)

(

l−1
∏

i=k

α2
i

)

µp+2(l−k)+1zp+1
k

)

6

l−2
∑

k=1

3lc22p−1
(

1 + αp+1
k

)

(

l−1
∏

i=k

α2
i

)

µp+5−2(l+k)zp+1
k z2l

+ 3lc22pαp+1
l−1 µ

p+5−4lzp+1
l−1 z

2
l + 3lc22p−1µ−4(l−1)zp+3

l

6
1

4

l−1
∑

k=1

µp−4(k−1)zp+3
k +∆l4µ

p−4(l−1)zp+3
l , (29)

where

∆l4 =
2

p+ 3

(

p+ 3

4(p+ 1)

)−
p+1
2 l−2
∑

k=1

[

3lc22p−1
(

1 + αp+1
k

)

(

l−1
∏

i=k

α2
i

)]

p+3
2

+
2

p+ 3

(

p+ 3

4(p+ 1)

)−
p+1
2
(

3lc22pαp+1
l−1

)

p+3
2

+ 3lc22p−1. (30)

Substituting (20)–(29) into (19) results in

LVl 6− (n− (l − 1))

l−1
∑

k=1

µp−4(k−1)zp+3
k +

1

µ4(l−1)
z3l
(

xp
l+1 − x∗p

l+1

)

+
1

µ4(l−1)
x∗p
l+1z

3
l + (∆l1 +∆l3 +∆l4 + 1)µp−4(l−1)zp+3

l

+

l
∑

k=2

∆k2µ
−4k+1 +

l−1
∑

k=1

(l − k − 1)µ−4(k−1)+1z4k. (31)

Choosing

x∗
l+1 = −αlµzl, (32)

αl =
(

∆l1 +∆l3 +∆l4 + (n− (l − 1)) + 1
)1/p

, (33)

which substitute into (31), we can get

LVl 6− (n− (l − 1))

l
∑

k=1

µp−4(k−1)zp+3
k +

1

µ4(l−1)
z3l
(

xp
l+1 − x∗p

l+1

)

+

l−1
∑

k=1

(l − k)µ−4(k−1)+1z4k +

l
∑

k=2

∆k2µ
−4k+1. (34)

Step n: We now design the actual controller u.
Analogous to (32) and (33), by designing the actual controller

u = −αnµzn, (35)

where αn > 0 is constant, we can acquire

LVn 6−
n
∑

k=1

µp−4(k−1)zp+3
k +

n−1
∑

k=1

(n− k)µ−4(k−1)+1z4k +

n
∑

k=2

∆k2µ
−4k+1, (36)

where Vn =
∑n

k=1
1

4µ4(k−1) z
4
k.
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3.2 Stability analysis

Here we present the primary stability results on the system (1) and (2).

Theorem 1. For the system (1) and (2), if Assumption 1 is satisfied, under the controls (8), (11), and
(35), the system has a unique solution on [t0, t0 + T ) almost surely for all x(t0) ∈ R

n. Furthermore, the
equilibrium point of the closed-loop system is prescribed-time mean-square stable with limt→t0+T Eu2 =
limt→t0+T E|x|2 = 0.
Proof. From (5), (11), and (12) we have

x =



















1 0 · · · 0 0

−α1µ 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

0 0 · · · −αn−1µ 1



















z, (37)

where z = (z1, . . . , zn)
T. From (37) we get

|x| 6

√

√

√

√n+

n−1
∑

i=1

µ2α2
k |z|, (38)

which is equivalent to

|z| >
1

√

n+
∑n−1

k=1 µ
2α2

k

|x|. (39)

From (15) and (39), it is easy to see that the first condition (9) in Lemma 1 [22] holds.
From Lemma 2.1 in [29] we have

(n− k + 1/4)µ−4(k−1)+1z4k 6 µp−4(k−1)zp+3
k +∆n,k+4µ

−4k+1, k = 1, . . . , n, (40)

where

∆n,k+4 =
p− 1

p+ 3

(

p+ 3

4

)− 4
p−1
(

n− k + 1/4
)

p+3
p+1 . (41)

Substituting (40) into (36), LVn in (36) becomes

LVn 6− 1

4

n
∑

k=1

µ−4(k−1)+1z4k +

n
∑

k=1

∆kµ
−4k+1, (42)

where ∆k = ∆k2 + ∆n,k+4 and ∆12 = 0. This term indicates the second condition (10) of Lemma 1
in [22] is satisfied.

Therefore, the plant consisting of (1), (2), and (35) satisfies the locally Lipschitz condition. Hence,
according to Lemma 1 in [22], the conclusion (1) is valid.

We then verify the conclusion (2).
Defining

ρk = inf{t : t0 6 t < t0 + T, |x(t)| > k}, (43)

where k > 0 is an integer, choosing

V̄ = e
∫

t

t0
µ(s)ds

Vn, (44)

and employing Itô’s formula over [t0, ρk ∧ t], we arrive at

V̄ (ρk ∧ t, x(ρk ∧ t)) = V (t0, x(t0)) +

∫ ρk∧t

t0

LV̄ (x(τ), τ)dτ +

∫ ρk∧t

t0

∂V̄

∂x
gT(τ, x(τ))dω(τ). (45)
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Taking expectation on the both sides of (45) and using Dynkin’s formula in [1] and (42), we have

EV̄ (ρk ∧ t, x(ρk ∧ t))

= Vn(t0, x(t0)) + E

{
∫ ρk∧t

t0

LV̄ (x(τ), τ)dτ

}

= Vn(t0, x(t0)) + E

{
∫ ρk∧t

t0

e
∫

τ

t0
µ(s)ds

(LVn + µVn)dτ

}

6 Vn(t0, x(t0)) +

n
∑

i=1

∫ ρk∧t

t0

∆iµ
−4i+1(τ)e

∫
τ

t0
µ(s)ds

dτ. (46)

According to Fatou Lemma, by (44) and (46) we reach

EV̄ (t, x(t)) 6 Vn(t0, x(t0)) +

n
∑

i=1

∫ t

t0

∆iµ
−4i+1(τ)e

∫
τ

t0
µ(s)ds

dτ. (47)

From (44) and (47) we obtain

EVn 6 e
−

∫
t

t0
µ(s)ds

(

Vn(t0, x(t0)) +

n
∑

i=1

∫ t

t0

∆iµ
−4i+1(τ)e

∫
τ

t0
µ(s)ds

dτ

)

, ∀t ∈ [t0, t0 + T ). (48)

Using Schwarz’s inequality and (12), we can acquire

E|z|2 6 (E|z|4)1/2

=
(

E(z21 + · · ·+ z2n)
2
)1/2

6
√
n
(

E(z41 + · · ·+ z4n)
)1/2

6 2
√
nµ2(n−1)

(

EVn

)1/2
, ∀t ∈ [t0, t0 + T ). (49)

From (38) and (49) we have

E|x|2 6

(

n+

n−1
∑

k=1

µ2α2
k

)

E|z|2

6 2
√
nµ2(n−1)

(

n+

n−1
∑

k=1

µ2α2
k

)

(

EVn

)1/2
, ∀t ∈ [t0, t0 + T ). (50)

By (12), (35), and (49) we obtain

Eu2 = α2
nµ

2E|zn|2

6 α2
nµ

2E|z|2

6 2
√
nα2

nµ
2n
(

EVn

)1/2
, ∀t ∈ [t0, t0 + T ). (51)

From (4), (48), (50), and (51), we can obtain

limt→t0+T Eu2 = limt→t0+T E|x|2 = 0. (52)

Hence, the theorem is proven.

Remark 3. The value of the growth order p+1
2 in Assumption 1 is important. If this order is greater

than p+1
2 , then some terms such as diz

k
i (di > 0, k > p+ 3) are generated, which cannot be counteracted

by −αiz
p+3
i . So Assumption 1 is crucial in ensuring the prescribed-time stability.

Remark 4. In this part, a new design method is proposed for stochastic high-order nonlinear systems
(1) and (2) such that the mean-square stabilization within the prescribed time can be achieved. Unlike
the asymptotic stabilization control designs in [8–12] where the convergence time is infinite and in the
finite-time stabilization designs in [15, 16] wherein the settling time is unknown, stochastic, and reliant
on the initial conditions of a system, the superiority of our designs stems from the fact that they enable
the control workers to preset the convergence time t0 + T on demand regardless of the initial conditions
of a system. Additionally, from (35), the controller designed herein is time-varying.
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4 Prescribed-time inverse optimality

To begin with, we rewrite (1) and (2) as

dx =















xp
2

...

xp
n

0















dt+















0
...

0

1















updt+















ϕT
1

...

ϕT
n−1

ϕT
n















dω

, Fdt+G1u
pdt+G2dω; (53)

the controller

u = −αnµzn (54)

leads to

LVn 6 −µVn +∆nµ
−3, (55)

where ∆n =
∑n

k=2 ∆k2 +
∑n

k=1 ∆n,k+4 and the meaning of each symbol can be found in Section 3.
We then present the primary results for the prescribed-time inverse optimality problem as follows.

Theorem 2. For the system (1) and (2), if Assumption 1 is satisfied, then the controller

u∗ = −
(

2

3
β

)
1
p

αnµzn, β > 2, ∀t ∈ [t0, t0 + T ), (56)

achieves the prescribed-time mean-square stabilization and also minimizes the cost functional

J(u) = lim sup
r→∞

E

[

2βVn(τr, x(τr)) +

∫ τr

t0

(

l(t, x(t)) +
27

16β2α3p
n µ4(n−1)+3pz3p−3

n

u4p

)

dt

]

, (57)

where

l(t, x) =2β

(

1

µ4(n−1)−p
αp
nz

p+3
n − ∂Vn

∂t
− ∂Vn

∂x
F

− 1

2
Tr

{

GT
2

∂2Vn

∂x2
G2

}

+∆nµ
−3

)

+
1

µ4(n−1)−p
β(β − 2)αp

nz
p+3
n (58)

is radially unbounded, positive definite, and not necessarily decrescent.
Proof. By incorporating (55) into (58), we get

l(t, x) > 2βµVn +
1

µ4(n−1)−p
β(β − 2)αp

nz
p+3
n . (59)

From (4) and (39) together with the definition of Vn in (15), we have

Vn >
1

4nµ4(n−1)
|z|4 >

1

4nµ4(n−1)(n+
∑n−1

k=1 µ
2α2

k)
2
|x|4. (60)

Noting β > 2, from (59) and (60), we have

l(t, x) > 2βµVn >
βµ

2nµ4(n−1)(n+
∑n−1

k=1 µ
2α2

k)
2
|x|4. (61)

From (61), it is evident that l(t, x) is enough defined well enough. Thereby, J(u) represents a meaningful
cost functional.
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At first, we verify that Eq. (54) is a stabilizing controller of system (53). From (54) and (55), noting
β > 2, we obtain

LVn|(53) = − 2β

3µ4(n−1)−p
αp
nz

p+3
n +

∂Vn

∂t
+

∂Vn

∂x
F +

1

2
Tr

{

GT
2

∂2Vn

∂x2
G2

}

6 − 1

µ4(n−1)−p
αp
nz

p+3
n +

∂Vn

∂t
+

∂Vn

∂x
F +

1

2
Tr

{

GT
2

∂2Vn

∂x2
G2

}

6 −µVn +∆nµ
−3. (62)

It can be deduced from (62) and Theorem 1 that the system (53) achieves prescribed-time mean-square
stable under the controller (54).

Next, we prove the inverse optimality. From Dynkin’s formula in [1] we can acquire

E

{

V (τr, x)− V (t0, x)−
∫ τr

t0

LV (t, x)dt

}

= 0. (63)

From (57), (58), and (63), we have

J(u) = lim sup
r→∞

E

{

2βVn(τr, x(τr)) +

∫ τr

t0

(

l(t, x(t)) +
27

16β2α3p
n µ4(n−1)+3pz3p−3

n

u4p

)

dt

}

= lim sup
r→∞

E

{

2βVn(t0, x(t0)) +

∫ τr

t0

(

2βLVn|(53) + l(t, x(t))

+
27

16β2α3p
n µ4(n−1)+3pz3p−3

n

u4p

)

dt

}

= lim sup
r→∞

E

{

2βVn(t0, x(t0)) +

∫ τr

t0

(

2β

µ4(n−1)
z3nu

p +
β2

µ4(n−1)−p
αp
nz

p+3
n

+
27

16β2α3p
n µ4(n−1)+3pz3p−3

n

u4p

)

dt

}

. (64)

By using Lemma A.3 in [22], we obtain

− 2β

µ4(n−1)
z3nu

p = β2

(

− 1

µ3(n−1)− 3
4p

α
3p
4
n z

3p
4 + 9

4
n

)(

2

βα
3p
4
n µ(n−1)+ 3

4pz
3p
4 − 3

4
n

up

)

6
β2

µ4(n−1)−p
αp
nz

p+3
n +

27

16β2α3p
n µ4(n−1)+3pz3p−3

n

u4p. (65)

The equality in (65) holds if and only if

u∗ = −
(

2

3
β

)
1
p

αnµzn, β > 2. (66)

Consequently, the minimum of (57) is acquired by (66), and accordingly we have

min
u

J(u) = 2βVn(t0, x(t0)). (67)

Thus, this theorem is proven.

Remark 5. In comparison to those in [26, 27] where the inverse optimal asymptotic stabilization in
probability can be ensured, the controller (56) we constructed achieves inverse optimal mean-square
stabilization within prescribed time.

Remark 6. As described by Definition 2 in [22], Theorem 2 addresses the inverse optimal mean-square
stabilization within prescribed time by selecting S(t, x) = 2βVn(t, x), k = −4(n − 1) − 3p, R(x) =
( 27
16β2α3p

n

)1/4p, γ(r) = r4p, and l(t, x) in (58).
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Figure 1 (Color online) Response of (a) the states and (b) the controller of the system (68) and (69).

5 A simulation example

Consider a concrete high-order system

dx1 = x3
2dt+ 0.1x2

1dω, (68)

dx2 = u3dt+ 0.2x1x2dω. (69)

Apparently, Assumption 1 can be satisfied by c = 0.1.
In simulation, when l = n = 2, by choosing t0 = 0, T = 1, and m = 2, and following (20)–(33), we can

acquire the controller as follows:

u = −844µx2 − 1069µ2x1, (70)

where µ(t) = ( 1
1−t )

2, t ∈ [0, 1). Furthermore, if we randomly select the initial states of the system as
x1(0) = 0.2, x2(0) = −0.2, the performance of the states and the controller of the system (68) and (69)
is given by Figure 1. From Figure 1(a), we obtain limt→1 E|x1|2 = limt→1 E|x2|2 = 0, which shows that
limt→1 E|x|2 = 0. From Figure 1(b), we get limt→1 Eu

2 = 0.
Thus, the validity of the prescribed-time state-feedback designs developed in Section 3 is verified.

6 Conclusion

This paper investigates the problems of the prescribed-time state-feedback stabilization together with
prescribed-time inverse optimality for stochastic high-order nonlinear systems. A new time-varying con-
troller is designed by developing the new scaled quartic Lyapunov functions, which can guarantee that
the system has a unique strong solution almost surely on the prescribed interval for any initial conditions
and the states and the control converge to the origin in mean-square within the prescribed time. In
addition, we redesigned the controller to stabilize the system within the prescribed time and concurrently
minimized the meaningful cost functional.

Many significant control problems can be studied in the future. These include finding ways to gener-
alize the results presented herein for adaptive control [30, 31], distributed control [32], privacy security
control [33], quantized control [34], sampled-data control [35,36], Markovian switching [37], and systems
with full-state constraints [38]. In addition, noting Ref. [39] proposed an interesting improved optimized
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backstepping control via reinforcement learning, another interesting topic is generalizing the results we
achieved herein to more general systems via reinforcement learning.
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