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Abstract Orthodontic treatment monitoring involves using current images and previous 3D models to

estimate the relative position of individual teeth before and after orthodontic treatment. This process differs

from image-based object 6D pose estimation due to the gingiva deformation and varying pose offsets for each

tooth during treatment. Motivated by the fact that the poses of molars remain relatively fixed in implicit

orthodontics, we design an approach that employs multiview pose evaluation and bidirectional temporal

propagation for jaw pose estimation and then employs an iteration-based method for tooth alignment. To

handle changes in tooth appearance or location with weak texture across frames, we also introduce an instance

propagation module that leverages positional and semantic information to explore instance relations in the

temporal domain. We evaluated the performance of our approach using both the Shining3D tooth pose

dataset and the Aoralscan3 tooth registration dataset. Our experimental results demonstrate remarkable

accuracy improvements compared with existing methods.

Keywords digital dentistry, object 6D pose estimation, deep learning, computer vision

1 Introduction

Orthodontic treatment plays a crucial role in dental care as malocclusion not only increases the likeli-
hood of caries but also causes psychological discomfort, poses a health risk, and reduces the quality of
life [1]. Despite its benefits, patients must regularly visit the dental clinic to monitor the progress of
orthodontic treatment and ensure that it aligns with the schedule arranged by dentists. This process can
be cumbersome and complex, particularly during times of epidemic outbreaks.

The development of artificial intelligence has led to the emergence of remote monitoring of orthodontic
patients, which enables patients to capture and scan their dental situation using simple and portable
RGB/RGB-D equipment. This approach has gained attention from medical and academic communities
due to its ability to reduce time and societal costs, as well as lessening inconvenience to patients [2]. To
facilitate remote monitoring, some data-driven methods based on deep learning have been proposed to
automatically segment and estimate the pose of individual objects [3–14]. However, orthodontic treat-
ment monitoring differs from image-based object 6D pose estimation in several ways: (1) In orthodontic
treatment monitoring, the current observed images are compared with the previous 3D model that was
reconstructed in the last period of treatment, while in object 6D pose estimation, the 3D model and
images at the same moment are compared. (2) Orthodontic treatment monitoring focuses on the relative
pose of individual teeth before and after treatment, while object 6D pose estimation infers the abso-
lute camera pose across different frames. (3) Changes in the appearance or location of each tooth with
weak texture across frames make the segmentation of each tooth challenging in orthodontic treatment
monitoring. An illustrative comparison is provided in Figure 1.

*Corresponding author (email: tianyan@zjgsu.edu.cn, Lijy@zucc.edu.cn, Prof.ruili.wang@gmail.com)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-023-3847-x&domain=pdf&date_stamp=2023-12-27
https://doi.org/10.1007/s11432-023-3847-x
info.scichina.com
link.springer.com


Tian Y, et al. Sci China Inf Sci January 2024, Vol. 67, Iss. 1, 112107:2

Previous 3D model

Current RGB imageCurrent RGB image

Current 3D model

…

R
t

t
t

∆R
i

∆t
i

…

Network Network

(a) (b)

Figure 1 (Color online) Illustration of differences between (a) object 6D pose estimation and (b) orthodontic treatment moni-

toring. Rt and tt indicate the absolute camera pose (rotation and transition) in frame t. ∆Ri and ∆ti indicate the relative poses

(rotation and transition) of tooth i before and after orthodontic treatment.
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Figure 2 (Color online) Illustration of the proposed framework. Given an oral scanned video, the region of each tooth is divided

by video instance segmentation. Multiview jaw pose estimation uses multiview pose evaluation and bidirectional pose tracking to

infer rotation Rt and transition tt in frame t. Tooth alignment is performed in an iteration manner to estimate rotation offset

△Ri and transition offset △ti of tooth i.

Motivated by the observation that some teeth, such as the third molars, have relatively fixed poses
in implicit orthodontics. To take advantage of this, we designed an approach that uses multiview pose
evaluation and bidirectional temporal propagation as intermediate modules to match a previous 3D model
with current RGB images at the object level. In addition, for tooth segmentation, we believe that the
temporal relation of the instance can be modeled by relevant factors in a transformer architecture, since
the predicted box and class score contain compact semantic and location knowledge.

In this paper, we propose a novel approach for accurately measuring the degree of orthodontics during
a period of treatment. The framework, as shown in Figure 2, utilizes an oral scanned video and a
transformer architecture method to segment the region of each tooth. To construct the instance relation
in the temporal domain, we propose an instance propagation module that utilizes box position, class
scores, and instance queries. To ensure temporal consistency, we design a temporal consistency loss that
learns embeddings with high similarity across frames for the same instance. Next, we employ a data-
driven method to estimate the jaw poses of frames with fixed teeth, followed by improving the estimates
with multiview geometry knowledge. Jaw poses of frames with orthodontic teeth are inferred by pose
tracking with bidirectional constraints. Finally, an iteration-based method is used to estimate the relative
pose of each orthodontic tooth.

The contribution of this paper is exemplified as follows:
• An approach of orthodontic treatment monitoring is proposed that uses the previous 3D tooth model

to estimate pose offsets of orthodontic teeth, rather than relying on the current 3D tooth model.
• An instance propagation module is introduced in video instance segmentation, which models the

temporal association of an instance by three factors, leading to a significant reduction in computational
complexity and memory consumption.

• A temporal consistency loss is designed in video instance segmentation to strengthen the relations
between positive samples, while reducing the importance of relations between negative samples.
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• Poses of the jaw with rigid-transformed orthodontic teeth and nonrigid-transformed gingiva in a
video sequence are estimated, in which orthodontic knowledge is utilized as an intermediate factor to
guide the registration process.

The experimental results obtained from the Shining3D tooth pose dataset and the Aoralscan3 tooth
registration dataset demonstrate that the proposed approach achieves outstanding performance.

The rest of this paper is organized as follows. Section 2 reviews previous studies on video instance
segmentation and video-based object pose estimation. Section 3 introduces the proposed approach.
Section 4 discusses the experimental results. Concluding remarks are described in Section 5.

2 Related work

In this section, we briefly review the recent literature on video instance segmentation and video-based
object 6D pose estimation.

2.1 Orthodontic treatment monitoring

Some studies have utilized micro-Raman spectroscopy [15] or cone-beam computed tomography (CBCT)
to monitor the periodontal ligament status. However, the limited sources of these methods restrict their
scope of use. To address this limitation, Ref. [16] leveraged oralscan videos captured by smartphones to
predict the maxillary and mandibular arches. However, the use of a maxillary expander in patients can
lead to discomfort and complexity. More recent studies have focused on detecting [17] or segmenting [2,18]
individual teeth from intraoral videos and using deep learning methods to predict the corresponding pose
parameters. Tooth identity is crucial in orthodontic treatment monitoring, and to improve the recognition
results provided by the detection or segmentation modules, a separate classification network [19] is used
to accurately identify the teeth. Similar classification methods have also been introduced in the index of
orthodontic treatment needs (IOTN) [20] assessment, which determines whether an individual is eligible
for further orthodontic treatment. However, the individual modules used in these approaches have not
been fully investigated.

2.2 Video instance segmentation

Video instance segmentation (VIS) is a task that involves simultaneously classifying, segmenting, and
tracking object instances of interest in a video sequence. There are two main categories of VIS methods:
frame-based methods and clip-based methods.

Frame-based methods, also known as online methods, segment each frame independently and then
associate segmented masks of each instance across frames using a postprocessing step [21–23]. However,
the association process can be sensitive to motion blurs and occlusions, which are common in videos.
Additionally, separating image-level instance segmentation and association of instances across consecutive
frames can increase the risk of local optimization.

Clip-based methods or offline methods extract a 3D spatiotemporal volume from a video clip and
directly segment the 3D mask for each instance. Recently, transformer-based approaches, such as
VisTR [24], have been used to generate a sequence of masks for each instance in an end-to-end manner.
The sequential transformer (SeqFormer) [25] uses temporal box queries to learn a powerful representation
of instance queries. The video mask transfiner (VMT) [26], on the other hand, employs a 3D incoherence
detector and temporal refinement transformer to rectify false instance masks obtained by SeqFormer. The
use of clip-based methods presents a challenge in image and video segmentation research because it dis-
connects the two fields. To address this issue, Cheng et al. [27] proposed an extension of Mask2Former [28]
that leverages 3D spatiotemporal features and instance tracking over time. However, the computational
complexity and memory storage requirements pose a significant hindrance to the practical application
of this approach. To address the challenges associated with frame-to-frame communication, interframe
communication transformers (IFC) [29] have been developed to enrich and correlate features in each frame
through memory tokens. Despite these advancements, the temporal association of an instance remains
complex and memory-intensive.
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2.3 Multiview object pose estimation

Current methods with regard to multiview object pose estimation can be divided into four categories:
(1) tracking or recurrent prediction of object poses in multiple frames; (2) independent inference of
object pose in each frame, followed by joint optimization through frame association; (3) direct and joint
optimization of object poses in multiple frames; and (4) 3D volume reconstruction.

Pose tracking. Kalman filters [6] or particle filters [12] are commonly used to associate corresponding
objects in neighboring frames and update the object pose in the next frame. However, recent approaches
have explored alternative methods to model temporal relations at the feature level using long short-term
memory (LSTM) [5, 10], convolution LSTM [3,4], or graph neural networks (GNNs) [10], owing to their
ability to nonlinearly fuse historic information. To address occlusion issues, some methods explicitly
predict the full object mask [7] or attention map [8,30] before estimating the object pose based on prior
information. For textureless objects, a contour part model [13, 14, 31] is employed for matching between
rendered and observed images. To reduce the time-consuming process of reprojection, Ref. [32] employed
geometric contours and local regions for pose prediction and refinement, while minimizing the reprojection
process to a single time. However, the accuracy of inference is limited due to the neglect of bidirectional
motion modeling.

Bundle adjustment. After independently predicting the object poses in each frame, global consis-
tency is then used to jointly optimize them. The traditional approach [33] selects the pose with the
highest voting score among all the candidates. In some methods, the initial predicted pose is jointly
optimized through an association of neighboring frames. The relative transformations between camera
viewpoints can be estimated by matching objects in different images [9], and the 6D poses of objects in
different frames can be improved through a global refinement procedure based on either an object-level [9]
or point-level [11] bundle adjustment.

Joint prediction of multiview poses. RotationNet [34] is an unsupervised method that generates
viewpoint-specific category likelihoods for predefined discrete viewpoints and selects the object pose
with the maximum integrated object category likelihood. However, the effectiveness of this approach is
limited by the lack of supervision signals. To address this limitation, alternative approaches have been
proposed. The object detection, association, and mapping (ODAM) method [35] utilizes a maximum
a posteriori (MAP) framework to globally optimize the object pose, while Vid2CAD [36] optimizes the
sum of geometric losses over total frames. Nonetheless, these methods do not explore the relationship
between neighboring objects to evaluate the prediction of each object.

3D volume reconstruction. Multiview images are used to explicitly [37] or implicitly [38] recon-
struct a 3D model, and object poses in new images are predicted by comparing rendered and observed
images [38]. To enhance the discriminative capacity in feature maps, graph attention [37] or ray-traced
transformers [39] are employed to explore context information in 2D/3D representations, and to de-
crease computational complexity, 2D-3D matching may only be performed on keypoints [37, 40]. While
3D volume-based methods are useful, they are generally resource-intensive and not suitable for mobile
applications such as orthodontic treatment monitoring.

3 Our approach

To estimate the degree of orthodontic treatment needed, we propose a three-stage approach that utilizes
an oralscan RGB video. First, a multiview pose estimation method is used to infer the jaw pose in each
frame. Subsequently, an iteration-based framework is employed to compare the rendered and observed
tooth images and update the tooth pose based on the comparison result, as depicted in Figure 2.

The performance gap in video instance segmentation can be attributed to the changes in the appearance
or location of each instance across frames in a video sequence. Furthermore, the memory consumption
of spatial-temporal attention needs to be constrained to adapt to the device capability.

Drawing inspiration from the dynamic anchor box DETR (DAB-DETR) [41], we introduce a prior
propagation module that uses sparse reference boxes and content queries to represent object queries.
This approach not only reduces computational complexity and storage consumption in cross-attention
but also provides semantic knowledge of the instance through class scores. Instead of relying on complex
data-association methods, such as spatiotemporal attention, our approach constructs the instance relation
in neighboring frames using reference boxes, class scores, and instance queries. For further details, refer
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Figure 3 (Color online) Illustration of the video instance segmentation module. Given an oral scanned video containing frames

{It}, where t is the frame index, a backbone is employed to extract feature maps {Xt}. Then, the transformer encoder refines

the feature maps, and the transformer decoder generates instance queries {qi
t}, where i is the instance index. Finally, the instance

propagation module uses instance queries to segment and classify each instance. Symbol ‘PE’ represents the positional embedding.

Symbols ‘C’, ‘B’, and ‘M’ represent the classification, localization, and segmentation heads, respectively. Arrows in yellow and

green are important factors in our approach.

to Figure 3.

3.1 Video instance segmentation

We assume that the input video consists of a sequence of image frames {It} ∈ R
H×W×3, where t ∈

{1, 2, . . . , T } is the frame index, and H and W are the height and width of the image, respectively.
The feature maps {xt} are extracted by a backbone network, such as ResNet-50 [42]. We then utilize
a transformer encoder with 5 blocks to refine the feature maps {xt}, with positional encoding added.
The transformer decoder is fed frame queries, which include positional and content queries, to probe
instances. In the instance propagation module, we assume that the instance query i at frame t is qi

t.
This representation is propagated to frame t + 1 by initializing query weights of qit+ 1. Moreover, we
consistently propagate prior locations and scales by learning to determine the offset of reference boxes in
each frame. We obtain reference boxes ri

t with index i in frame t by

ri
t = σ(Wr(q

i
t)× ri

t−1), (1)

where σ(·) indicates a sigmoid function, and Wr is a weight matrix to be learned. In the first frame of
the video sequence (t = 1), we obtain reference boxes ri

t through a mapping function of instance query
qi
t.
However, the probability distribution of an instance changes due to the inconsistent appearance in

subsequent frames of the video sequence. The class probability cit of instance i at time t is

cit = σ(Wc(q
i
t))Softmax(Wt[c

i
f ]

t−1
f=t−d), (2)

where Wc and Wt are weight matrices to be learned, [·] represents a concatenation operation, d is the
frame number stored in the memory, and f is the index of the stored frame.

Loss function. In DAB-DETR, the Hungarian algorithm is used to match the instance query with a
real instance. In video instance segmentation based on DAB-DETR, the classification loss Lcls, box loss
Lbox, and mask loss Lmask are optimized as follows:

Lcls =
∑

i

∑

t

c̃it log(c
i
t), (3)

Lbox =
∑

i

∑

t

|ri
t − r̃i

t|, (4)

Lmask =
∑

p

∑

t

m̃
p
t log(m

p
t ), (5)

where cit and ri
t are the predicted class vector and box position of instance i in frame t, m

p
t is the

predicted class vector of pixel p in frame t, and c̃it, r̃
i
t, and m̃

p
t represent the corresponding ground-truth

class, box position, and pixel class, respectively. However, the importance of temporal consistency in
instances cannot be ignored, as the similarity of the same instance across different frames is expected to
be greater than the similarity between different instances within the same frame.
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Figure 4 (Color online) Illustration of multiview jaw pose estimation on fixed teeth. Given foreground frames Ss, St, and Su,

the 6D poses Tt,η and Tt,ǫ of orthodontic tooth η and fixed tooth ǫ with respect to the camera are predicted by ZebraPose. The

camera motion T s,t between frames s and t is employed for multiview pose evaluation. Finally, bundle adjustment is employed for

pose refinement. Arrows in purple and green represent operations on fixed teeth and orthodontic teeth, respectively.

Therefore, we introduce a temporal consistency loss, denoted by Ltc. Specifically, we define a positive
set comprising the same instance appearing in different frames and a negative set consisting of different
instances appearing in different frames. For example, i at time t, the temporal consistency loss Ltc is
calculated as follows:

Ltc =
∑

i

t−1∑

f=t−d

log
exp (qi

t · q
i
f/τ)∑k

j=0 exp (q
i
t · q

j
f/τ)

, (6)

where d is the frame number stored in the memory, f is the index of the stored frame, k is the number
of instances with greater class scores, and τ is an attenuation coefficient.

The total loss is a linear combination of the classification loss Lcls, the box loss Lbox, the mask loss
Lmask, and the temporal consistency loss Ltc as follows:

Ltotal = λcLcls + λbLbox + λmLmask + Ltc, (7)

where λc, λb, and λm are coefficients to balance different constraints.
Our approach offers several advantages. (1) Representation propagation enables the exploration of se-

mantic instance knowledge, while reference boxes provide detailed position and scale information. (2) The
position and scale information is updated by calculating the offset in each frame. (3) The memory con-
sumption is constrained to adapt to device capability. (4) Temporal consistency is employed to learn
embeddings that maintain high similarity across frames.

3.2 Multiview jaw pose estimation

Accurately aligning the previous 3D model with the current observed image to measure the discrepancy
in tooth pose requires a precise jaw pose as the alignment base. Unfortunately, current object 6D pose
estimation methods are not suitable for predicting jaw pose due to the deformation that occurs during
orthodontic treatment. This deformation causes a natural mismatch between the 3D model and the
observed image, rendering the existing methods ineffective.

Motivated by the observation that certain teeth, such as molars, remain fixed in specific stages of
orthodontic treatment, we design an approach to register the previous 3D jaw model with current ob-
served images through multiview pose evaluation. Additionally, we designed a bidirectional pose tracking
approach to propagate the anchor pose to temporal neighboring frames.

3.2.1 Multiview 6D pose estimation on fixed teeth

We present a method for multiview 6D pose estimation on fixed teeth, as illustrated in Figure 4. Assum-
ing that the input video consists of foreground frames {St}

T
t=1 extracted by video instance segmentation,

where t indicates the frame index, we determine the corresponding tooth between frames after segmen-
tation. The 3D jaw model M generated in the last orthodontic period contains the gingiva part and
multiple teeth with tooth index l = 1, 2, . . . , 14. We use the fixed and known intrinsic parameter matrix
π of a camera to predict the 6D pose of fixed teeth associated with each frame.
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Figure 5 (Color online) Illustration of the pose tracking module. Frames Is, It, and Iu go through the backbone to extract
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inferred by using bidirectional convLSTM.

The initial 6D pose Tt,ǫ ∈ SE(3) of a fixed tooth ǫ such as the third molar is a 4 × 4 homogeneous
matrix, including a 3D rotation matrix Rt,ǫ and a 3D translation vector tt,ǫ of the fixed tooth ǫ in frame
t, and Tt,ǫ is initially estimated by ZebraPose [43], which encodes the object surface by incorporating a
hierarchical binary grouping, matches predicted codes with the object surface, and estimates the 6DoF
pose by using a PnP solver.

After instance segmentation, we assume that both frames s and t contain the same fixed tooth ǫ, and
then a relative camera pose hypothesis is obtained by T s,t = Ts,ǫT

−1
t,ǫ . To evaluate the relative pose

hypothesis, we assume that n is the index of the neighboring tooth of the fixed tooth ǫ that both teeth
appear in the same frame, and then the distance D(·, ·) between Ts,n and T s,tTt,n is measured

D(Ts,n,T
s,tTt,n) =

1

|Yn|

∑

y∈Yn

||Ts,ny − T s,tTt,ny||2, (8)

where tooth n is associated with a set of 3D points y ∈ Yn. The distance D(·, ·) is compared with a given
threshold C to evaluate whether the relative camera pose is reasonable.

Finally, unique and consistent poses Tt,ǫ of some fixed teeth ǫ are recovered by a bundle adjustment
as follows:

L =
1

|Xǫ|

∑

s

∑

x∈Xǫ

||Ss,ǫ − π(T s,tTt,ǫy)||2, (9)

where Ss,ǫ is a foreground image of tooth ǫ in frame s extracted by instance segmentation.

3.2.2 Bidirectional jaw 6D pose tracking

The poses of the jaw have been established in frames that include teeth with fixed poses, but in other
frames, the jaw poses are still unknown. To address this issue, pose tracking is performed, starting from
the frame with the fixed tooth, to obtain the initial pose. Further details of the pose tracking procedure
are depicted in Figure 5. Instead of the transformer architecture, we adopt ConvLSTM for pose tracking
because it has a built-in memory mechanism that enables it to capture long-term dependencies in the
input data, making it suitable for modeling intricate, long-term relationships between input and output
data.

We assume that the input video contains image frames {Is, . . . , It, . . . , Iu} ∈ R
H×W×3, where s, t, and

u are frame indices. The backbone ResNet-50 is employed to extract visual features {xs, . . . ,xt, . . . ,xu}.
We also assume that jaw poses Ts and Tu in frames s and u are obtained using fixed teeth without
loss of generality. The hidden vector ht and output vector o1

t in the first convLSTM are estimated by
incorporating the current visual feature xt and previous hidden vector ht−1; the hidden vector gt and
output vector o2

t in the second convLSTM are inferred by using the output vector o1
t and hidden vector

gt+1 in the next frame.

{ht,o
1
t} = ConvLSTM(xt,ht−1), (10)
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{gt,o
2
t} = ConvLSTM(o1

t , gt+1), (11)

T̂t = F3(o
2
t ), (12)

where the pose Tt in frame t is obtained by a linear mapping layer F3(·). The initial hidden vector hs−1

in the first frame and gu+1 in the last frame are obtained by using linear mappings F1(·) and F2(·), and
6D poses Ts and Tu obtained from fixed teeth, respectively,

hs−1 = F1(Ts), (13)

gu+1 = F2(Tu). (14)

In the training stage, the L1-norm loss in the 6D pose space is optimized. We assume that Tt is the
ground truth of the 6D pose in frame t; then,

Lu =
∑

t

||T̂t − Tt||1. (15)

To enhance the smoothness of the predicted poses across frames, we added a regularization term as
follows:

Lp =
∑

t

||(T̂t − T̂t−1)− (Tt − Tt−1)||1. (16)

The total loss is a linear combination of these two terms as follows:

Ltotal = Lu + λpLp, (17)

where λp is a combination weight to control the effect of the smooth term.
Our approach offers several advantages: (1) The 3D model and observed images from different periods

can be aligned using 6D pose estimation in a specific frame and bidirectional information propagation.
(2) Multiview cues are used to enhance the robustness of the estimation model. (3) Our approach is
simple and straightforward to implement.

3.3 Iteration-based tooth alignment

After obtaining the initial pose T 0
η,t of the orthodontic tooth η in frame t, we can further improve the

alignment of the orthodontic tooth η by updating its pose progressively and comparing the projection of
the 3D tooth model with the observed foreground image. The process is demonstrated in Figure 6.

Given a jaw 3D model Z that is constructed in a previous orthodontic period, a 3D instance segmen-
tation method [44] is employed to divide the 3D region of each tooth and classify its corresponding tooth
category; i.e., the orthodontic tooth model Zη with index η is obtained. In iteration ν, the rendered tooth
image Iν

r,η is obtained by using the orthodontic tooth model Zη and a 6D pose T ν−1
η that is estimated
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from the previous iteration ν − 1. The observed tooth image Io,η is obtained by extracting the region of
tooth η via video instance segmentation.

The rendered tooth image Iν
r,η and observed tooth image Io,η are input into the mapping network

based on the deepim [45], and the relative transformation △T ν
η is inferred.

The pixel matching loss punishes the 2D discrepancy between the rendered image and the observed
image, which is calculated as follows:

Lpm =
∑

i

|π△ T ν
η T

ν
η z

i
η − Ii

o,η|, (18)

where zi
η is a 3D point i on the orthodontic tooth model Zη. The pixel matching loss finds the relative

transformation ∆T ν
η that the rendered tooth image Iν

r,η and the observed tooth image Io,η are matched.

4 Results

In this section, we compare the performance of each proposed module with that of relevant approaches.

4.1 Hardware and software environment

We use a workstation with 4 NVIDIA RTX 3090 GPUs. Our approach is implemented based on the
PyTorch [46] platform.

4.2 Dataset

The proposed instance segmentation approach is verified on two datasets, namely the Shining3D tooth
segmentation dataset [47] and the Aoralscan3 tooth segmentation dataset [48]. The Shining3D dataset
consists of 1866, 272, and 272 videos for the training, validation, and testing sets, respectively, while the
Aoralscan3 dataset includes 1573, 244, and 244 videos for the corresponding sets. Both datasets have
an image size of 640 × 480 pixels. LabelMe software is employed to accurately mark the boundary and
classify the region of each tooth in the datasets.

The proposed jaw and tooth pose estimation approach is evaluated on the Shining3D tooth pose dataset
and the Aoralscan3 tooth registration dataset. The jaw models used in our approach were generated via
oral scanning of hospital patients. For each tooth, ground truth relative pose information was generated
by introducing random jittering to the tooth models. The Shining3D tooth pose dataset was split into
1689 training samples, 150 validation samples, and 150 testing samples. Meanwhile, the Aoralscan3 tooth
registration dataset was constructed using 1667 samples for training, 156 samples for validation, and 176
samples for testing.

4.3 Evaluation criteria

In video instance segmentation, we employ average precision (AP) metrics under intersection over union
(IoU) thresholds of 50% and 75% as the evaluation criteria to compare its performance to that of state-
of-the-art approaches.

On the other hand, for jaw and tooth pose estimation, we utilize the ADD-S and ADD(-S) metrics, as
well as their corresponding area under the curve (AUC), as the evaluation criteria.

4.4 Implementation details

In video instance segmentation, data augmentation methods are employed to expand the dataset to
approximately 160000 images, including vertical/horizontal flipping, translation variance, and scaling.
ResNet-50 serves as the backbone, and the transformer encoder and decoder consist of L = 5 blocks.
To update the weights, AdamW is used with a momentum of 0.9 and a weight decay of 2.0 × 10−3.
Each minibatch contains 4 samples, and the learning rate starts at 4.0 × 10−3 and is then decreased to
2.0× 10−3 after 70000 iterations.

To enhance the dataset for jaw and tooth pose estimation, various data augmentation methods, such
as rotation and translation, are commonly employed. In our experiment, we use 20 consecutive images
to construct a sequence, even though our tracking module can accept dynamic lengths of inputs. This
approach not only helps to constrain accumulative errors in the tracking module but also provides an
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Figure 7 (Color online) Parameter selection on the Shining3D tooth segmentation dataset and Shining3D tooth pose estimation

dataset. Quantitative analysis of (a) the frame number d stored in memory, (b) the class weight λc, box weight λb, and mask

weight λm, (c) the distance threshold C, and (d) the weight λp in smooth terms.

Table 1 Evaluation of different numbers of fixed teeth on the Shining3D tooth pose estimation dataset and Aoralscan3 tooth

registration dataseta)

Shining3D Aoralscan3

Number of fixed teeth AUC of ADD-S AUC of ADD(-S) AUC of ADD-S AUC of ADD(-S)

1 84.1 78.4 84.6 89.7

2 86.9 81.5 87.2 92.0

3 88.7 83.8 89.0 94.1

4 90.5 85.6 91.2 96.2

a) The values in bold represent the best results among different number of fixed teeth.

instantaneous response to the patient. During the training process, we use the AdamW optimizer for 100
epochs with a weight decay of 1.0×10−4 and a batch size of 4. The learning rate is adjusted to 2.0×10−2

and decays exponentially by 4.0× 10−3 in each epoch. We set the matching radius threshold to 0.1 mm.

4.5 Ablation study

We perform ablation studies to demonstrate the effectiveness of several key components in our approach.
All experiments in this subsection are conducted on the Shining3D tooth segmentation or Shining3D
tooth pose dataset.

Parameters. The grid search approach is employed to select various parameters. For video instance
segmentation, the optimal number of frames d stored in memory is determined to be d = 4, as shown in
the experimental results in Figure 7(a). The results suggest that adding more frames does not improve
performance but instead consumes unnecessary resources. Moreover, the weights for different components,
including class weight λc, box weight λb, and mask weight λm, are selected as λc = 2.0, λb = 0.5, and
λm = 1.5, respectively, as evaluated in the experiments shown in Figure 7(b). Regarding jaw poses
estimation, the distance threshold is set to C = 0.2 mm based on the results in Figure 7(c). Finally, the
selection of weights λp = 1.5 in smooth terms is depicted in Figure 7(d).

Number of fixed teeth. The accuracy of jaw pose estimation is influenced by the number of fixed
teeth. Table 1 reports the experimental results for 1–4 fixed teeth. While having more fixed teeth would
improve effectiveness, it is not feasible in real-world situations.

Effectiveness. We evaluated the effectiveness of multiple components in video instance segmentation,
jaw pose estimation, and jaw pose tracking. A comparison of their effectiveness can be found in Table 2.

By employing the instance propagation module and temporal consistency loss in video instance seg-
mentation, we observed an increase in ADD-S of 1.6 and 1.7 in the two datasets, respectively. Further
improvements in ADD-S can be achieved by implementing neighboring tooth evaluation in multiview jaw
pose estimation and bidirectional propagation in pose tracking, resulting in margins of approximately 1.6
and 2.1 in the Shining3D tooth pose estimation dataset, respectively. The effectiveness of these different
modules is illustrated in Figure 8.

4.6 Evaluation of video instance segmentation

We compared various approaches for video instance segmentation using the Shining3D tooth segmenta-
tion dataset and the Aoralscan3 tooth segmentation dataset, and the results are presented in Table 3.
Overall, transformer-based methods exhibit strong discrimination capacity and are competitive with other
approaches.
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Table 2 Effectiveness comparison among important modules on the Shining3D tooth pose estimation dataset and Aoralscan3

tooth registration dataseta)

Configurations Shining3D Aoralscan3

+IPM +TCL +NTE +BP AUC of ADD-S AUC of ADD(-S) AUC of ADD-S AUC of ADD(-S)

– – – – 83.8 74.0 76.9 73.8

X – – – 84.9 75.2 77.7 74.5

– X – – 85.1 75.8 77.9 75.3

X X – – 85.4 76.2 78.6 75.9

– – X – 85.4 75.4 78.6 75.8

– – – X 85.9 75.7 79.2 76.1

– – X X 86.7 76.6 80.1 76.9

X X X X 87.7 77.8 81.2 78.2

a) Symbols ‘IPM’ and ‘TCL’ represent the instance propagation module and temporal consistency loss in video instance seg-

mentation. Symbols ‘NTE’ and ‘BP’ represent the neighboring tooth evaluation in multiview jaw pose estimation and bidirectional

propagation in pose tracking. The values in bold represent the best results among different configurations.

+IPMInput +IPM+TCLGround truth Baseline

Input Ground truth Baseline +NTE Input Ground truth Baseline +BP

(a)

(b) (c)

Figure 8 (Color online) Experimental results of different modules on the Shining3D tooth dataset. The symbols ‘IPM’, ‘TCL’,

‘NTE’, and ‘BP’ represent the instance propagation module, temporal consistency loss, neighboring tooth evaluation, and bidirec-

tional propagation, respectively. Orange dotted boxes highlight differences in results. Red straight boxes represent predicted 6D

poses. (a) Video instance segmentation; (b) multiview jaw 6D pose estimation; (c) jaw 6D pose tracking.

Table 3 Effectiveness comparison of video instance segmentation on the Shining3D tooth segmentation dataset and the Aoralscan3

tooth segmentation dataseta)

Approach
Shining3D Aoralscan3

AP↑ AP50↑ AP75↑ AP↑ AP50↑ AP75↑

CSipMask [49] 36.4 55.5 39.9 37.2 57.3 40.1

PCAN [50] 37.3 58.4 39.7 39.6 59.7 40.3

CrossVIS [51] 38.2 61.2 38.9 40.3 60.1 40.8

VisTR [24] 38.3 58.8 40.9 40.6 59.7 42.9

IFC [29] 39.5 60.3 42.5 41.3 60.8 44.4

DeVIS [52] 40.3 61.1 43.4 42.4 61.2 45.4

InstanceFormer [53] 40.4 60.4 42.0 42.6 61.9 45.9

SeqFormer [25] 41.4 59.5 46.5 43.5 63.0 47.1

Mask2Former [27] 42.3 60.4 46.9 44.4 63.4 47.8

MinVIS [54] 42.8 60.9 47.4 44.9 64.2 48.8

VITA [55] 43.5 62.2 47.9 45.5 66.0 49.8

IDOL [56] 44.0 66.1 48.2 46.4 68.2 50.3

Ours 45.6 68.6 49.6 47.9 70.3 51.4

a) ‘↑’ means upper is better. The values in bold represent the best results among different approaches.

However, existing approaches, such as CSipMask [49], lack the ability to effectively explore temporal
relations or rely on complex data-association methods that require large memory consumption, as seen
in VITA [55] and IDOL [56]. In contrast, our approach utilizes an instance propagation module to
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Ground truth Mask2FormerInput OursGround truth Mask2FormerInput Ours

(a) (b)

Figure 9 (Color online) Illustration of the instance segmentation results on the Shining3D tooth segmentation dataset. The

1st (left)–4th (right) columns contain input images, ground truth, results predicted by Mask2Former, and results predicted by our

approach, respectively. (a) Accurate prediction results. (b) Inaccurate prediction results. Black dotted boxes highlight discrepancies

produced by different approaches.

Table 4 Effectiveness comparison of fixed teeth pose estimation on the Shining3D tooth pose dataset and the Aoralscan3 tooth

registration dataseta)

Approach
Shining3D Aoralscan3

AUC of ADD-S AUC of ADD(-S) AUC of ADD-S AUC of ADD(-S)

RotationNet [34] 85.2 80.1 86.0 81.0

DifRender [11] 87.0 81.9 88.1 82.8

KeyPose [57] 88.5 83.3 89.3 84.1

ODAM [35] 88.7 83.6 89.7 84.7

CosyPose [9] 89.0 83.8 90.2 84.6

Vid2CAD [36]* 89.3 84.0 90.2 85.1

Ours 90.5 85.6 91.2 86.2

a) ‘*’ means the approach we reimplemented. The values in bold represent the best results among different approaches.

Table 5 Effectiveness comparison of jaw pose tracking on the Shining3D tooth pose dataset and the Aoralscan3 tooth registration

dataseta)

Approach
Shining3D Aoralscan3

AUC of ADD-S AUC of ADD(-S) AUC of ADD-S AUC of ADD(-S)

MotionNet [3]* 81.1 78.0 81.6 78.6

AttentionTracking [8] 82.8 79.1 83.1 79.6

3DOT [6] 83.2 79.6 83.6 80.2

MaskTracking [7]* 84.2 80.4 84.6 80.8

PoseRBPF [12] 84.7 80.8 85.0 81.6

PTP [10]* 84.9 80.9 85.3 81.2

CPM [13]* 85.3 81.4 85.5 81.8

GeometricContour [32]* 85.6 81.8 86.0 82.2

SRT3D [14] 85.9 82.4 86.3 82.6

Ours 87.3 84.1 87.4 84.0

a) ‘*’ means the approach we reimplemented. The values in bold represent the best results among different approaches.

enhance temporal relations and achieves superior performance on both datasets, as evidenced by multiple
evaluation metrics.

A visual comparison of the segmentation mask produced by our approach, Mask2Former, and the
corresponding ground truth is provided in Figure 9. Specifically, Figure 9(a) demonstrates accurate
prediction results, showcasing the effectiveness of our approach.

4.7 Evaluation of jaw pose estimation & pose tracking

We compared several multiview 6D pose estimation methods using the Shining3D tooth pose dataset and
the Aoralscan3 tooth registration dataset, and the corresponding results are presented in Table 4. Our
approach, which incorporates the evaluation of neighboring teeth, shows a significant improvement in the
AUC of the ADD-S, with a margin of 1.0%–1.2%.

We compared various pose tracking methods on the Shining3D tooth pose dataset and the Aoralscan3
tooth registration dataset, and the corresponding results are presented in Table 5. Contour-basedmethods
outperform other approaches since the texture of the tooth is not strong enough to be utilized solely for
alignment purposes. By imposing bidirectional constraints on camera motion, our proposed approach
achieves an improvement in the AUC of ADD-S by 1.1%–1.4%.
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Table 6 Effectiveness comparison of different approaches of orthodontic treatment monitoring on the Shining3D tooth pose

dataset and the Aoralscan3 tooth registration dataseta)

Approach
Shining3D Aoralscan3

AUC of ADD-S AUC of ADD(-S) AUC of ADD-S AUC of ADD(-S) GFLOPs Seconds

IOTN [20]* 79.9 70.0 73.4 70.4 994 1.5

YOLO [17]* 81.9 72.2 75.1 72.2 1516 2.1

KBA [18]* 82.5 72.7 75.9 72.8 1955 2.4

AIRM [2]* 82.5 72.9 76.2 73.0 2042 2.5

DeepID [19]* 83.9 74.1 77.8 74.6 2650 3.1

Ours 87.7 77.8 81.2 78.2 3280 5.5

a) ‘*’ means the approach we reimplemented. The values in bold represent the best results among different approaches.

Input Output Input OutputInput Output Input Output

(a) (b)

Figure 10 (Color online) Illustration of tooth alignment results on the Shining3D tooth pose dataset. (a) Accurate prediction

results. (b) Inaccurate prediction results. Green, red, and black boxes represent predicted 6D poses obtained by AIRM, our

approach, and the corresponding ground truth, respectively.

4.8 Evaluation of tooth alignment

To align teeth, we utilize the deepim method [45] to predict relative transformation by comparing the tooth
masks of the rendered foreground image and the observed foreground image. We assess the effectiveness of
various approaches for monitoring orthodontic treatment using the Shining3D tooth pose dataset and the
Aoralscan3 tooth registration dataset, with the corresponding results presented in Table 6. In KBA [18]
and AIRM [2], tooth instance segmentation is leveraged to provide pixel-level details for registration,
outperforming object-level bounding boxes provided by the YOLO detector [17]. The experimental
results indicate that our approach achieves remarkable performance, with AUCs of ADD-S of 87.7 and
81.2 on the Shining3D tooth pose dataset and the Aoralscan3 tooth registration dataset, respectively,
while the AUCs of ADD(-S) in both datasets are 77.8 and 78.2, respectively.

Regarding efficiency, we evaluated the computational complexity of different approaches on the Ao-
ralscan3 tooth registration dataset using Giga floating point operations (GFLOPs) and seconds in the
inference stage. Our experimental results demonstrate that our approach achieves remarkable improve-
ments at the cost of an increment in computational complexity.

To further demonstrate the effectiveness of our approach, Figure 10 provides some examples of the
alignment of AIRM, our approach, and the corresponding ground truth. Figure 10(a) shows that our
approach achieves robustness in various classes and poses of teeth, even in challenging scenarios, due
to multiple components in our approach, such as temporal consistency exploration in video instance
segmentation and neighboring tooth evaluation in multiview jaw pose estimation.

4.9 Discussion

Orthodontic treatment monitoring is a critical topic in both geometry analysis and medical image analysis.
The goal is to measure the degree of orthodontic treatment for each tooth using the 3D jaw model
constructed from the previous period and observed images in the current period. However, this task is
more complex than the object 6D pose estimation, as each tooth undergoes a unique rigid deformation,
while the gingiva part experiences nonrigid deformation during each period of orthodontic treatment.
To address these challenges, we propose a framework that involves segmenting and registering each
orthodontic tooth by aligning the jaw model in each frame as an intermediate stage.

In the first stage of our approach, we utilize both semantic knowledge and detailed position information
in representation learning for video instance propagation. To ensure that the method is compatible
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with different device capabilities, we constrain memory consumption. Furthermore, we employ temporal
consistency to learn embeddings that maintain high similarity between instances across frames. However,
as shown in Figure 9(b), there are cases where the boundary may be defective due to the weak texture
of the tooth, which decreases the discrimination between neighboring teeth. To address this issue, the
shape prior is a potential solution that can guide boundary extraction, for example, through explicit edge
detection [58] or implicit edge modeling [59].

During the intermediate stage of our approach, we align the 3D jaw model using fixed teeth. While
multiview 6D pose estimation only employs object-level information, evaluating poses in neighboring
teeth is an effective way to detect and correct outliers. We can then use the supervision information of
the fixed teeth to predict the jaw in the remaining frames. Bidirectional propagation is also a powerful
strategy that helps to constrain the deviation in pose space.

In the final stage, the rendered tooth image is compared with the observed foreground image to itera-
tively predict the pose offset. However, the accuracy of this approach is highly dependent on the quality
of instance segmentation in both 3D and 2D space. As shown in Figure 10(b), inaccurate segmentation
masks can lead to pose errors since teeth have weak texture and shape cues are relied upon for alignment.
It should be noted that rotation errors are generally greater than translation errors due to the significant
influence of tooth appearance on rotation.

In the future, research will be conducted to study the shape prior to improving robustness in segmen-
tation and registration. Additionally, new multitask learning methods [60–62] will be explored to predict
translation and rotation, as these two tasks have distinct characteristics and are influenced by different
factors. Furthermore, the proposed work will be expanded to measure the level of deformation in nonrigid
objects, thereby extending its potential applications.

5 Conclusion

In this paper, we present an approach to measure the degree of orthodontic treatment for each individ-
ual tooth. We accomplish this by predicting the jaw pose in each frame using a combination of fixed
teeth assumptions and bidirectional pose tracking constraints. Furthermore, our proposed approach has
potential applications beyond orthodontics, as it can be extended to measure the degree of deformation
of nonrigid objects.
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