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Appendix A Related Work
In PAEKS, the ciphertext is authenticated using the sender’s secret key, which resists insider keyword guessing attacks (IK-

GA). Many PAEKS schemes have been proposed in the literature with various attractive functions, such as certificateless [8, 12],

designated-server [10], et al. Liu et al. [15] recently proposed a quantum-resistant PAEKS scheme. Its security model was further

enhanced to include multi-ciphertext and multi-trapdoor [16].

In multi-user scenarios, attribute-based keyword search (ABKS) is one of the primitives used to implement keyword search

effectively. Various ABKS schemes are proposed in [14,19,20,23,24]. These constructions, however, have a fragile level of security

when faced with quantum computers. Li et al. [11] designed the first ABKS scheme from lattices with fine-grained control of the

searchability against quantum attacks. Although their construction could resist IKGA, their syntax, security model and underlying

assumptions differ from that of AB-AEKS. This scheme can be used as a building block to construct our AB-AEKS scheme. By

integrating the search function into an attribute-based signcryption, Liu and Fan [13] proposed the concept of searchable attribute-

based authenticated encryption. However, their instantiation cannot withstand quantum cryptanalysis.

Appendix B Security Model for AB-AEKS
We propose two security models that resist two kinds of attacks: chosen-keyword attacks (CKA) and insider keyword guessing

attacks (IKGA), focusing on properties that are ciphertext indistinguishable and ciphertext unforgeable even for malicious cloud

servers. They are illustrated as an interactive process between an adversary A and a challenger C as follows:

Definition 1 (Security Game for IND-CKA). We describe the security model of indistinguishable under chosen-keyword attacks

(IND-CKA) in the following way.

Setup. The challenger runs Setup algorithm to compute a master key pair (MPK,MSK) and returns MPK to adversary.

Query phase 1. The adversary issues the following queries:

• OKeyGens
: A could query the sender’s key pair using an identity ID. C computes (PKs, SKs)← KeyGens(MPK,MSK, ID)

and returns (PKs, SKs).

• OKeyGenr
: A could query the receiver’s secret key using an access policy f except for f(x∗) = 0, where x∗ denotes a

challenge attribute vector. C computes SKr ← KeyGenr(MPK,MSK, f) and returns SKr.

• OAB-AEKS: A transmits a keyword w, an attribute vector x, and identity ID. C evaluates C ← AB-AEKS(MPK,PKs, SKs,

x, w), where (PKs, SKs)← KeyGens(MPK,MSK, ID), and returns C to A.

• OToken: A transmits a keyword w and an access policy f , except for f(x∗) = 0. C evaluates K ← Token(MPK,SKr, w),

where SKr ← KeyGenr(MPK,MSK, f), and returns K to A.

Challenge. The adversary submits two keywords w∗0 , w
∗
1 , an identity ID∗ and a target attribute vector x∗. C chooses randomly

a bit r ∈ {0, 1} and runs AB-AEKS algorithm to generate a challenge ciphertext C∗ under the keyword w∗r .

Query phase 2. A continues to query similar to phase 1.

Guess. The adversary outputs a guess r′ ∈ {0, 1}.
A wins the game if r′ = r. We say that the AB-AEKS scheme is secure if for all probabilistic polynomial time (PPT) adversaries

A, the probability of A wins in the game is negligible.

Definition 2 (Security Game for UNF-IKGA). We describe the security model of unforgeable under insider keyword guessing

attacks (UNF-IKGA) in the following way.

Setup. Same as Setup in the IND-CKA game.

Query phase. The adversary issues the following queries:

• OKeyGens
,OKeyGenr

: Same as OKeyGens
and OKeyGenr

in the IND-CKA game, respectively.

• OAB-AEKS,OToken: Same as OAB-AEKS and OToken in the IND-CKA game, respectively.

Forgery. The adversary outputs a forgery C∗ associated with (w∗,x∗, ID∗), subject to the restriction that ID∗ cannot be

queried in OKeyGens
and OAB-AEKS.

A wins the game if the forgery passes test algorithm. We say that the AB-AEKS scheme is secure if for all PPT adversaries A,

the probability of A wins in the game is negligible.

Selective-attribute security. If the adversary A has to initiate the target attribute vector x∗ in the Setup phase before being

given MPK in the above security games, we call it selective-attribute security.
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Appendix C Proof of Theorem 1

Before proving Theorem 1, we give the definitions of the three primitives involved in the general construction, including digital

signature, attribute-based keyword search, and non-interactive zero-knowledge proof.

Appendix C.1 Digital Signature

Syntax. A signature scheme with message space M consists of the following PPT algorithms:

− KeyGen(1λ)→ (vk, sk): Take as input the security parameter λ, output a verification key vk and a signing key sk.

− Sign(sk,m)→ σ: Take as input the signing key sk and message m ∈ M, output a signature σ.

− Ver(vk, (m,σ)) → 0/1: Take as input the verification key vk, message m ∈ M, and signature σ, output 1 if σ is a valid

signature for m. Otherwise, output 0.

Correctness. The signature scheme with message space M is correct: for all λ ∈ N and m ∈ M, let (vk, sk) ← KeyGen(1λ), if

there exists σ ← Sign(sk,m), then we have 1← Ver(vk, (m,σ)).

EUF-CMA. The existentially unforgeable under chosen-message attacks (EUF-CMA) security game is defined between an adver-

sary A and a challenger C as below.

− Setup. C generates (vk, sk)← Setup(1λ) and gives vk to A.

− Queries. For a signing query m, C returns σ ← Sign(sk,m) to A.

− Forgery. A outputs a forgery (m∗, σ∗).

A wins the game if C captures Ver(vk, (m∗, σ∗))→ 1, subject to the restriction that of m∗ cannot be queried. We say that the

signature scheme is secure if for all PPT adversaries A, the probability of A wins in the game is negligible.

Appendix C.2 Attribute-Based Keyword Search

Syntax. For a keyword space W and policy space F : {0, 1}l → {0, 1}, a (key-policy) attribute-based keyword search (ABKS)

scheme is made of the following PPT algorithms:

− Setup(1λ, 1l)→ (mpk,msk): Take as input the security parameter λ and the number of attributes l, output a master public

key mpk and a master secret key msk.

− KeyGen(mpk,msk, f)→ skf : Take as input the master public key mpk, master secret key msk, and an access policy f ∈ F ,

output a secret key skf .

− ABKS (mpk,x, w) → c: Take as input the master public key mpk, attribute x ∈ {0, 1}l and a keyword w ∈ W, output a

ciphertext c.

− Token (mpk, skf , w)→ k: Take as input the master public key mpk, secret key skf and a keyword w ∈ W, output a keyword

token k.

− Test (c, k)→ {0, 1}: Take as input the ciphertext c and token k, output 1 if f(x) = 0 and c and k contain the same keyword;

otherwise, output 0.

Correctness. The ABKS scheme is correct: For all λ ∈ N, keyword space W, and policy space F , let (mpk,msk)← Setup(1λ, 1l)

and skf ← KeyGen(mpk,msk, f), if there exists c ← ABKS (mpk,x, w), k ← Token (mpk, skf , w) and f(x) = 0, then we have

1← Test (c, k).

IND-CKA. The indistinguishable under chosen-keyword attacks (IND-CKA) security game is defined between an adversary A and

a challenger C as below.

− Setup. C generates (mpk,msk)← Setup(1λ, 1l) and returns mpk to A.

− Query phase 1. A makes the following queries:

• OKeyGen: For a key query f except for f(x∗) = 0, where x∗ denotes a challenge attribute vector. C returns skf ←
KeyGen(mpk,msk, f) to A.

• OToken: For a token query (f, w), except for f(x∗) = 0. C computes k ← Token(mpk, skf , w), where skf ← KeyGen(mpk,

msk, f), and returns k to A.

− Challenge. The adversary submits a challenge tuple (x∗, w∗0 , w
∗
1 ). C chooses randomly a bit b ∈ {0, 1} and returns c∗ ←

ABKS(mpk,x∗, w∗b ).

− Query phase 2. A continues to queries similar to phase 1.

− Guess. The adversary outputs a guess b′ ∈ {0, 1}.
A wins the game if b′ = b. We say that the ABKS scheme is secure if for all PPT adversaries A, the probability of A wins in

the game is negligible.

Example. The ABKS scheme [11] of Li et al. satisfies the above definition and security model. For a token query (f, w), if

f(x∗) 6= 0, the challenger invokes the KeyGen algorithm to generate the token. Otherwise, f(x∗) = 0 ∧ w 6= w∗, the challenger

computes Tf,w by using G-trapdoor and then captures the token in a normal way. For more details, please refer to [11].

Appendix C.3 Non-Interactive Zero-Knowledge Proof

Syntax. Let R be a relation corresponding to an NP language L. A non-interactive zero-knowledge (NIZK) proof system [2]

contains the following PPT algorithms:

− I(1λ)→ ω: Take as input the security parameter λ, output a common reference string ω.

− P(ω, (y, x))→ π: Take as input the common reference string ω and an NP relation (y, x) ∈ R, output a proof π.

− V(ω, (y, π))→ 0/1: Take as input the common reference string ω, an instance y and a proof π, output 0 or 1.

Correctness. The NIZK proof system for relation R is correct: for all λ ∈ N and (y, x) ∈ R, if there exists ω ← I(1λ) and

π ← P(ω, (y, x)), then we have 1← V(ω, (y, π)).
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The NIZK proof system have two useful properties. One is called adaptive multi-theorem zero-knowledge, means that a proof

is generated honestly does not leak any information beyond the fact that y ∈ L. The other is called knowledge soundness, requires

that if an adversary could generate a valid proof for some statements, then it must know the corresponding witness.

Adaptive Multi-Theorem Zero-Knowledge. A NIZK proof system for relation R satisfies adaptive multi-theorem zero-

knowledge if there exists a PPT simulator Z = (Z0, Z1) such that the following holds:

− Algorithm Z0 outputs ω and a simulation trapdoor ζ.

− For all PPT distinguishers D, we have

|Pr[DP(ω,(·,·))
(ω) = 1 : ω ← I(1λ)]− Pr[DO(ζ,(·,·))

(ω) = 1 : (ω, ζ)← Z0(1
λ

)]| 6 negl(λ),

where the oracle O(ζ, (·, ·)) takes as input ζ and a pair (y, x), returns Z1(ζ, y) if (y, x) ∈ R, and returns ⊥ otherwise.

Knowledge Soundness. A NIZK proof system for relation R satisfies knowledge soundness if there exists a PPT extractor

K = (K0,K1) such that the following holds:

− Algorithm K0 outputs ω and an extraction trapdoor ξ, where the distribution of ω is computationally close to the output

distribution of I(1λ).

− For all PPT adversaries A, we have

Pr

V(ω, (y, π))→ 1 ∧ (y, x) /∈ R :

(ω, ξ)← K0(1
λ

)

(y, π)← A(ω)

x← K1(ξ, (y, π))

 6 negl(λ).

Appendix C.4 Security Proof for the general AB-AEKS

Theorem 1 contains the scheme’s two security requirements; for clarity, we argue for the scheme’s security through the following

two lemmas.

Lemma 1. If Π1 satisfies IND-CKA security and Π3 satisfies adaptive multi-theorem zero knowledge, then the AB-AEKS scheme

Π satisfies IND-CKA security.

Proof. We use hybird argument. Consider the following games:

Game 0: Identical to the IND-CKA game of Π. Suppose there exists an adversary A to break IND-CKA security of the AB-AEKS

scheme Π with non-negligible advantage, then we build an algorithm C that wins IND-CKA game of ABKS with the same advantage.

1. C receives mpk. It then returns MPK = (mpk, vk, ω) to A, where (vk, sk)← KeyGen(1λ) and ω ← I(1λ).

2. C answers A’s queries in the following way:

• OKeyGens
: Upon input ID, compute σ ← Sign(sk, ID) and return (PKs, SKs) = (ID, σ).

• OKeyGenr
: Upon input f , capture sk′ by sending f to key generation oracle OKeyGen′ of ABKS. It returns SKr = sk′.

• OAB−AEKS: Upon input (x, w, ID), compute c ← ABKS′(mpk,x, w) and π ← P(ω, (mpk, vk, c), (ID, σ)), where σ ←
Sign(sk, ID). It returns C = (c, π).

• OToken: Upon input (f, w), capture k′ by sending (f, w) to token generation oracle OToken′ of ABKS. It returns K = k′.

3. Receive (x∗, w∗0 , w
∗
1 , ID

∗). C sends (x∗, w∗0 , w
∗
1 ) to the challenger of ABKS.

4. Capture c∗, let π∗ ← P(ω, (mpk, vk, c∗), (ID∗, σ∗)), where σ∗ ← Sign(sk, ID∗). It returns C∗ = (c∗, π∗).

5. Answer the subsequent queries as in step 2.

6. C outputs A’s guess as the answer to IND-CKA challenge of ABKS it is trying to solve.

Hence, we conclude that if A breaks the security of AB-AEKS with non-negligible advantage, then C wins the IND-CKA game

with non-negligible advantage under the ABKS scheme.

Game 1: Identical to Game 0 except that change the way the proof π generated. Concretely, the challenger computes (ω, ζ) ←
Z0(1λ) in the Setup phase. When the adversary makes encryption and challenge queries, the challenger generates π ← Z1(ζ, (mpk, pk, c)),

where c is produced by ABKS′ algorithm of the ABKS scheme. By the adaptive multi-theorem zero-knowledge property of that

NIZK proof system, the view of the adversary is altered only negligibly between Game 0 and Game 1.

Based on the IND-CKA security property of ABKS scheme, it shows that no adversary has non-negligible chance in wining

Game 1.

Therefore, combining the above statements together, the lemma is proven. �

Lemma 2. If Π2 satisfies UNF-CMA security and Π3 satisfies knowledge soundness, then the AB-AEKS scheme Π satisfies

UNF-IKGA security.

Proof. Suppose there exists an adversary A to break UNF-IKGA security of the AB-AEKS scheme Π with non-negligible

advantage, then we build an algorithm C that wins UNF-CMA game under the signature scheme Π2 with the same advantage.

1. C receives vk. It then returns MPK = (mpk, vk, ω) to A, where (mpk,msk)← Setup′(1λ) and (ω, ξ)← K0(1λ).

2. C answers A’s queries in the following way:

• OKeyGens
: Upon input ID, capture σ by sending ID to signing oracle OSign of the signature scheme. It returns

(PKs, SKs) = (ID, σ).

• OKeyGenr
: Upon input f , compute sk′ ← KeyGen′(mpk,msk, f) and return SKr = sk′.

• OAB−AEKS: Upon input (x, w, ID), capture σ by giving ID to signing oracle OSign of the signature scheme, evaluate

c← ABKS′(mpk,x, w) and π ← P(ω, (mpk, vk, c), (ID, σ)). It returns C = (c, π).

• OToken: Upon input (f, w), compute k′ ← Token′(mpk, sk′, w), where sk′ ← KeyGen′(mpk,msk, f). It returns K = k′.

3. Receive C∗ = (c∗, π∗) associated with (x∗, w∗, ID∗) and check whether V(ω, (mpk, vk, c∗), π∗) = 0 is true. If the equation

holds, abort. Otherwise, C extracts (ID∗, σ∗)← K1(ξ, (mpk, vk, c∗), π∗) and returns (ID∗, σ∗) as a forgery to the challenger

of the signature scheme.

Based on the knowledge soundness property of NIZK proof system, we have ω that generated from I(1λ) and K0(1λ) is com-

putational indistinguishable. This means that the proof π computed by challenger in the oracle OAB−AEKS as an response and π∗

returned by adversary as a forgery are valid. Therefore, we have that σ∗ is a valid signature for ID∗. In other words, we conclude

that if A breaks the security of AB-AEKS with non-negligible advantage, then C wins the UNF-CMA game with non-negligible

advantage under the signature scheme. This completes the proof. �
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Table D1 The notation explanation

Notation Description

R = Z[x]/(xn + 1) cyclotomic ring, where n is a power of 2

Rq = R/qR quotient ring, where q is a prime such that q ≡ 1 mod 2n

R1×m
q ,Rmq ,R

m×m
q row vector, column vector, and matrix in Rq

‖x‖ Euclidean norm (l2 norm) of x

‖T‖ = maxi‖ti‖ maximum norm of its column vectors

A
R←− Rm−kq A is sampling from a uniformly random distribution Rm−kq

R̃ Gram-Schmidt orthogonalization of R

a|b,A|B horizontal concatenation of vectors or matrices

a; b,A; B vertical concatenation of vectors or matrices

Appendix D Lattice-Based AB-AEKS
We introduce the preliminaries of lattice-based AB-AEKS construction, provide the correctness analysis for the proposed scheme,

and give a comparative table of our construction and related schemes.

Appendix D.1 Preliminaries

Notation. Let boldface symbols denote vectors or matrices and regular lowercase letters denote single elements. Table D1 lists

several notation explanations in our paper to provide a more intuitive understanding.

Background on Lattices. We provide an overview of the background on lattices, including discrete Gaussian, the hardness

assumption of ring variants, and tailcut property.

Definition 3 (Lattice [1]). The lattice is a discrete additive subgroup on Rm, which can be simply regarded as a set of points

regularly arranged in an infinite space. We will use a special type of lattices: for positive integers m and q prime, let A ∈ R1×m

and u ∈ Rq , define the following m-dimensional q-ary lattices:

Λ
⊥

(A) =
{
x ∈ Rm : Ax = 0 mod q

}
,

Λ
⊥
u (A) =

{
x ∈ Rm : Ax = u mod q

}
= Λ

⊥
(A) + z,

where z ∈ Λ⊥u (A). Hence, Λ⊥u (A) is a coset of Λ⊥ (A).

Definition 4 (Discrete Gaussian [1, 7]). For any σ ∈ R define the Gaussian function on Rn of center c and parameter σ:

∀x ∈ Rn, ρc,σ(x) = exp
(
−π ‖x− c‖2 /σ2

)
.

The discrete Gaussian distribution of center c ∈ Rn and distribution parameter σ ∈ R over a lattice Λ ⊂ Rn is

∀x ∈ Λ,DΛ,c,σ = ρc,σ (x) /ρc,σ (Λ) ,

where ρc,σ (Λ) =
∑

z∈Λ ρc,σ (z). Specifically, the Gaussian distribution DR,σ (c = 0 when ommitted) used in this paper denotes

the discrete Gaussian sampling based on the cyclotomic ring R.

Definition 5 (Ring-LWEn,q,m,DR,σ [4,18]). Given integers n,m, a prime integer q and a discrete Gaussian distribution DR,σ .

The decisional ring-LWE problem is to distinguish the pair (a, as + e) from (a,b), where a
R←− Rmq , s

R←− Rq, e
R←− DRm,σ and

b
R←− Rmq .

Definition 6 (Ring-ISISq,m,β [17,22]). Given a integerm, a prime integer q and a real number β > 0. The ring-ISIS problem is to

find a non-zero vector of the small polynomial x ∈ Rm such that aTx = u mod q and 0 < ‖x‖ 6 β, where a
R←− Rmq and u

R←− Rq .
Lemma 3 (Tail inequality [7]). For any ε > 0, s > ηε(Z), t > 0, we have

Prx∼DZ,s [|x| > t · s] 6 2e
−πt2 ·

1 + ε

1− ε
,

where ηε(Z) and DZ,s are smoothing parameter and discrete Gaussian of the lattice Z, respectively. For ε ∈ (0, 1/2) and

t > ω(
√

logn), the probability that |x| > t · s is negligible. In this paper, a vector x sampled in DRm,s would have small

norm ‖x‖ 6 ts
√
mn with overwhelming probability.

Lattice Algorithm. In this work, we will utilize several lattice algorithms, which are shown in the following lemmas:

Lemma 4 (Trapdoor Generation [3, 21]). Given a vector A ∈ Rm−kq , tag H ∈ Rq , Gaussian parameter σ, and ring modulus q.

Algorithm TrapGen(A, H, σ, q) outputs a (pseudo)random vector A ∈ R1×m
q and its trapdoor R ∈ R(m−k)×k of the norm bounded

by tσ
√

(m− k)n. Let G =
(

1, 2, 4, · · · , 2k
)
∈ R1×k

q (k = dlog2qe) be a gadget vector, we have A = (A
T |HG −A

T
R) such that

A(R; Ik) = HG.

When the tag H = 0, the output (A,R) is also valid, where A = (A
T | −A

T
R) is δ-uniform for some δ = negl(n).

Lemma 5 (Gaussian preimage samping [3, 21]). Given a vector A ∈ R1×m
q associated with an invertible tag H ∈ Rq and its

trapdoor R ∈ R(m−k)×k, a polynomial u ∈ Rq and three Gaussian parameters ζ, α, σ. Algorithm SamplePre(A,R, H, u, ζ, α, σ)

outputs a vector x sampled from a discrete Gaussian distribution DRmq ,ζ such that Ax = u.
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Lemma 6 (Trapdoor delegation [5, 21]). There is a randomized algorithm DelTrap (A′ = (A|A1),R, H′, s′) that given a vector

A′ = (A|A1) ∈ R1×m′
q (where A1 ∈ R1×m

q and m′ > m+m), a trapdoor R ∈ R(m−k)×k corresponding to the vector A ∈ R1×m
q ,

an invertible element H′ ∈ Rq , and Gaussian parameter s′ > ηε(Λ
⊥ (A)). It outputs a trapdoor R′ ∈ Rm×mq for the vector A′,

under the tag H′.

Lemma 7 (RandBasis [5]). There is a randomized algorithm RandBasis(A,R, τ) that given a vector A ∈ R1×m
q with its trapdoor

R ∈ R(m−k)×k, and a Gaussian parameter τ = ‖R̃‖ω(
√

logmn), outputs a trapdoor R′ sampled from a distribution DR(m−k)×k,τ .

In particular, RandBasis algorithm is only used for our security proof.

Appendix D.2 Technique Overview

Modified PAEKS. Since the PAEKS scheme only achieves a one-to-one search model, its application is somewhat limited. We

can trivially adapt PAEKS to multi-user settings. Informally, public keys Ar1
, ...,Arl

of l receivers are selected in the encryption

phase. The sender generates a ciphertext component Ci = AT
ri
s + ei for i ∈ [1, l] so that these receivers can search for the

ciphertext. Nevertheless, it still requires the sender to specify the receivers in advance and lacks flexibility. Therefore, we would

like to realize a flexible keyword search without pre-fixing target receivers.

Our inspiration comes from a fully key-homomorphic ABE scheme [4]. We follow this one and adopt an access policy to control

the receiver’s search permission. Our construction utilizes three deterministic algorithms: EVALMPK , EVALC , and EVALSIM intro-

duced by [4], with a family of policies F : {0, 1}l → {0, 1} with depth d.

− Master public key evaluation: For i ∈ [1, l], let Bi be a random row vector, we have EVALMPK(f ∈ F, (B1, · · · ,Bl))→ Bf .

− Ciphertext evaluation: For i ∈ [1, l], let x = (x1, · · · , xl) be an attribute vector and Ci = (Bi + (0|xiG))T s + ei be

a ciphertext component, then we have EVALC
(
f ∈ F, (xi,Bi,Ci)

l
i=1

)
→ Cf . By [1](Lemma 15), we can know ‖ei‖ =

‖SieA‖ 6 C1 · tσm
√

2n, where Si
R←− {−1, 1}m×m, eA

R←− DRm,σ and C1 is a universal constant. Thus the evaluated

ciphertext Cf = (Bf + (0|f(x)G))T s+ ef and ‖ef‖ < C1 · tσm
√

2n(mn)O(d).

− Simulation evaluation: For i ∈ [1, l], we have EVALSIM (f ∈ F, (x∗i ,Si)
l
i=1,A)→ Sf , where x∗ = (x∗1 , · · · , x

∗
l ) is a challenge

attribute, Si
R←− {−1, 1}m×m is a random matrix and A is a random vector. The algorithm EVALSIM satisfies ASf −

(0|f(x∗)G) = Bf , where Bf = EVALMPK(f ∈ F, (AS1 − (0|x∗1G), · · · ,ASl − (0|x∗lG))) and ‖Sf‖ 6 C1 ·
√

2m(mn)O(d).

Using key-homomorphic techniques, we could embed an access policy f and an attribute vector x into the receiver’s secret key

and the ciphertext, respectively. In this way, if and only if f(x) = 0, the receiver can search for ciphertexts. Our construction

idea is described as follows: The key generation center (KGC) produces a master key pair and then generates the sender’s key pair

via the identity label ID and the TrapDel algorithm. We refer to ID as the sender’s public key and to a trapdoor for (A|H3(ID))

as the sender’s secret key, where A is a (pseudo)random vector with the trapdoor. For the receiver’s secret key, KGC outputs a

trapdoor for (A|Bf ) by running TrapDel algorithm. During the encryption phase, there are three ciphertext components, C1, C2

and C3, with regular structures that follow the constructions of [1, 5]. They hide the information of the keyword. The sender

in the system computes extra components Ci = (Bi + (0|xiG))T s + ei for an attribute vector x = (x1, ..., xl), where s is a

random polynomial, and ei is an error vector for i ∈ [1, l]. Besides, let FID,b = (A|H3(ID)|H4(ID, b)), the sender samples a

short vector v via the SamplePre algorithm such that FID,bv = H2(C1, b), where b is regarded as a secret polynomial. Therefore,

(C1, C2,C3, {Ci}li=1,v) are overall ciphertexts that the sender outputs. After that, the receiver runs SamplePre algorithm to

evaluate ϕf such that (A|Bf )ϕf = t, in which t is a value related to the keyword. Finally, {Ci}li=1 are homomorphic evaluated

over the policy f , and the cloud server outputs a test result by matching the ciphertext and the token.

Appendix D.3 Correctness Analysis

To show the correctness of the AB-AEKS scheme, first note that we know Cf is homomorphically evaluated over the policy circuit

f when f(x) = 0. Let ϕTf =
(
ϕTA|ϕ

T
B

)
and pT =

(
pT0 |p

T
1

)
, where ϕA,ϕB ∈ Rmq , p0 ∈ Rm−kq and p1 ∈ Rkq . Indeed, if the

ciphertext and token contain the same keyword, we have(
ϕ
T
f |p

T
)

(C3|Cf |C1)

= ϕ
T
A

(
A
T
s+ eA

)
+ ϕ

T
B

(
B
T
f s+ ef

)
+ p

T

(
F
T
ws+

(
e
T
0 |e

T
1

)T)
= (AϕA + BfϕB + Fwp)

T
s+ ϕ

T
AeA + ϕ

T
Bef +

(
p
T
0 |p

T
1

)(
e
T
0 |e

T
1

)T
= u · s+ ϕ

T
AeA + ϕ

T
Bef + p

T
0 e0 + p

T
1 e1.

If the error term e − ϕTAeA − ϕTBef − pT0 e0 − pT1 e1 has l2 norm less than
⌊ q

4

⌋
, then we capture the polynomial b such that

FID,bv = h holds. Furthermore, v is an integer vector of size 3mn with Gaussian parameter ζ, which is sampled from the SamplePre

algorithm, so we have 0 < ‖v‖ 6 tζ
√

3mn with an overwhelming advantage. Thus the Test algorithm yields a correct result.

Appendix D.4 Performance Comparison

We compare the functional and storage aspects of the related schemes [9, 11,13,15,16] with ours, in Table D2.

From the perspective of function, our AB-AEKS scheme is proved to be secure, i.e., IND-CKA and UNF-IKGA, based on the

two assumptions of ring variants and satisfies fine-grained searchability and quantum-resistant. Regarding storage, our ciphertexts

are larger than those of schemes [9,13] under the classical problems, where [9] does not have the property of fine-grained. However,

for the size of the token, our scheme remains the same order of magnitude as other schemes except for [9]. The results show that

our scheme has functional and efficiency advantages compared to others.

§) Note. IND: Indistinguishable; MIND: Multi-ciphertext Indistinguishable; UNF: Unforgeable; TPA: Trapdoor Privacy Attack;
CKA: Chosen-Keyword Attacks; IKGA: Insider Keyword Guessing Attacks; CCA: Chosen-Ciphertext Attacks; CMA: Chosen-
Message Attacks; N : lattice dimension in [15]; s, k: the length of binary plaintext string and the dimension of the attribute vector

in [11], respectively; m: lattice parameters, i.e., random matrices A1, · · · ,Ak ∈ Zn×mq ; le: the dimension of the matrix D in [13],

where D denotes its decryption predicate; l: the number of attributes.
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Table D2 The functional and storage comparison

Feature

Scheme
[9] [15] [16] [11] [13] Ours

Fine-grained 7 7 7 3 3 3

Quantum-resistant 7 3 3 3 7 3

Security model
IND-TPA,

IND-IKGA

IND-CKA,

IND-IKGA

MIND-CKA,

MIND-IKGA

IND-CKA,

UNF-IKGA

IND-CCA,

UNF-CMA,

IND-CKA

IND-CKA,

UNF-IKGA

Hardness problem
DBDH,

DLIN
/ / LWE,SIS

n-DBDHE,

n-CDHE,DL

Ring-LWE,

Ring-ISIS

Ciphertext size 2|G1| 2N|q| + N|Zq| ρ(2m + 1)|Zq|
(s + (k + 2)ms

+m)|Zq|
6|G1| ((5 + l)m + 1)|Rq|

Token size |GT | N|q| 2m|Zq| 3m|Zq| (2le + 2)|G1| 3m|Rq|

Appendix E Proof of Theorem 2
In this section, we give the security proof and the parameter choices for our AB-AEKS scheme.

Appendix E.1 Security Proof

Proof Sketch. We propose the security models that are aimed at two kinds of attacks: chosen-keyword attacks (CKA) and insider

keyword guessing attacks (IKGA) as follows:

Firstly, we prove that our scheme is IND-CKA security based on the ring-LWE assumption. To achieve this goal, we require that

the adversary submits a target attribute vector x∗ = (x∗1 , ..., x
∗
l ) ∈ {0, 1}l before being given MPK. More precisely, the ring-LWE

instance is constructed to a random vector A which is used to simulate the output of TrapGen algorithm (where the tag is 0). Since

the (pseudo)random property of the TrapGen algorithm, the simulation tuple (where the tag is 0) is indistinguishable from (A,RA)

(where the tag is 1 in the real scheme). The challenger then samples l+ 1 random matrices Ŝ and Si, such that Â = AŜ− (0|p∗G)

and Bi = ASi − (0|x∗iG) for p∗ ∈ Zq, i ∈ [1, l]. The distribution (A,ASi, ei) is statistically close to the distribution (A,A′, ei),

where A′ is a random vector. In other words, the distribution of AŜ and ASi are statistically close to the uniform, thus Â,Bi
and uniformly random vectors are indistinguishable.

Subsequently, the adversary initiates oracle queries of hash OH1
and OH2

, key generation OKeyGens
and OKeyGenr

, encryption

OAB-AEKS and token OToken. In particular, the challenger could answer the adversary even if f(x∗) = 0 in OToken because it sets

Fw = AŜ + (0|(H1 (w)− p∗)G) and bypasses the receiver’s secret key by using a trapdoor for (A|Fw). Finally, receiving a target

keyword and an identity, the challenger flips a coin r ∈ {0, 1} and returns a challenge ciphertext C∗ =
(
C∗1 , C

∗
2 ,C

∗
3 , {C

∗
i }
l
i=1 ,v

∗
)

to adversary. Note that if r = 1, the challenger simulates

C
∗
1 = Ŝ

T
C
∗
3 , C

∗
2 = b0 + b

∗
⌊
q

2

⌋
,C
∗
3 =

(
B
T | −B

T
RA + ê

T
)T
,C
∗
i = S

T
i C
∗
3 ,

which are consist of ring-LWE instances. Otherwise, the challenge ciphertext is a random tuple. Besides, since h∗ is randomly

selected, the adversary is also unable to distinguish (h∗,v∗) from a uniformly random distribution.

After that, we describe the UNF-IKGA security proof for our scheme. We require that the adversary initiates two lists LID and

Lb that it makes queries, and submits a target attribute vector before giving MPK. Let (A, y) be a ring-ISIS instance, the challenger

programs y into the response for H4 oracle. It then sets Bi same as in above security game except that Â = AŜ. For each H2 query

on an identity ID, the challenger programs H2(ID) = (A|TID) − (0|G) if ID ∈ LID; otherwise, H2(ID) = (A|TID). A similar

programming method is applied for H3: for every pair (ID, b) ∈ Lb, the hash value is programmed as H3(ID, b) = (A|Tb)− (0|G),

other queries are programmed as H3(ID, b) = (A|Tb). By this way, the challenger could response all queries of the adversary

in OAB−AEKS and OToken. In the end the adversary returns a forgery C∗ based on (x∗, w∗, ID∗). We suppose that the adversary

queried H2(ID∗) and H3(ID∗, b).

Theorem 2 contains the two security requirements of the AB-AEKS scheme, and for clarity, we argue for the scheme’s security

through the following two lemmas.

Lemma 8. If the hardness of Ring-LWEn,q,m,DR,τ problem holds, our proposed AB-AEKS scheme is proved to be selective-

attribute IND-CKA security, in the random oracle model.

Proof. The proof is described in a security game between a PPT adversary A and a challenger C.
Init. A chooses a target attribute vector x∗ = (x∗1 , · · · , x

∗
l ) ∈ {0, 1}l.

Setup. C queries a ring-LWE oracle m−k+1 times and receives some samples (ai, bi) ∈ Rq×Rq , for 0 6 i 6 m−k. It selects

hash functions H1 : {0, 1}n → Zq , H2 : {0, 1}∗ → R1×m
q , H3 : {0, 1}∗ ×R2 → R1×m

q , H4 : Rmq ×R2 → Rq , and sets a list

L1. Denoted by q1 is the maximum number of queries to H1, C chooses an integer j∗ ∈ [1, q1]. Let A = (a1, · · · , am−k)T ,

B = (b1, · · · , bm−k)T from m − k of given ring-LWE samples, it sets u = a0. Running (A,RA) ← TrapGen(A, H = 0, σ, q),

and sampling l + 1 random matrices Ŝ,Si
R←− {−1, 1}m×m and a random element p∗

R←− Zq , it sets Â = AŜ − (0|p∗G) and

Bi = ASi − (0|x∗iG) for i ∈ [1, l]. C outputs MPK =
(
A, Â, {Bi}li=1, u,H1, H2, H3, H4

)
and send MPK to adversary.

Query phase 1. A issues the following queries:

• OH1
: For the j-th query on w, where j ∈ [1, q1]. If j = j∗ such that w = w∗, C returns H1 (w) = p∗ to A and adds

(w∗, p∗) to the list L1. Otherwise, C checks whether the hash value of w has been queried before in list L1. If yes, C
returns the previous value; if not, it selects randomly p ∈ Zq , returns p, and adds (w, p) to the list L1.

• OH2
: For each identity ID, C samples a short TID

R←− DRm×m,s′ , returns H2(ID) = ATID − (0|G), and stores

(ID,TID).

• OKeyGens
: A could query the sender’s key pair under an identity ID. C first checks ID was previously queried in

OH2
. If yes, it sets (PKs, SKs) = (ID,TID). Otherwise, C samples a short TID

R←− DRm×m,s′ and sets H2(ID) =

ATID − (0|G). Hence, TID is a trapdoor for FID = (A|H2(ID)) and C returns (PKs, SKs) = (ID,TID) to A.

• OKeyGenr
: A could query the receiver’s secret key under an access policy f , except for f(x∗) = 0. C computes

Sf ← EVALSIM (f, (x
∗
i ,Si)

l
i=1,A)
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and

Bf ← EVALMPK(f, (ASi − (0|x∗iG))
l
i=1),

which satisfies ASf − (0|G) = Bf . Hence, Sf is a trapdoor for (A|Bf ) and C returns Tf ← RandBasis(A|Bf ,Sf , τ) to

A.

• OAB-AEKS: A could make the encryption query on a keyword w, an attribute vector x and identity ID. C computes the

ciphertext C in a normal way. The specific steps are described below.

1) If w 6= w∗ ∧ x = x∗, we have Fw = AŜ + (0|(H1 (w)− p∗)G) and {Ci = (ASi)
T s+ ei}li=1.

2) If x 6= x∗ ∧w = w∗ (i.e., at least exists i s.t. xi 6= x∗i ), we have Fw = AŜ and {Ci = (ASi + (0|(xi − x∗i )G))T s+

ei}li=1.

3) If w = w∗ ∧ x = x∗, we have Fw = AŜ and {Ci = (ASi)
T s+ ei}li=1.

Furthermore, C captures (PKs, SKs) = (ID,TID) same as OKeyGens
, computes FID,b = (A|H2(ID)|H3(ID, b)) and

h = H4(C1, b), where b ∈ R2. It samples v by running SamplePre algorithm such that FID,bv = h, and returns the

ciphertext C to A.

• OToken: A could query the token of a keyword w related to an access policy f , with the restriction that f(x∗) 6= 0 or

f(x∗) = 0 ∧ w 6= w∗.

1) If f(x∗) 6= 0, there exists Tf corresponding to the policy f . C computes the token K in a normal way.

2) Else, f(x∗) = 0 but w 6= w∗. Since f(x∗) = 0, there is ASf = Bf . It means that C does not generate a trapdoor

for (A|Bf ). However, we have w 6= w∗, it shows Fw = AŜ + (0|(H1 (w)− p∗)G). Hence Ŝ is a trapdoor for

(A|Fw). C computes TA|Fw|Bf ← DelTrap(A|Fw|Bf ,TA|Fw , H
′ = 1, s′), where TA|Fw ← RandBasis(A|Fw, Ŝ, τ).

Based on this trapdoor TA|Fw|Bf , C captures a vector ϕ via the SamplePre algorithm such that (A|Fw|Bf )ϕ = u.

Let ϕ = (ϕ1;ϕ2;ϕ3), we permute the resulting vector to reach (A|Bf |Fw)ϕ′ = u, where ϕ′ = (ϕ1;ϕ3;ϕ2). So

we can see that the token K is given by ϕTf = (ϕT1 |ϕ
T
3 ) and pT = ϕT2 .

Challenge. A transmits a keyword w∗ and an identity ID∗. C chooses randomly a bit r ∈ {0, 1} and returns a random

ciphertext C∗ if r = 0. Otherwise, C selects randomly a polynomial b∗ ∈ R2, computes C∗2 = b0 + b∗
⌊ q

2

⌋
and C∗3 =(

B
T | −B

T
RA + êT

)T
, where ê

R←− DRk,µ for some µ real. Setting C∗i = STi C∗3 for i ∈ [1, l], and C∗1 = ŜTC∗3 . Let

FID∗,b∗ = (A|H2(ID∗)|H3(ID∗, b∗)) and h∗ = H4(C∗1 , b
∗), it evaluates v∗ from TrapDel and SamplePre algorithms by using

the trapdoor of (A|H2(ID∗)). Then, it returns C∗ =
(
C∗1 , C

∗
2 ,C

∗
3 , {C

∗
i }
l
i=1 ,v

∗
)

to adversary.

Query phase 2. A continues to query oracle as phase 1.

Guess. A outputs a guess r′ ∈ {0, 1}, it wins the security game if r′ = r with overwhelming probability.

For i ∈ [0,m − k], if samples (ai, bi) are drawn from the ring-LWE distribution, we have B = As + e and b0 = a0s + e0 for

s ∈ Rq , e
R←− DRm−k,τ , e0

R←− DR,τ . The challenge ciphertext is replaced as

C
∗
2 = b0 + b

∗
⌊
q

2

⌋
= u · s+ e0 + b

∗
⌊
q

2

⌋
and

C
∗
3 =

(
B
T | −B

T
RA + ê

T
)T

= A
T
s+

(
e
T |−e

T
RA + ê

T
)T
.

For i ∈ [1, l],

C
∗
i = S

T
i C
∗
3 = (Bi + (0|x∗iG))

T
s+ S

T
i

(
e
T |−e

T
RA + ê

T
)T

and

C
∗
1 = Ŝ

T
C
∗
3 = (Â + (0|p∗G))

T
s+ Ŝ

T
(
e
T |−e

T
RA + ê

T
)T
.

Now we consider the error term. If fixed e, the distribution of −eTRA + êT is indistinguishable from DRk,γ , where γ2 =

(σ ‖e‖)2 + µ2. The challenge ciphertext C∗ still remains the same format as real scheme. If samples (ai, bi) are chosen from a

uniformly random distribution, then C∗ is indistinguishable from the uniform distribution. �

Remark 1. Supposing the adversary breaks our scheme under IND-CKA with a non-negligible probability ε, and w∗ is indeed

the j∗-th query in H1 queries with probability 1/q1. The challenger has advantage at least ε′ = ε/2q1 in solving the ring-LWE

problem.

Lemma 9. If the hardness of Ring-ISISq,m,β problem holds, our proposed AB-AEKS scheme is proved to be selective-attribute

UNF-IKGA, in the random oracle model.

Proof. The security proof is described a game between the PPT adversary A and the challenger C.
Init. Denote the list of all identities ID for sender’s key queries as LID, and the list of all identity-polynomial pairs (ID, b) for

encryption queries as Lb. A outputs these two lists and an attribute vector x∗ = (x∗1 , ..., x
∗
l ) ∈ {0, 1}l.

Setup. C queries a ring-ISIS oracle m + 1 times and receives the samples (U, y) = (u1, u2, · · · , um, y) ∈ R1×m
q × Rq , and it

attempts to find a polynomial z ∈ Rm such that Uz = y and 0 < ‖z‖ 6 η. Denoted by L4 is a list and q4 is the maximum

number of queries to H4 that the adversary makes, C chooses an integer j∗ ∈ [1, q4]. Let A = U, similar to Lemma 8, it

samples l + 1 random matrices Ŝ,Si
R←− {−1, 1}m×m, sets Â = AŜ and Bi = ASi − (0|x∗iG) for i ∈ [1, l]. C outputs

MPK =
(
A, Â, {Bi}li=1, u,H1, H2, H3, H4

)
to adversary.

Query phase. A issues the following queries:

• OH2
: For each identity ID ∈ LID, C samples a short TID

R←− DRm×m,s′ and returns H2(ID) = ATID − (0|G).

Otherwise, the hash value will be programmed to H2(ID) = ATID.

• OH3
: For each identity-polynomial pair (ID, b) ∈ Lb, C samples a short Tb

R←− DRm×m,s′ and returns H3(ID, b) =

ATb − (0|G). Otherwise, the hash value will be programmed to H3(C1, b) = ATb.

• OH4
: For the j-th query on (C1, b), where j ∈ [1, q4]. C first checks whether the hash value was previously defined in

list L4. If yes, it returns previous value. Otherwise, C selects randomly β ∈ Rq , adds (C1, b, β) to list L4, and returns

β. Note that if j = j∗, such that b = b∗ and C1 = C∗1 which is a required component of the forgery. C adds (C∗1 , b
∗, y)

to the list L4 and returns y to adversary.
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• OKeyGens
: Identical to Lemma 8.

• OKeyGenr
: Identical to Lemma 8.

• OAB-AEKS: A could issue the encryption query on a keyword w, an attribute vector x and identity ID. C chooses random

ring elements and error terms to generate the ciphertext components (C1, C2,C3, {Ci}li=1) and h in a normal way.

Using Tb as a trapdoor for (A|H3(ID, b)), C computes a trapdoor for (A|H3(ID, b)|H2(ID)) via the TrapDel algorithm.

It samples a vector v′ by SamplePre algorithm such that (A|H3(ID, b)|H2(ID))v′ = h, and then permutes v′ to get a

vector v. C returns the ciphertext C = (C1, C2,C3, {Ci}li=1 ,v) to adversary.

• OToken: A could query the token of a keyword w associated with an access policy f . If f(x∗) 6= 0, C uses the trapdoor Tf
to compute the token K. Otherwise, f(x∗) = 0 but w 6= w∗, C sets Fw = AŜ + (0|H1(w)G) and use the same method

as Lemma 8 to get vectors ϕf and p. Then it outputs the token K to adversary.

Forgery. A outputs a forgery C∗ = (C∗1 , C
∗
2 ,C

∗
3 , {C

∗
i }
l
i=1

,v∗) associated with (w∗,x∗, ID∗), with the restriction that ID∗ /∈
LID ∧ (ID∗, b∗) /∈ Lb and ID∗ cannot be queried in OKeyGens

and OAB-AEKS. A wins the game if the forged ciphertext passes

Test algorithm.

For the forgery C∗, C recovers d∗ with the purpose of determining b∗, where d∗ = C∗2 −
(
ϕTf |p

T
)(

C∗3 |C
∗
f |C
∗
1

)
.

If A wins the game, which implies that

FID∗,b∗v
∗

= (A|ATID|ATb)v
∗

= U(Im|TID|Tb)v∗ = y.

Let z = (Im|TID|Tb)v∗ as its answer to ring-ISIS instance (U, y) and ‖z‖ = ‖(Im|TID|Tb)v∗‖ 6 (1 + 2ts′m
√
n) · tζ

√
3mn 6 η.�

Remark 2. The challenger could successfully guess that H4 (C∗1 , b
∗) = y with probability 1/q4. If the adversary forges a valid

ciphertext with a non-negligible probability ε, the challenger has advantage at least ε′ = ε/q4 in solving the ring-ISIS problem.

Appendix E.2 Parameter Choices

In our construction, the parameters of scheme are chosen described as follows:

− n is a power of 2, m = poly(n), q ≡ 1 mod 2n, k = dlog2qe ,m = k + 2.

− The Gaussian parameter for trapdoor generation is σ ≈
√

ln(2n′/ε)/π, where n′ and ε are the maximum dimension of the

ring polynomials and the bound on statistical error introduced by each randomized-rounding operation [21], respectively.

− The Gaussian parameter for preimage sampling [3] is α =
√

5σ.

− The parameter [3] ζ satisfies ζ > s1(R)α >
√

5C′σ2(
√

2n +
√
kn + t′), where the universal constant C′ > 0 (empirically,

C′ ≈ 1/
√

2π) and t′ > 0.

− By correctness, we require

‖e− ϕ
T
AeA − ϕ

T
Bef − p

T
0 e0 − p

T
1 e1‖

6 ∆τ + ∆ζ(m∆σ +
√
m∆f ) + ∆σ(2∆τ + k∆γ) <

⌊
q

4

⌋
,

where ∆τ = tτ
√
n,∆ζ = tζ

√
n,∆σ = tσ

√
n,∆f = C1tσm

√
2n(mn)O(d), and ∆γ = tγ

√
n. For our parameter analysis, [6]

shows that taking C1 = 12 is sufficient. Therefore, we choose q > 5(∆τ + ∆ζ(m∆σ +
√
m∆f ) + ∆σ(2∆τ + k∆γ)).

− By security proof, the parameter γ needs to satisfy γ2 = (σ ‖e‖)2 +µ2 6 σ2(tτ
√

2n)2 +µ2, we choose µ = tστ
√

2n, and then

γ = 2σtτ
√
n.

− The Gaussian parameter s′ for trapdoor delegation [7, 21] satisfies s1(R) 6 s′ ·O(
√
m+

√
m̄).
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