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Abstract Feature selection in classification can be considered a multiobjective problem with the objectives

of increasing classification accuracy and decreasing the size of the selected feature subset. Dominance-based

and decomposition-based multiobjective evolutionary algorithms (MOEAs) have been extensively used to

address the feature selection problem due to their strong global search capability. However, most of them

face the problem of not effectively balancing convergence and diversity during the evolutionary process. In

addressing the aforementioned issue, this study proposes a unified evolutionary framework that combines

two search forms of dominance and decomposition. The advantages of the two search methods assist one

another in escaping the local optimum and inclining toward a balance of convergence and diversity. Specifi-

cally, an improved environmental selection strategy based on the distributions of individuals in the objective

space is presented to avoid duplicate feature subsets. Furthermore, a novel knowledge transfer mechanism

that considers evolutionary characteristics is developed, allowing for the effective implementation of positive

knowledge transfer between dominance-based and decomposition-based feature selection methods. The ex-

perimental results demonstrate that the proposed algorithm can evolve feature subsets with good convergence

and diversity in a shorter time compared with 9 state-of-the-art feature selection methods on 20 classification

problems.

Keywords evolutionary algorithms, feature selection, multiobjective optimization, knowledge transfer,

classification

1 Introduction

Classification involves categorizing unknown samples into different groups based on their features [1].
With the development of information technology in today’s world, the dataset is to be classified as a
higher dimensionality [2–4]. However, irrelevant and redundant features present in such data do not
contribute to class prediction and may result in poor classification performance due to the “curse of
dimensionality” [5, 6]. One popular method of dimensionality reduction is feature selection, which can
boost classification accuracy and enhance computational efficiency by selecting subsets of original features
that are relevant [5].

Feature selection is often viewed as a multiobjective problem with two potentially conflicting goals:
minimizing the classification error rate and minimizing the size of feature subsets [7–9]. The methods of
feature selection are generally classified into three categories: filter [10], wrapper [11–14], and embedded
methods [15]. Filter methods rank all features based on a few criteria, such as relevance, distance, or
information gain. Then, features with lower ranks are filtered out, and some valid features are selected.
However, this method does not consider the interaction between features. Thus, it consumes the least

*Corresponding author (email: chenkezixf@zzu.edu.cn)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-023-3864-6&domain=pdf&date_stamp=2024-1-26
https://doi.org/10.1007/s11432-023-3864-6
info.scichina.com
link.springer.com


Liang J, et al. Sci China Inf Sci February 2024, Vol. 67, Iss. 2, 120101:2

computational cost but is the least effective. The wrapper method directly evaluates the classification
performance of feature subsets based on a machine-learning classifier, which performs better than the
filter method, even though the wrapper method usually consumes many computing resources. The
computational cost of the embedded method is higher than the filter method and lower than the wrapper
method because the embedded method performs algorithms and model training to obtain feature weights
to select. After weighing computational performance and efficiency, the wrapper method can be viewed
as an effective feature selection method used in this report.

For contemporary researchers, it is popular to use multiobjective evolutionary algorithms (MOEAs)
based on a population search mechanism for feature selection. Dominance-based and decomposition-based
feature selection methods are extensively used due to their outstanding performance. Dominance-based
feature selection methods assign all individuals to fronts with different ranks based on the dominant
relationship between two objectives. When applied to the feature selection problem [16–18], the indi-
viduals on the Pareto front have the highest classification accuracy or the smallest feature subset size.
The individuals on other fronts who are more than those on the Pareto front are usually considered
suboptimal solutions. Therefore, they can provide more choices of feature combinations for evolution.
Additionally, to maintain diversity during the evolution, NSGA-II [19] uses the crowding distance metric
to select dissimilar parents to generate offspring and environmental selection of offspring. However, the
dominance-based MOEAs are slow to converge due to the high randomness of the search and the need
to weigh the two objectives and calculate the front surface to which all individuals belong.

Decomposition-based feature selection methods decompose the original problem into multiple subprob-
lems [20–22]. The solution obtained by convergence on each subproblem forms the final Pareto front.
The best-known decomposition-based multiobjective evolutionary algorithm framework is MOEA/D [23].
These subproblems are usually represented as weight vectors reflecting different preferences for the two
objectives, and the convergence of all subproblems is governed based on an ideal point. This expedites
the algorithm to converge to the promising region. The search experience of adjacent subproblems is
utilized to generate offspring and update the subpopulation in the current subproblem during the evo-
lutionary process. However, this operation may result in an elitist solution repeatedly appearing on
multiple subproblems. This can lead to a decrease in diversity, waste of computational resources, and a
lack of exploration in promising regions of the decision space, thus falling into local optima. Therefore,
the research on evolutionary multiobjective feature selection methods remains a challenge.

Some current studies also combine dominance and decomposition methods. Chen et al. [24] proposed
to define a specific D-dominance (DrEA) in each subpopulation after decomposition. The decomposition-
based crowding metric was then designed to retain the solutions with good distributions. Li et al. [25]
proposed a paradigm (MOEA/DD) combining dominance-based and decomposition-based approaches to
solve optimization problems with many objectives. The objective space is divided into different subregions
by designing to generate widely distributed weight vectors in a high-dimensional objective space. In the
population update phase, a hierarchical selection in the form of a combination of Pareto dominance,
local density estimation, and scaling functions is proposed. These two studies found that combining
dominance and decomposition approaches is an effective approach to balancing diversity and convergence.
The success lies in considering the preferences of both objectives and population distribution in the
evolutionary process. However, the above two algorithms are only limited to combining dominance and
decomposition in the environmental selection strategy to guarantee the diversity of the objective space
without fully exploring the promising regions of the decision space, and their combination strategies do
not consider the evolutionary state of the population. Therefore, it is crucial to design a framework
that considers the evolutionary state of individuals and populations while combining dominance and
decomposition methods.

Based on the above, we proposed a multiobjective feature selection method (DDFS) combining domi-
nance and decomposition. Considering the diversity of solutions of NSGA-II in the evolutionary process
and the fast convergence capability of MOEA/D, they are applied to two subpopulations to coevolve by
knowledge transfer [26–32]. The proposed method aims to overcome the shortcomings of the two original
MOEAs and use different search methods to balance diversity and convergence. The final achievement
is to find feature subsets with higher classification accuracy and to select fewer features. The main
contributions of this paper are as follows:

(1) A new framework for multiobjective feature selection based on dominance and decomposition is
proposed for selecting diverse feature subsets with high classification accuracy. It aims to improve the
dominance-based and decomposition-based algorithms according to problem characteristics while allowing
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the subpopulations of the two search methods to capture each other’s search knowledge and evolve toward
the global optimum. This is the first study to construct dominance-based and decomposition-based
subpopulations to address the multiobjective feature selection problem.

(2) A new environmental selection strategy in the decomposition-based subpopulation is proposed to
avoid duplicate solutions. Specifically, the value of the angle between each individual and the origin of the
objective space is used as the reference to assign the weight vector, allowing the adjustment of solutions
to more suitable weight vectors. During the environmental selection, only one parent and one child are
present on each weight vector to prevent repeated substitutions between neighbors. The diversity of
solutions in the population is enhanced.

(3) A knowledge transfer mechanism is proposed to increase the diversity of decomposition-based sub-
populations while accelerating the convergence speed of dominance-based subpopulations. This mech-
anism uses the elitist solutions of the decomposed subpopulation to accelerate the convergence of sub-
populations based on dominance. Solutions on non-Pareto fronts are used to improve the diversity of
decomposition-based subpopulations.

2 Related work

2.1 Dominance-based feature selection methods

In the multiobjective feature selection problem, reducing the classification error rate and reducing the
number of selected features are often contradictory objectives. They must be weighed simultaneously
during the optimization process. The objective of dominance-based MOEAs is to evaluate the dominance
relationship by comparing the goodness of these two objectives between two possible solutions. For a
minimization task, as shown in (1), y dominates x if neither of the two objectives of x is better than the
two objectives of y.

∀i : fi(y) 6 fi(x) ∧ ∃j : fj(y)<fj(x). (1)

The set of multiple solutions not dominated by any other solution is known as the Pareto optimal solution
set. This can offer the user multiple choices. When applied to feature selection tasks, dominance-based
MOEAs can identify feature subsets with the lowest classification accuracy or the fewest selected features.
The classical dominance-based multiobjective algorithms are the NSGA-II [19] and SPEA-2 [33]. They
both use information about crowding and density to maintain the diversity of the population. However,
they often fall into local optima rapidly due to the large search space of feature selection.

Improving the search strategy is a popular research direction in dominance-based approaches. Huang
et al. [17] proposed a feature selection method based on NSGA-II to predict customer loss in telecommu-
nications services. The original NSGA-II is modified to search for global nondominated feature subsets
based on selected local optimal solutions of different sizes. Cheng et al. [34] designed a population steering
matrix to reflect the importance of features and the importance of individuals in the population. This
matrix reduces irrelevant features and guides the population to search for promising regions. However,
the steering matrix needs to be updated frequently, along with the calculation of the importance of each
individual. Therefore, this method consumes a large amount of computational cost. Cheng et al. [35]
proposed a feature selection method based on refining the granularity where a granularity contains mul-
tiple features. As features are removed from the granularity during evolution, some feature combinations
can eventually be found where the features are relevant. However, this method faces the drawback of
losing important features as the granularity is eliminated.

Some improved feature selection algorithms for the environmental selection phase have also achieved
good results. Xu et al. [16] proposed a dominance-based multiobjective algorithm to remove duplicate
feature subsets in the decision space. High-quality solutions are selected by analyzing the distances of
solutions in the objective space. Wang et al. [18] proposed a feature selection method by modifying
the dominance relationship into a multiobjective evolutionary algorithm of grid dominance. It aims to
preserve diverse solutions for the next generation and enhance the convergence pressure using the grid
dominance method. However, these improved methods do not always identify nondominated feature
subsets on the edge of the Pareto front. Wang et al. [36] proposed a niche-based multiobjective feature
selection approach. First, an improved mutation operator combines the niche and global information to
help the offspring jump out of local optima. Second, a newly developed environment selection mechanism
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allows storing the same feature subsets by relaxing the Pareto dominance relationship. However, niche-
based multiobjective feature selection algorithms usually involve many sensitive parameters, such as
radius size and number of niches. The difficulty in determining their optimal values has a substantial
impact on the performance of the algorithm.

In summary, dominance-based approaches usually have good population diversity. However, these
methods still face the limitation that they only focus on the center of the Pareto front while ignoring the
search on the edge of the Pareto front.

2.2 Decomposition-based feature selection methods

Another way to solve the multiobjective problem is to decompose the original problem into multiple
subproblems. Reference points or weight vectors generally represent these subproblems. When applied
to the feature selection problem, the reference points represent the proportion of features selected. Dif-
ferent weight vectors represent different preferences for the two conflicting goals and are used to evaluate
individual fitness. As shown in (2),

fitness = α× f1 + (1− α)× f2, (2)

where f1 and f2 represent the classification error rate and the feature selection ratio, the different values
of α make the population converge to the Pareto front from multiple directions in the objective space.

Demir et al. [20] found that decomposition-based feature selection algorithms usually find only low-
quality feature subsets in the central region of the Pareto front. Moreover, on the same dataset, the
feature subsets found by MOEA/D usually have a lower classification accuracy than those found by the
dominance-based algorithm. Nguyen et al. [22] proposed a decomposition-based framework based on
reference points to address feature selection. This framework uses static reference points to decompose
the search direction. Dynamic reference points are used to enhance the search in objective conflict
regions. However, the decomposition-based approach generates many similar or duplicate solutions in the
neighborhood-based reproduction and environmental selection, thus substantially reducing the diversity
of solutions in the population. Jiao et al. [32] proposed a decomposition-based multiform framework
to solve the multiobjective feature selection problem. Two simplified single-objective auxiliary tasks
were constructed to explore new regions in the objective space, which provided useful information for
the multiobjective main task. Furthermore, the distribution of solutions in the objective space filters
similar or duplicate feature subsets to improve population diversity. However, knowledge transfer in
this method is only performed in the environmental selection phase, failing to fully explore the feature
space. Liang et al. [37] proposed a multiform framework in which many single-objective tasks assist
a multiobjective task. First, the similarity of the weight vectors between the elite solutions of the
main task and auxiliary tasks is considered to improve the probability of positive knowledge transfer.
Second, a diversity enhancement mechanism is designed to improve the searchability of the algorithm in
promising regions. The experimental results showed that the proposed algorithm performs better than
other advanced feature selection algorithms, especially for high-dimensional problems.

In summary, decomposition-based methods usually converge quickly to promising regions because the
complex multiobjective feature selection problem is decomposed into multiple single-objective subprob-
lems. However, these methods generally require frequent calculations of distances and updates of reference
points or weight vectors. Therefore, there is often a high computational cost in the decomposition-based
method.

2.3 Motivation

The analysis in Subsections 2.1 and 2.2 shows that the dominance-based search method faces the problem
of slow convergence, whereas the decomposition-based method tends to fall into local optima. However,
diverse solutions can usually be found by dominance-based algorithms. In addition, the decomposition-
based algorithms can converge quickly to some promising regions. Inspired by complementary strengths,
we proposed combining these two search methods into a novel evolutionary framework that can achieve
the following advantages. First, this novel evolutionary framework can escape local optima and find
diverse feature subsets with better classification accuracy. Second, dominance-based and decomposition-
based subpopulations can exploit their strengths to search for and share knowledge. Therefore, this report
explores how to develop the exchange of experiences and complementary advantages between these two
search approaches.
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Algorithm 1 Framework of the proposed DDFS algorithm

Input: N : population size.
Output: PN and PM : decision variables of dominance-based and decomposition-based subpopulation.
1: PN ← Initialize N/2 solutions for the dominance-based subpopulation;
2: PM ← Initialize N/2 solutions for the decomposition-based subpopulation;
3: while the termination criterion is not met do
4: Select N/2 parents for the dominance-based subpopulation based on the tournament method;
5: Select N parents for the decomposition-based subpopulation based on neighborhoods;
6: ON ← Offspring generation for PN using the GA operator;
7: OM ← Offspring generation for PM using the GA-half operator;
8: Evaluate the objective values of ON and OM , respectively;
9: PN ← Environmental selection from PN ∪ ON ;
10: Update the ideal point Z∗;
11: PM ← Environmental selection from PM ∪ OM based on Algorithm 2;
12: Perform nondominated sorting on PN ∪ PM ;
13: Assign individuals for PN and PM respectively based on Algorithm 3;
14: end while
15: return Outputs.

3 Proposed method

3.1 Framework of the proposed DDFS algorithm

The framework of the proposed DDFS method is described in Algorithm 1. First, each of the two search
approaches is assigned half of the initial population to better balance diversity and convergence (lines 1
and 2). The encoding takes the form of a binary to express whether each feature is selected. Second,
parents are selected for each individual in the two subpopulations respectively (lines 4 and 5). Offspring
is generated by the genetic algorithm (GA) operator and evaluated for both subpopulations (lines 6–8).
Third, nondominated ranking and crowding distance are used to select individuals for the next generation
in the dominance-based subpopulation (line 9). This ensures the diversity of solutions in the dominance-
based subpopulation. For the decomposition-based subpopulation, an improved environmental selection
strategy is used to assign each individual to an appropriate weight vector while avoiding duplicate so-
lutions (line 11). Finally, solutions at different ranks in the merged population are divided into two
subpopulations with different search methods to achieve information exchange (lines 12 and 13).

3.2 Improved environmental selection strategy

In the original MOEA/D, each solution gets assigned a unique weight vector. The neighborhood including
similar subproblems is divided for each solution by determining the distance between the weight vectors.
During the environmental selection phase, the original MOEA/D allows one excellent child to replace
all parents in their neighborhood who are not as good as them. As shown in Figure 1, the parents P2,
P3, and P4 belong to the same neighborhood. C2, C3, and C4 are duplicated offspring on the decision
and objective spaces. When the child C2 is compared with these three parents, C2, C3, and C4 replace
P2, P3, and P4, respectively. This causes the solutions on W2, W3, and W4 to be duplicates of C2 in
the population of next generation. Obviously, this would make some offspring heavily duplicate in the
new generation population. These duplicate offspring not only waste evaluation time and computational
resources, but also greatly reduce the population diversity in the next generation. Another problem is
which weight vector the elite offspring should be placed on to compare with their corresponding parents.
Finding more suitable weight vectors for the offspring to be placed can facilitate convergence and avoid
losing valuable feature subsets. Therefore, we propose an improved environmental selection strategy to
rearrange the offspring and avoid duplicate offspring.

The specific steps are shown in Algorithm 2. First, the angle values of the objective vector are calculated
for all parent and offspring individuals (lines 1 and 4). They are sequentially arranged on the weight
vectors in the order from smallest to largest (lines 2–4). In this way, the selection of the parent and
child on the more suitable weight vector is more effective in helping the algorithm to converge. Then,
the Tchebycheff method is used to calculate the values of the aggregation functions of the parents and
children (lines 5–8). As shown in (3),

min g(x | λ, Z∗) = max{λi(fi(x)− Z∗)}

s.t. x ∈ Ω,
(3)

where g is the aggregation function’s value, x is the decision vector, λ is the weight vector, and Z∗ is the
ideal point. After the previous arrangement, one parent and one child exist on each weight vector. Finally,
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Figure 1 (Color online) Example for environmental selection of the original MOEA/D. C2, C3, and C4 represent three duplicated

offspring located on W2, W3, and W4, respectively.

Algorithm 2 Improved environmental selection strategy

Input: PM and OM : the parents and offspring of decomposition-based subpopulation.
EPM

and EOM
: objective values of PM and OM .

f1 and f2: selected feature ratio and classification error rate of each individual.
N/2: population size of PM .

Output: PM Mobj: decision variables and objective values of decomposition-based subpopulation.
1: Calculate the angle value based on the objective vector of each individual in PM according to arctan(f2/f1);
2: Rearrange the order of the parents according to the angle values from smallest to largest;
3: Arrange individuals with smaller angle values to weight vectors with larger preferences for the objective f1;
4: Calculate the angle value of each individual in OM and correspond to the weight vector in the same way as in PM ;
5: Calculate the ideal point Z∗ according to the objective values of all individuals;
6: RoadP = max(EPM

)− Z∗;

7: RoadO = max(EOM
)− Z∗;

8: Calculate the values of the aggregation function of the parent and child on each weight vector according to the Tchebycheff
method;

9: for i = 1 : N/2 do
10: Select an individual with the smaller aggregation function value from the parent and child;
11: end for
12: return Outputs.
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Figure 2 (Color online) Presentation of the improved environmental selection strategy.

only the one with the smaller g is chosen for the next generation. After the improved environmental
selection strategy, there are not a large number of duplicate solutions in the population. The proposed
algorithm is better to select the solution that is closer to the ideal point on each weight vector. As a
result, the convergence speed and exploration capability of the algorithm are further enhanced.

Figure 2 illustrates an example of an improved environmental selection strategy. First, three offspring
are rearranged as C2, C3, and C1 according to α2 < α3 < α1 in the objective space. Then, C2 and C3

replace P1 and P2 on the weight vectors W1 and W2, respectively, according to the Tchebycheff method.
P3 is retained and not replaced by C1. Finally, the three retained solutions P ′1, P ′2, and P ′3 are the
parents of the next generation. Improved environmental selection strategy increases the diversity of the
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Algorithm 3 Knowledge transfer mechanism

Input: PN and PM : the individuals of dominance-based and decomposition-based subpopulations.
EPN

and EPM
: objective values of PN and PM .

Output: PN , PM , EPN
, and EPM

;
1: PA ← [PN ,PM ];
2: EPA

← [EPN
, EPM

];
3: Perform a nondominant sorting operation on EPA

;
4: Index← Get the indexes of individuals on non-Pareto fronts;
5: PM = PA(Index(1 : N/2));
6: EPM

= EPA
(Index(1 : N/2));

7: PN = PA \ PM ;
8: EPN

= EPA
\ EPM

;
9: return Outputs.

population to jump out of local optima.

3.3 Knowledge transfer mechanism

The knowledge transfer mechanism is the core part of the proposed framework, which achieves the
sharing of experiences between the two search methods. To ensure the efficiency of knowledge transfer,
two subpopulations are designed for dominance-based and decomposition-based, respectively, each of
which owns half of all individuals.

Algorithm 3 demonstrates the specific process of knowledge transfer. First, two subpopulations are
merged into one whole (lines 1 and 2). A nondominated sorting operation is performed on the whole
population to obtain the front orders of all individuals (line 3). What to transfer: The dominance-
based subpopulation has better diversity. And the decomposition-based subpopulation has the ability to
converge quickly with ideal point guidance. Therefore, there are currently better convergent solutions on
the obtained Pareto front, which are assigned to the dominance-based subpopulation. How to transfer:
Second, starting from the second front, N/2 individuals are sequentially selected for assignment to the
decomposition-based subpopulation (lines 4–6). This is because the diversity of feature subsets from other
dominated fronts tends to be better than those on the Pareto front. And suboptimal feature subsets also
have the potential to evolve into new optimal feature subsets. Finally, the remaining N/2 solutions
including those on the Pareto front are assigned to the dominance-based subpopulation (lines 7 and 8).
When to transfer: Both dominance-based and decomposition-based subpopulations are rearranged to
maintain the balance of convergence and diversity in each generation.

According to the proposed knowledge transfer mechanism, the knowledge in the elitist solutions is
transferred to the dominance-based subpopulation. In this way, the dominance-based subpopulation is
allowed to generate more diverse suboptimal solutions. In addition, the previous suboptimal solutions are
transferred to the decomposition-based subpopulation. Due to the neighborhood-based local search oper-
ation, suboptimal solutions may evolve into new nondominated solutions to help the proposed algorithm
jump out of local optima.

3.4 Computational complexity

The computational cost of the proposed method DDFS mainly comes from the nondominated sorting op-
eration and the crowding distance metric. Specifically, first, the computational complexity of the parent
selection and reproduction operators is O(N/2) in each subpopulation, respectively. N is the popula-
tion size. Second, the improved environmental selection strategy has a lower computational complexity
of O(N/2) than the original one. Third, the computational complexity of the nondominated ranking
in the dominance-based subpopulation and the merged population is O(M · (N/2)2) and O(M · N2),
respectively. Finally, the computational complexity of the crowding distance metric in the dominance-
based subpopulation is O(M · (NF )

2), where NF is the number of nondominated solutions and M is
the number of objectives. Thus, the overall complexity of the proposed method in each generation is
2 · 2 ·O(N/2) +O(M · (N/2)2) +O(M ·N2) +O(M · (NF )

2) = O(M ·N2). In addition, the computation
time of DDFS is shorter than NSGA-II and MOEA/D because it is able to discover feature subsets with
fewer features. This is verified in Subsection 5.4.
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Table 1 Basic information of the 20 datasets

No. Dataset #Features #Classes Smallest class (%) Largest class (%) #Instances Instances/features

1 Wine 13 3 26.9 39.9 178 13.69

2 Australian 14 2 32.2 67.8 690 49.29

3 Zoo 16 7 4.0 40.6 101 6.31

4 Climate 18 2 8.5 91.5 540 30.00

5 Hepatitis 19 2 20.7 79.3 155 8.16

6 SPECTF Heart 22 2 20.6 79.4 267 12.14

7 Flags 28 7 2.0 31.0 194 6.93

8 Ionosphere 34 2 35.9 64.1 351 10.32

9 Sonar 60 2 46.6 53.4 208 3.47

10 Hill Valley 100 2 49.3 50.7 606 6.06

11 Musk-1 166 2 43.5 56.5 476 2.85

12 Arrhythmia 279 13 0.4 54.0 452 1.62

13 LSVT 310 2 30.0 70.0 126 0.41

14 Madelon 500 2 50.0 50.0 2600 5.20

15 Isolet5 617 26 3.7 3.8 1559 2.53

16 SRBCT 2308 4 13.2 34.9 83 0.04

17 DLBCL 5469 2 24.7 75.3 77 0.01

18 Brain1 5920 5 4.4 66.6 90 0.02

19 Carcinom 9182 11 3.4 15.5 174 0.02

20 Leukemia2 11225 3 27.7 38.8 72 0.01

4 Experimental setups

4.1 Classification datasets

The 20 datasets used in this experiment are all derived from the real world and downloaded from
https://archive.ics.uci.edu/ml/datasets.php. First, the number of features ranges from 13 (i.e., Wine) to
11225 (i.e., Leukemia2) as shown in Table 1. Second, 9 datasets are multiclassification problems with
categories greater than 2. Moreover, they come from different domains such as diseases (Hepatitis, Ar-
rhythmia, Brain1, and Leukemia2), physics (Sonar and Ionosphere), and speech recognition (Isolet5).
In addition, in-depth analyses are performed for all datasets by calculating their class imbalance ratios
and instance-to-feature ratios. It can be found that most datasets have unbalanced categories, which
can cause a huge challenge for classification. Finally, instance-to-feature ratios in these datasets vary
from 0.01 to 49.29, which provides a challenge to the classification time of the algorithm. Therefore,
these datasets are sufficient to test the effectiveness of all compared algorithms in terms of classification
accuracy and time consumed.

4.2 Comparison algorithms

To observe the effectiveness of our proposed algorithm, nine advanced algorithms are selected for com-
parison experiments. They are NSGA-II [19], MOEA/D [23], SPEA-2 [33], DrEA [24], MOEA/DD [25],
PMMOEA [38], DAEA [16], SM-MOEA [34], and MFFS [32]. Among them, NSGA-II is the classical
algorithm for updating populations based on dominance relationships. MOEA/D is a classical algorithm
based on decomposition. Each individual represents a subproblem. Multiple neighborhoods of similar
subproblems are used to coevolve to the Pareto front. SPEA-2 is used to calculate the fitness value of
each individual by their dominance relationship. Nondominated solutions are present in the archive to
guide the evolution. It is worth noting that PMMOEA, DAEA, SM-MOEA, and MFFS have been newly
proposed for feature selection in the last three years. PMMOEA is specifically designed to solve sparse
optimization by limiting the dimensionality of the offspring and maintaining sparsity. SM-MOEA uses
the feature association matrix to evolve better feature subsets. These algorithms are selected as com-
parison algorithms to assure the fairness of the experiments since they have solid theoretical foundations
and exhibit good performance in feature selection. Bold numbers in the tables of experimental results in
Section 5 indicate that the algorithm corresponding to them produced the best results.
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Table 2 Mean IGD performance on test dataa)

Dataset NSGA-II MOEA/D SPEA-2 DrEA MOEA/DD

Wine 7.26E−02±3.29E−04(+) 7.78E−02±1.26E−02(+) 4.61E−02±1.49E−03(+) 3.50E−02±1.31E−02(+) 1.76E−02±1.32E−02(=)

Australian 4.42E−02±0.00e+00(+) 8.02E−02±0.00e+00(+) 3.14E−02±7.31E−18(−) 1.05E−01±4.05E−02(+) 4.97E−02±1.40E−02(+)

Zoo 7.23E−02±1.89E−02(+) 8.75E−02±1.50E−02(+) 4.52E−02±3.18E−03(+) 7.16E−02±1.69E−02(+) 1.68E−02±1.22E−02(−)

Climate 4.38E−02±1.33E−02(+) 1.05E−01±3.83E−02(+) 3.10E−02±9.44E−03(=) 8.00E−02±7.61E−03(+) 7.15E−02±5.38E−03(+)

Hepatitis 2.32E−01±3.46E−02(+) 1.80E−01±4.46E−02(+) 1.16E−01±3.89E−02(+) 4.85E−02±3.20E−02(=) 1.55E−02±1.65E−02(−)

SPECTF Heart 8.63E−02±1.33E−02(+) 9.83E−02±1.72E−02(+) 9.42E−02±7.74E−03(+) 7.29E−02±1.91E−02(+) 4.43E−02±1.17E−02(−)

Flags 5.72E−02±6.23E−03(+) 9.84E−02±1.46E−17(+) 6.21E−02±5.80E−03(+) 7.15E−02±3.93E−02(+) 5.69E−02±1.12E−02(+)

Ionosphere 2.98E−02±4.34E−03(+) 3.21E−02±7.08E−03(+) 1.79E−02±4.30E−03(+) 5.53E−02±1.94E−02(+) 1.22E−02±3.45E−03(+)

Sonar 9.43E−02±1.28E−02(+) 7.99E−02±1.00E−02(+) 3.42E−01±2.57E−03(+) 5.93E−02±1.75E−02(=) 6.34E−02±8.72E−03(+)

Hill Valley 3.11E−02±1.13E−02(+) 5.58E−02±1.99E−02(+) 3.03E−02±1.13E−02(+) 3.28E−02±5.32E−03(+) 2.29E−02±6.21E−03(+)

Musk-1 5.19E−02±1.20E−03(+) 8.31E−02±3.06E−02(+) 7.75E−02±1.38E−02(=) 8.53E−02±1.63E−02(+) 3.91E−02±1.27E−02(−)

Arrhythmia 8.94E−02±1.10E−02(+) 1.08E−01±8.87E−03(+) 3.17E−02±5.64E−03(+) 6.71E−02±2.31E−02(+) 1.19E−01±3.46E−02(+)

LSVT 1.86E−01±1.06E−02(+) 2.01E−01±8.27E−03(+) 1.12E−01±1.06E−02(+) 9.60E−02±3.25E−03(+) 7.35E−02±6.37E−03(+)

Madelon 1.48E−01±7.69E−03(+) 1.68E−01±7.92E−03(+) 7.13E−02±7.77E−03(+) 4.86E−02±2.46E−02(+) 8.40E−02±1.50E−02(+)

Isolet5 1.83E−01±6.27E−03(+) 2.02E−01±1.01E−02(+) 1.28E−01±8.43E−03(+) 4.14E−02±6.43E−03(+) 7.04E−02±1.37E−02(+)

SRBCT 1.88E−01±1.17E−02(+) 2.02E−01±8.35E−03(+) 1.64E−01±1.09E−02(+) 6.14E−02±1.64E−02(+) 2.52E−01±1.93E−02(+)

DLBCL 1.91E−01±1.54E−03(+) 2.00E−01±2.50E−03(+) 5.44E−02±1.30E−03(+) 4.71E−02±3.01E−02(+) 3.33E−01±1.64E−02(+)

Brain1 2.18E−01±8.43E−03(+) 2.11E−01±2.93E−17(+) 3.34E−01±8.05E−03(+) 1.37E−01±2.75E−02(+) 3.50E−01±9.91E−03(+)

Carcinom 2.49E−01±3.38E−03(+) 2.44E−01±0.00e+00(+) 4.00E−01±4.55E−03(+) 8.96E−02±9.27E−03(+) 4.00E−01±7.69E−03(+)

Leukemia2 2.28E−01±2.81E−02(+) 1.98E−01±0.00e+00(+) 3.59E−01±3.07E−02(+) 9.69E−02±6.46E−02(+) 3.97E−01±2.41E−02(+)

+/=/− 20/0/0 20/0/0 17/2/1 18/2/0 15/1/4

Friedman’s rank 7.1 8.8 6.225 5.875 5.575

Dataset PMMOEA DAEA SM-MOEA MFFS DDFS

Wine 2.37E−02±3.41E−02(+) 3.76E−02±2.03E−02(+) 3.94E−02±1.52E−02(+) 3.89E−02±1.65E−02(+) 1.02E−02±1.31E−4

Australian 4.43E−02±0.00e+00(+) 6.82E−02±1.49E−02(+) 6.13E−02±7.10E−03(+) 4.08E−02±1.46E−17(+) 3.49E−02±3.03E−03

Zoo 4.88E−02±6.49E−03(+) 7.75E−02±8.57E−03(+) 9.36E−02±1.50E−02(+) 5.89E−02±1.19E−02(+) 1.89E−02±1.19E−02

Climate 3.39E−02±2.24E−03(+) 5.78E−02±8.75E−03(+) 5.00E−02±1.61E−02(+) 8.09E−02±2.01E−04(+) 2.76E−02±8.57E−03

Hepatitis 2.34E−02±2.26E−03(=) 1.24E−01±3.30E−02(+) 1.67E−01±3.60E−03(+) 4.66E−02±4.67E−02(=) 4.79E−02±4.21E−02

SPECTF Heart 4.21E−02±9.99E−04(−) 7.43E−02±7.85E−03(+) 1.06E−01±1.95E−02(+) 7.60E−02±2.93E−03(+) 6.34E−02±1.08E−02

Flags 5.02E−02±3.96E−03(+) 9.18E−02±9.19E−03(+) 8.95E−02±6.00E−03(+) 6.18E−02±1.89E−02(+) 4.31E−02±1.45E−02

Ionosphere 1.44E−02±9.77E−03(+) 4.58E−02±1.14E−02(+) 3.51E−02±7.39E−03(+) 3.15E−02±8.42E−03(+) 1.02E−02±3.68E−03

Sonar 5.58E−02±2.40E−03(−) 7.87E−02±5.77E−03(+) 7.31E−02±1.55E−02(+) 6.15E−02±1.01E−02(+) 5.93E−02±1.33E−02

Hill Valley 2.31E−02±2.30E−03(+) 3.71E−02±1.69E−02(+) 3.15E−02±2.45E−02(+) 2.19E−02±1.20E−03(+) 1.12E−02±7.05E−03

Musk-1 7.77E−02±1.00E−02(+) 3.37E−02±1.42E−02(−) 9.37E−02±1.27E−02(+) 5.06E−02±7.20E−03(+) 7.05E−02±7.27E−03

Arrhythmia 2.09E−02±8.17E−03(=) 1.02E−01±1.02E−02(+) 4.28E−02±1.36E−02(+) 5.09E−02±1.43E−02(+) 1.89E−02±1.43E−02

LSVT 5.58E−02±1.99E−02(+) 3.75E−02±4.86E−02(+) 9.04E−02±3.38E−03(+) 4.01E−02±2.88E−02(+) 1.58E−02±8.67E−03

Madelon 2.49E−02±1.92E−03(=) 1.20E−01±9.24E−03(+) 5.03E−02±1.16E−03(+) 2.55E−02±1.26E−03(=) 2.08E−02±1.54E−03

Isolet5 1.83E−02±2.65E−03(=) 9.85E−02±7.19E−03(+) 4.34E−02±6.66E−03(+) 2.19E−02±1.67E−02(+) 1.80E−02±3.80E−03

SRBCT 5.63E−02±1.29E−02(+) 7.71E−02±1.65E−02(+) 9.39E−02±4.67E−02(+) 8.01E−02±1.37E−02(+) 2.84E−02±3.05E−02

DLBCL 1.58E−02±7.40E−03(−) 7.44E−02±1.27E−02(+) 3.66E−02±1.62E−02(=) 1.53E−02±4.64E−03(−) 3.40E−02±2.27E−02

Brain1 5.74E−02±2.51E−03(+) 8.75E−02±1.46E−17(+) 8.17E−02±4.47E−02(+) 2.94E−01±4.94E−03(+) 1.73E−02±7.86E−03

Carcinom 7.76E−02±2.34E−03(+) 4.98E−02±7.27E−03(=) 7.43E−02±2.37E−02(+) 7.17E−02±9.27E−03(+) 5.08E−02±1.47E−02

Leukemia2 6.84E−02±3.67E−03(+) 1.39E−01±4.02E−02(+) 1.13E−01±7.15E−02(+) 8.56E−02±3.14E−02(+) 3.84E−02±2.38E−02

+/=/− 13/4/3 18/1/1 19/1/0 17/2/1 –

Friedman’s rank 2.9 6.05 6.4 4.3 1.775

a) The bold numbers indicate that the corresponding algorithm achieves the best performance on corresponding dataset.

4.3 Performance metrics

In the experimental analysis phase, we computed hypervolume (HV) [39] and inverted generation distance
(IGD) [40] to measure the diversity and convergence of all compared algorithms. In calculating the HV
metric, the classification error rate and the ratio of selected features to the total number of features are
first normalized to the scale [0, 1]. Then, the reference point of the HV metric is set to [1, 1] [16]. The
larger the HV value calculated in this way, the better the performance of the algorithm. When calculating
the IGD metrics, the Pareto front on each dataset is unknown. Because feature selection is a discrete
problem and the search space is huge, it is almost impossible to find the true Pareto front. Therefore, to
try to ensure the fairness of the experiments, we first combine the final populations found by all compared
algorithms in 30 experiments into one joint population. Then the first front obtained after nondominant
sorting of the joint population is used as the reference front for calculating the IGD metric. In general,
the smaller the IGD value, the better the performance of the algorithm.

In addition, the Wilcoxon test with a significance level of 0.05 is used to test whether the performance
of DDFS is significantly different from that of other competing algorithms. And, “+”, “−”, and “=”
represent that DDFS is significantly better, worse, or not significantly different from the compared al-
gorithms, respectively. For the computation time of all algorithms, the Friedman test yields the relative
ranking of all algorithms.

4.4 Parameter settings

In the comparison experiments, first, all the algorithms are from the source code provided by the au-
thors [41]. Second, each algorithm is run 30 times on each dataset, where the random seed is set to
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Table 3 Mean HV performance on test dataa)

Dataset NSGA-II MOEA/D SPEA-2 DrEA MOEA/DD

Wine 8.24E−01±5.40E−03(+) 8.09E−01±1.34E−02(+) 8.31E−01±4.41E−03(+) 8.68E−01±1.00E−02(+) 8.79E−01±7.08E−03(=)

Australian 6.22E−01±1.13E−16(+) 5.95E−01±3.60E−02(+) 6.22E−01±1.38E−03(+) 5.93E−01±9.28E−03(+) 6.36E−01±1.14E−02(+)

Zoo 7.98E−01±1.94E−02(+) 7.53E−01±1.47E−02(+) 5.50E−01±3.07E−02(+) 8.06E−01±1.61E−02(+) 8.55E−01±2.24E−03(−)

Climate 8.99E−01±7.92E−03(+) 8.69E−01±1.53E−02(+) 9.04E−01±4.49E−03(+) 9.01E−01±4.42E−03(+) 9.12E−01±4.00E−03(=)

Hepatitis 7.39E−01±2.17E−02(+) 7.40E−01±2.87E−02(+) 7.62E−01±1.29E−02(+) 8.30E−01±5.49E−03(=) 8.45E−01±1.39E−02(−)

SPECTF Heart 7.02E−01±9.06E−03(+) 7.05E−01±9.47E−03(+) 7.04E−01±4.88E−03(+) 7.01E−01±2.58E−02(+) 7.67E−01±9.49E−03(−)

Flags 6.15E−01±1.36E−02(+) 5.65E−01±0.00e+00(+) 6.21E−01±1.50E−02(+) 6.07E−01±3.50E−02(+) 6.53E−01±1.07E−02(+)

Ionosphere 9.13E−01±9.66E−03(+) 9.11E−01±1.24E−02(+) 9.23E−01±3.06E−03(+) 9.12E−01±1.41E−02(+) 9.32E−01±6.07E−03(=)

Sonar 8.15E−01±2.09E−02(+) 8.41E−01±1.02E−02(=) 5.50E−01±3.07E−02(+) 8.59E−01±2.51E−02(+) 8.61E−01±1.65E−02(=)

Hill Valley 5.48E−01±1.13E−02(+) 5.10E−01±2.25E−02(+) 5.75E−01±1.54E−02(+) 5.72E−01±1.22E−02(+) 5.84E−01±1.38E−02(+)

Musk-1 8.28E−01±1.93E−02(−) 7.83E−01±2.92E−02(+) 8.16E−01±2.11E−02(−) 7.82E−01±3.02E−02(+) 8.35E−01±2.12E−02(−)

Arrhythmia 6.06E−01±1.08E−02(+) 5.70E−01±1.87E−02(+) 6.60E−01±9.81E−03(+) 6.28E−01±2.53E−02(+) 5.97E−01±3.04E−02(+)

LSVT 8.73E−01±4.65E−02(+) 8.21E−01±6.54E−02(+) 8.96E−01±3.11E−02(+) 9.03E−01±2.50E−02(+) 9.18E−01±2.11E−02(+)

Madelon 6.07E−01±1.44E−02(+) 5.82E−01±2.32E−02(+) 8.85E−01±1.01E−02(+) 7.69E−01±5.83E−02(+) 7.07E−01±2.07E−02(+)

Isolet5 6.90E−01±1.03E−02(+) 6.62E−01±1.03E−02(+) 7.83E−01±1.05E−02(+) 7.73E−01±1.20E−02(+) 8.24E−01±1.32E−02(+)

SRBCT 8.32E−01±6.53E−03(+) 8.12E−01±2.01E−02(+) 8.79E−01±1.06E−02(+) 9.66E−01±2.10E−02(=) 8.01E−01±9.75E−03(+)

DLBCL 7.91E−01±1.36E−02(+) 7.62E−01±1.80E−02(+) 6.60E−01±1.46E−02(+) 9.63E−01±3.74E−02(=) 6.31E−01±2.26E−02(+)

Brain1 6.04E−01±1.24E−02(+) 6.11E−01±4.52E−16(+) 5.02E−01±1.20E−02(+) 8.26E−01±2.68E−02(+) 5.34E−01±2.14E−02(+)

Carcinom 6.81E−01±1.12E−02(+) 6.84E−01±1.13E−16(+) 5.25E−01±1.53E−02(+) 8.43E−01±1.65E−02(+) 5.48E−01±1.12E−02(+)

Leukemia2 6.78E−01±6.36E−02(+) 7.39E−01±3.39E−16(+) 5.67E−01±6.27E−02(+) 8.93E−01±8.23E−02(+) 4.44E−01±4.29E−02(+)

+/=/− 20/0/0 19/1/0 20/0/0 17/3/0 11/4/5

Friedman’s rank 7.425 8.65 6.825 5.5 4.75

Dataset PMMOEA DAEA SM-MOEA MFFS DDFS

Wine 8.81E−01±5.00E−03(=) 8.52E−01±6.33E−03(+) 8.44E−01±3.55E−03(+) 8.45E−01±5.63E−05(+) 8.79E−01±2.34E−16

Australian 6.37E−01±2.81E−04(+) 6.18E−01±8.20E−03(+) 6.13E−01±1.32E−02(+) 6.24E−01±3.55E−03(+) 6.40E−01±7.15E−03

Zoo 8.14E−01±1.09E−02(+) 7.69E−01±8.36E−03(+) 7.37E−01±1.65E−02(+) 7.97E−01±9.82E−03(+) 8.44E−01±4.23E−03

Climate 9.12E−01±2.74E−03(=) 8.86E−01±4.52E−03(+) 8.95E−01±4.61E−03(+) 8.72E−01±9.31E−05(+) 9.10E−01±4.23E−03

Hepatitis 8.40E−01±1.62E−02(−) 7.86E−01±1.53E−02(+) 7.82E−01±9.53E−03(+) 8.29E−01±2.26E−16(=) 8.27E−01±3.97E−03

SPECTF Heart 7.70E−01±1.74E−02(−) 7.28E−01±9.45E−03(+) 6.74E−01±1.29E−02(+) 7.10E−01±8.96E−03(+) 7.37E−01±7.42E−03

Flags 6.44E−01±9.44E−03(+) 5.69E−01±1.83E−02(+) 5.89E−01±1.65E−02(+) 6.48E−01±3.62E−03(+) 6.61E−01±3.87E−02

Ionosphere 9.32E−01±6.83E−03(=) 9.02E−01±1.10E−02(+) 9.08E−01±7.24E−03(+) 9.19E−01±1.05E−04(+) 9.32E−01±5.90E−03

Sonar 8.81E−01±2.10E−02(−) 8.54E−01±2.63E−02(=) 8.38E−01±1.91E−02(+) 8.45E−01±1.86E−02(+) 8.63E−01±2.31E−02

Hill Valley 5.83E−01±8.98E−03(+) 5.33E−01±1.29E−02(+) 5.54E−01±8.31E−03(+) 5.91E−01±1.67E−02(+) 5.97E−01±1.56E−02

Musk-1 8.17E−01±2.43E−02(−) 8.37E−01±2.07E−02(−) 7.67E−01±1.91E−02(+) 8.26E−01±2.49E−02(−) 7.97E−01±1.35E−02

Arrhythmia 6.80E−01±1.47E−02(=) 6.29E−01±7.87E−03(+) 6.35E−01±1.83E−02(+) 6.22E−01±7.35E−03(+) 6.82E−01±2.51E−02

LSVT 9.22E−01±3.61E−02(+) 9.53E−01±3.02E−02(+) 9.04E−01±2.53E−02(+) 9.32E−01±4.01E−02(+) 9.84E−01±1.77E−02

Madelon 8.97E−01±4.43E−03(=) 5.93E−01±8.29E−03(+) 7.55E−01±8.06E−02(+) 8.97E−01±2.89E−03(=) 8.98E−01±3.03E−03

Isolet5 8.29E−01±1.23E−02(=) 7.32E−01±4.86E−03(+) 7.54E−01±1.21E−02(+) 8.18E−01±1.47E−02(+) 8.31E−01±1.15E−02

SRBCT 9.42E−01±4.49E−02(+) 9.72E−01±5.71E−03(−) 8.50E−01±6.03E−02(+) 9.33E−01±3.69E−02(+) 9.65E−01±5.95E−02

DLBCL 9.89E−01±2.88E−02(−) 9.81E−01±3.43E−03(−) 9.53E−01±3.86E−02(+) 9.91E−01±2.25E−02(−) 9.65E−01±5.21E−02

Brain1 8.63E−01±4.05E−02(+) 7.49E−01±5.84E−03(+) 7.52E−01±4.29E−02(+) 8.27E−01±3.80E−02(+) 8.70E−01±2.69E−02

Carcinom 8.62E−01±4.02E−02(+) 8.00E−01±1.24E−02(+) 7.97E−01±4.78E−02(+) 8.19E−01±3.67E−02(+) 8.81E−01±2.31E−02

Leukemia2 9.33E−01±4.50E−02(+) 8.51E−01±5.48E−02(+) 8.58E−01±7.13E−02(+) 9.18E−01±9.55E−02(+) 9.44E−01±4.22E−02

+/=/− 9/6/5 16/1/3 20/0/0 16/2/2 –

Friedman’s rank 2.45 5.8 7.1 4.325 2.175

a) The bold numbers indicate that the corresponding algorithm achieves the best performance on corresponding dataset.

reproduce each performance. Third, the customizable parameters of each algorithm are consistent with
the descriptions in their papers. This is to ensure the fairness of the experiments. Notably, the population
size of each comparison algorithm is set to 200 to ensure diversity and efficiency. The maximal iteration
is set to 100.

For the division of each dataset, 80% of the original dataset is taken as the training set, while the
remaining 20% is the test set [16,42]. Considering the unbalanced proportion of categories in the dataset,
each category is divided according to the above proportion. It is worth noting that this division is constant
for each dataset for 30 experiments, but the division is different for different datasets. This is to ensure
that the results are statistically significant for 30 times. The KNN classifier with 5-fold cross-validation
is employed to avoid inaccurate evaluation of feature subsets due to bias in the training data. And the
value of k is set to 5 to balance accuracy and efficiency [43].

5 Results and discussions

5.1 IGD and HV performances

Tables 2 and 3 present the IGD and HV metrics obtained by the Pareto front evaluated on the test
data. Notably, feature subsets found in the training data may suffer from overfitting. The test data may
dominate some nondominated feature subsets. Therefore, showing the computed metrics on the test set
demonstrates the generalization performance of algorithms in feature selection is important.

Table 2 shows that the top-ranked DDFS outperforms NSGA-II and SM-MOEA on all datasets in terms
of IGD. Although DDFS does not achieve the best IGD value on eight datasets, it was considerably better
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Table 4 Mean HV performance on test data in validation experiments of improved environmental selection strategya)

Dataset DDFS-O DDFS-B DDFS

Wine 8.79E−01±2.34E−16(=) 8.81E−01±3.01E−03(−) 8.79E−01±2.34E−16

Australian 6.43E−01±1.05E−02(−) 6.36E−01±8.41E−03(+) 6.41E−01±5.04E−03

Zoo 8.38E−01±1.59E−02(+) 8.24E−01±8.09E−03(+) 8.44E−01±4.23E−03

Climate 9.09E−01±5.03E−03(=) 9.04E−01±3.96E−03(+) 9.10E−01±4.23E−03

Hepatitis 8.28E−01±1.42E−02(−) 8.19E−01±1.22E−02(+) 8.27E−01±3.25E−03(+)

SPECTF Heart 7.31E−01±1.01E−02(+) 7.32E−01±1.71E−02(+) 7.37E−01±7.42E−03

Flags 6.52E−01±2.89E−02(+) 6.38E−01±1.42E−02(+) 6.61E−01±3.87E−02

Ionosphere 9.27E−01±8.37E−03(+) 9.19E−01±1.23E−02(+) 9.32E−01±5.90E−03

Sonar 8.68E−01±1.42E−02(+) 8.62E−01±2.92E−02(+) 8.70E−01±2.17E−02

Hill Valley 5.80E−01±1.62E−02(+) 5.01E−01±6.22E−02(+) 5.97E−01±1.56E−02

Musk-1 7.80E−01±1.53E−02(+) 7.44E−01±3.07E−02(+) 7.97E−01±1.35E−02

Arrhythmia 6.74E−01±1.87E−02(+) 6.85E−01±1.69E−02(−) 6.82E−01±2.51E−02

LSVT 9.42E−01±2.64E−02(+) 9.22E−01±3.51E−02(+) 9.84E−01±1.77E−02

Madelon 8.94E−01±6.63E−03(=) 8.50E−01±8.00E−02(+) 8.98E−01±3.03E−03

Isolet5 8.00E−01±1.45E−02(+) 7.98E−01±2.32E−02(+) 8.31E−01±1.15E−02

SRBCT 9.49E−01±4.84E−02(+) 9.69E−01±3.85E−02(=) 9.69E−01±3.80E−02

DLBCL 9.09E−01±7.23E−02(+) 9.96E−01±3.74E−03(−) 9.65E−01±5.21E−02

Brain1 8.57E−01±4.33E−02(+) 8.42E−01±4.97E−02(+) 8.70E−01±2.69E−02

Carcinom 8.59E−01±2.66E−02(+) 8.61E−01±1.37E−02(+) 8.81E−01±2.31E−02

Leukemia2 8.91E−01±8.95E−02(+) 8.64E−01±6.19E−02(+) 9.52E−01±5.09E−02

+/=/− 15/3/2 16/1/3 –

Friedman’s rank 2.1875 2.4062 1.4062

a) The bold numbers indicate that the corresponding algorithm achieves the best performance on corresponding dataset.

than the other nine compared algorithms on most datasets. It indicates that the Pareto front found by
DDFS has the best convergence even on high-dimensional datasets with small samples (e.g., Brain1 and
Leukemia2). This is because the proposed knowledge transfer mechanism uses the potential solutions of
the dominance-based search approach to help DDFS escape local optima and find feature subsets with
higher classification accuracy. Table 3 shows that the proposed DDFS beats the other nine advanced
algorithms on most datasets in terms of HV. This proves that the proposed DDFS algorithm better bal-
ances convergence and diversity. Specifically, first, DDFS significantly outperforms NSGA-II, MOEA/D,
SPEA-2, DrEA, and SM-MOEA on almost all datasets. Second, it can be found that DDFS does not
perform as well as MOEA/DD on five low-dimensional and medium-dimensional datasets due to a two-
layer weight vector generation method in MOEA/DD that can divide diverse subregions. Moreover, they
can enhance population diversity by providing diverse search directions and density estimation. However,
our proposed DDFS performs significantly better than MOEA/DD on high-dimensional datasets. The
proposed improved environmental selection strategy can substantially filter redundant features and find
feature subsets with a few features. Finally, although DDFS does not perform as well as DAEA and
MFFS on four datasets, it still significantly outperforms them on 16 datasets. These results proved that
our proposed algorithm could find feature subsets with high classification accuracy and few features even
on class-imbalanced datasets (e.g., Flags, Arrhythmia, and Brain1).

5.2 Major component contribution analysis

Two validation experiments were organized to observe the effectiveness of the two main components
proposed in this paper. Four variants of the algorithm were run 30 times independently on all data sets.
Friedman tests were performed on their HV metrics.

Table 4 presents that the effectiveness of the improved environmental selection strategy was verified by
comparing it with two other environmental selection strategies. Specifically, DDFS-O is the replacement
of the proposed improved environmental selection strategy with a neighborhood-based environmental se-
lection operator [22], and DDFS-B is the replacement of the proposed improved environmental selection
strategy with a best-fit-based environmental selection operator [44]. Notably, the DDFS-O and DDFS-B
are much worse than DDFS on most datasets because the proposed improved environmental selection
strategy significantly improves the ability of the algorithm to explore the search space and thus find a
better subset of features. Table 5 depicts the results of experiments to validate the effectiveness of the
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Table 5 Mean HV performance on test data in validation experiments of knowledge transfer mechanisma)

Dataset DDFS-I DDFS-E DDFS

Wine 8.79E−01±2.34E−16(=) 8.79E−01±2.34E−16(=) 8.79E−01±2.34E−16

Australian 6.40E−01±1.93E−03(=) 6.40E−01±7.20E−03(=) 6.40E−01±7.15E−03

Zoo 8.41E−01±8.98E−04(+) 8.26E−01±9.68E−03(+) 8.44E−01±4.23E−03

Climate 9.03E−01±1.79E−03(+) 9.04E−01±2.84E−03(+) 9.10E−01±4.23E−03

Hepatitis 8.36E−01±1.09E−02(−) 8.27E−01±3.83E−03(=) 8.27E−01±3.25E−03

SPECTF Heart 7.64E−01±2.92E−03(−) 7.53E−01±7.59E−03(−) 7.37E−01±7.42E−03

Flags 6.43E−01±2.97E−02(+) 6.35E−01±1.60E−02(+) 6.61E−01±3.87E−02

Ionosphere 9.20E−01±6.63E−03(+) 9.20E−01±9.25E−03(+) 9.32E−01±5.90E−03

Sonar 8.57E−01±1.22E−02(+) 8.76E−01±2.47E−02(−) 8.63E−01±2.31E−02

Hill Valley 5.96E−01±6.22E−02(=) 5.89E−01±1.59E−02(+) 5.97E−01±1.56E−02

Musk-1 8.11E−01±1.70E−02(−) 7.96E−01±2.14E−02(=) 7.97E−01±1.35E−02

Arrhythmia 6.85E−01±1.67E−02(−) 6.74E−01±2.27E−02(+) 6.82E−01±2.51E−02

LSVT 9.75E−01±2.18E−02(+) 9.52E−01±3.27E−02(+) 9.84E−01±1.77E−02

Madelon 8.99E−01±3.21E−03(=) 8.92E−01±6.13E−03(=) 8.98E−01±3.03E−03

Isolet5 8.08E−01±9.23E−03(+) 7.93E−01±1.03E−02(+) 8.31E−01±1.15E−02

SRBCT 9.79E−01±9.37E−03(−) 9.51E−01±7.14E−02(+) 9.65E−01±5.95E−02

DLBCL 9.67E−01±3.88E−02(=) 9.78E−01±4.13E−02(−) 9.65E−01±5.21E−02

Brain1 8.62E−01±3.67E−02(+) 8.72E−01±2.67E−02(=) 8.70E−01±2.69E−02

Carcinom 8.54E−01±2.04E−02(+) 8.61E−01±1.20E−02(+) 8.81E−01±2.31E−02

Leukemia2 9.38E−01±4.89E−02(+) 9.83E−01±2.72E−02(−) 9.52E−01±5.09E−02

+/=/− 10/5/5 10/6/4 –

Friedman’s rank 2.125 2.1562 1.7188

a) The bold numbers indicate that the corresponding algorithm achieves the best performance on corresponding dataset.

knowledge transfer mechanism. Here, DDFS-I denotes replacing the proposed knowledge transfer mech-
anism with an implicit knowledge transfer [30], and DDFS-E denotes replacing the proposed knowledge
transfer mechanism with an explicit knowledge transfer [27–29]. The results of the Friedman test for
HV metrics proved that our proposed knowledge transfer mechanism is effective. It can be seen that
DDFS significantly outperforms DDFS-I and DDFS-E on ten datasets, especially on the low-dimensional
datasets. Therefore, we conclude that our two proposed new strategies have better results on the feature
selection problem.

5.3 Nondominated front distribution analysis

Figure 3 illustrates the distribution of the nondominated feature subsets found by each algorithm on
the test data of nine representative datasets. The Pareto front with the median HV value among the
30 experiments is plotted, reflecting the overall effect of the algorithm. First, Figure 3 shows that the
front found by DDFS has the best classification accuracy compared with other algorithms. Even on
high-dimensional datasets (e.g., Leukemia2), feature subsets with a classification error rate of 0 can
be found because the proposed knowledge transfer mechanism can achieve better convergence while
maintaining diversity. Second, our algorithm solves the high-dimensional problem better compared to
other algorithms. Specifically, DDFS can filter out redundant features and select only a few key features,
thus achieving higher classification accuracy. Third, the Pareto front found by DDFS has the most diverse
solutions compared to other algorithms. The reason is that the improved environmental selection strategy
retains more potential solutions. The diversity of populations is effectively increased, thus evolving new
nondominated solutions. Finally, DDFS finds the combination of features with the highest classification
accuracy on most datasets, although the number of selected features is large. These solutions should be
considered when the user wants high classification accuracy and does not care about the classification
cost. Although the classification accuracy of the subset with the fewest features chosen is not high,
it remains the most cost-effective solution when accuracy requirements can be met. Moreover, DDFS
provides other diverse options if the user needs to trade off classification accuracy and cost.
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Figure 3 (Color online) Distributions of the median Pareto fronts obtained on 9 representative datasets by each algorithm in the

objective space.

5.4 Computing time

To examine the performance of the proposed DDFS in terms of computation time, we compared the
average computation time of all algorithms over 30 experiments using 20 datasets. In the experiments,
the Friedman test was used to calculate the ranking of each algorithm, as depicted in Table 6. Generally,
the number of samples and features in the dataset significantly affects the computation time of the
feature selection algorithm. This is because the KNN classifier computes the distance over many samples
to predict the labels, leading to an increase in time cost. Furthermore, the high dimensionality of the
feature vector also leads to longer computation time. Specifically, Australia and Isolet5 take longer
to compute than other datasets with small sample sizes, and Carcinom and Leukemia2 take longer to
compute than other datasets with low feature dimensions. Overall, DDFS takes the shortest computation
time using 13 datasets. Furthermore, DDFS is the best performer based on the Friedman test because
the decomposition-based subpopulation can identify Pareto feature subsets with a few critical features
shared by the proposed knowledge transfer mechanism to guide population evolution. This reduces the
evaluation time of feature subsets in the training process.

6 Conclusion

This report aimed to develop an evolutionary multiobjective feature selection method that combined
dominance-based and decomposition-based approaches. Inspired by the complementary advantages, the
knowledge obtained by different search approaches was shared to select smaller feature subsets with higher
classification accuracy.

First, the environmental selection strategy in the decomposition-based subpopulation based on neigh-
borhood replacement was improved. The angle value of each individual in the objective space for the
coordinate axis was calculated using its objective value, and the angle values were used to rearrange
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Table 6 Average time consumed by 10 algorithms on 20 datasets (s)a)

Dataset NSGA-II MOEA/D SPEA-2 DrEA MOEA/DD PMMOEA DAEA SM-MOEA MFFS DDFS

Wine 63.82 31.83 28.61 52.72 61.06 71.60 76.51 23.97 73.59 23.45

Australian 52.42 28.65 30.96 325.60 100.84 310.64 75.01 26.42 294.67 105.66

Zoo 56.26 26.37 27.70 30.63 52.54 117.92 64.72 23.72 109.63 22.01

Climate 54.89 29.10 30.07 212.48 125.83 199.88 85.41 26.04 193.43 75.42

Hepatitis 54.43 26.44 28.06 46.18 63.89 47.27 45.15 24.29 39.39 20.50

SPECTF Heart 53.33 36.42 28.73 70.04 87.30 125.42 43.79 24.69 84.33 30.21

Flags 52.69 27.70 28.29 52.11 81.46 92.39 49.68 25.49 77.60 25.22

Ionosphere 59.59 34.62 30.32 155.07 92.74 112.83 54.83 24.97 110.61 40.94

Sonar 49.61 42.53 29.17 92.88 67.78 76.94 55.06 24.79 73.30 23.78

Hill Valley 379.02 129.24 251.47 400.30 308.85 229.77 174.19 126.72 362.36 99.60

Musk-1 482.81 329.63 276.18 297.94 337.15 370.28 455.76 203.46 228.18 198.41

Arrhythmia 59.17 36.87 37.11 292.97 153.63 229.37 69.74 29.78 244.74 63.24

LSVT 79.35 67.42 55.66 51.86 83.60 86.65 63.72 99.23 50.35 65.69

Madelon 4238.03 3487.35 1977.46 2317.04 2306.96 2865.00 3215.75 2052.79 4160.67 1806.51

Isolet5 201.43 205.36 200.83 1049.99 642.72 919.81 453.14 788.01 1583.27 465.02

SRBCT 102.79 59.61 38.89 153.86 133.53 136.78 84.14 75.63 113.65 30.68

DLBCL 123.14 130.58 62.64 608.22 396.63 786.83 246.38 167.95 345.86 60.15

Brain1 233.45 162.80 81.64 707.81 553.32 527.73 220.43 244.12 730.15 68.87

Carcinom 411.78 252.16 186.46 3035.21 1718.34 2697.78 556.53 496.66 2390.59 179.44

Leukemia2 426.74 246.28 151.22 1095.36 913.72 1255.46 523.89 616.08 2135.37 102.79

Friedman’s rank 5.95 3.60 2.80 7.85 7.20 8.50 5.80 3.25 7.65 2.40

a) The bold numbers indicate that the corresponding algorithm achieves the best performance on corresponding dataset.

each individual to a more appropriate weight vector, avoiding many duplicate solutions and enhancing
the diversity of the proposed algorithm. Furthermore, a mechanism for transferring useful knowledge
between subpopulations of the two search methods was developed. Considering their respective evolu-
tionary characteristics, the advanced search experience assisted each other in escaping local optima. The
experimental results fully demonstrate the effectiveness of our proposed algorithm.

In the future, we will select a limited number of relevant features during the initialization phase. It is
an interesting research direction to reduce the computational time during the evolutionary process. Fur-
thermore, the proposed algorithm has prospective applications in cancer classification, image recognition,
and text extraction.
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